메뉴 건너뛰기




Volumn 21, Issue 7-9, 2007, Pages 376-385

Kernel-based orthogonal projections to latent structures (K-OPLS)

Author keywords

K OPLS; Kernel methods; Kernel PLS; Non linear; OPLS; OSC; SVM

Indexed keywords

BIOLOGICAL SYSTEMS;

EID: 35648954755     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.1071     Document Type: Article
Times cited : (61)

References (32)
  • 1
    • 0001681052 scopus 로고
    • The collinearity problem in linear regression. The partial least squares approach to generalized inverses
    • Wold S, Ruhe A, Wold H, Dunn WJ III. The collinearity problem in linear regression. The partial least squares approach to generalized inverses. SIAM J. Sci. Stat. Comput. 1984; 5: 735-743.
    • (1984) SIAM J. Sci. Stat. Comput , vol.5 , pp. 735-743
    • Wold, S.1    Ruhe, A.2    Wold, H.3    Dunn III, W.J.4
  • 4
    • 0036085968 scopus 로고    scopus 로고
    • O2-PLS for qualitative and quantitative analysis in multivariate calibration
    • Trygg J. O2-PLS for qualitative and quantitative analysis in multivariate calibration. J. Chemometrics 2002; 16: 283-293.
    • (2002) J. Chemometrics , vol.16 , pp. 283-293
    • Trygg, J.1
  • 5
    • 0037282744 scopus 로고    scopus 로고
    • O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter
    • Trygg J, Wold S. O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter. J. Chemometrics 2003; 17: 53-64.
    • (2003) J. Chemometrics , vol.17 , pp. 53-64
    • Trygg, J.1    Wold, S.2
  • 6
    • 0036083139 scopus 로고    scopus 로고
    • Orthogonal projections to latent structures (O-PLS)
    • Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J. Chemometrics 2002; 16: 119-128.
    • (2002) J. Chemometrics , vol.16 , pp. 119-128
    • Trygg, J.1    Wold, S.2
  • 8
    • 0036892637 scopus 로고    scopus 로고
    • Prediction of human clearance from animal data and molecular structural parameters using multivariate regression analysis
    • Wajima T, Fukumura K, Yano Y, Oguma T. Prediction of human clearance from animal data and molecular structural parameters using multivariate regression analysis. J. Pharm. Sci. 2002; 91: 2489-2499.
    • (2002) J. Pharm. Sci , vol.91 , pp. 2489-2499
    • Wajima, T.1    Fukumura, K.2    Yano, Y.3    Oguma, T.4
  • 9
    • 0030905036 scopus 로고    scopus 로고
    • Mutagenicity testing of organic extracts of diesel exhaust particles after fractionation and recombination
    • Østby L, Engen S, Melbye A, Eide I. Mutagenicity testing of organic extracts of diesel exhaust particles after fractionation and recombination. Arch. Toxicol. 1997; 71: 314-319.
    • (1997) Arch. Toxicol , vol.71 , pp. 314-319
    • Østby, L.1    Engen, S.2    Melbye, A.3    Eide, I.4
  • 10
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman M, Braverman E, Rozonoer L. Theoretical foundations of the potential function method in pattern recognition learning. Automat. Rem. Contr. 1964; 25: 821-837.
    • (1964) Automat. Rem. Contr , vol.25 , pp. 821-837
    • Aizerman, M.1    Braverman, E.2    Rozonoer, L.3
  • 11
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • Mercer J. Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. R. Soc. Lond. 1909; A209: 415-446.
    • (1909) Philos. Trans. R. Soc. Lond , vol.A209 , pp. 415-446
    • Mercer, J.1
  • 14
    • 84984286248 scopus 로고
    • A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm
    • Rännar S, Lindgren F, Geladi P, Wold S. A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm. J. Chemometrics 1994; 8: 111-125.
    • (1994) J. Chemometrics , vol.8 , pp. 111-125
    • Rännar, S.1    Lindgren, F.2    Geladi, P.3    Wold, S.4
  • 15
    • 0030607269 scopus 로고    scopus 로고
    • The radial basis functions - partial least squares approach as a flexible non-linear regression technique
    • Walczak B, Massart DL. The radial basis functions - partial least squares approach as a flexible non-linear regression technique. Anal. Chim. Acta 1996; 331: 177-185.
    • (1996) Anal. Chim. Acta , vol.331 , pp. 177-185
    • Walczak, B.1    Massart, D.L.2
  • 16
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel Hilbert space
    • Rosipal R, Trejo LJ. Kernel partial least squares regression in reproducing kernel Hilbert space. J. Mach. Learn. Res. 2002; 2: 97-123.
    • (2002) J. Mach. Learn. Res , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 17
    • 32444444605 scopus 로고    scopus 로고
    • About kernel latent variable approaches and SVM
    • Czekaj T, Wu W, Walczak B. About kernel latent variable approaches and SVM. J. Chemometrics 2005; 19: 341-354.
    • (2005) J. Chemometrics , vol.19 , pp. 341-354
    • Czekaj, T.1    Wu, W.2    Walczak, B.3
  • 18
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 1998; 2: 121-167.
    • (1998) Data Min. Knowl. Disc , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 20
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outliers: Algorithms and applications
    • Knorr EM, Ng RT, Tucakov V. Distance-based outliers: algorithms and applications. VLDB J. 2000; 8: 237-253.
    • (2000) VLDB J , vol.8 , pp. 237-253
    • Knorr, E.M.1    Ng, R.T.2    Tucakov, V.3
  • 21
    • 0037061158 scopus 로고    scopus 로고
    • Quantitative in-line monitoring of powder blending by near infrared reflection spectroscopy
    • Berntsson O, Danielsson LG, Lagerholm B, Folestad S. Quantitative in-line monitoring of powder blending by near infrared reflection spectroscopy. Powder Technol. 2002; 123: 185-193.
    • (2002) Powder Technol , vol.123 , pp. 185-193
    • Berntsson, O.1    Danielsson, L.G.2    Lagerholm, B.3    Folestad, S.4
  • 23
    • 34249324050 scopus 로고    scopus 로고
    • Separating Y-predictive and Y-orthogonal variation in multi-block spectral data
    • Eriksson L, Toft M, Johansson E, Wold S, Trygg J. Separating Y-predictive and Y-orthogonal variation in multi-block spectral data. J. Chemometrics 2006; 20: 352-361.
    • (2006) J. Chemometrics , vol.20 , pp. 352-361
    • Eriksson, L.1    Toft, M.2    Johansson, E.3    Wold, S.4    Trygg, J.5
  • 24
    • 0024701578 scopus 로고
    • Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra
    • Barnes RJ, Dhanoa MS, Lister SJ. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectr. 1989; 43: 772-777.
    • (1989) Appl. Spectr , vol.43 , pp. 772-777
    • Barnes, R.J.1    Dhanoa, M.S.2    Lister, S.J.3
  • 25
    • 0030607717 scopus 로고    scopus 로고
    • Neural network learning to non-linear principal component analysis
    • Jiang JH, Wang JH, Chu X, Yu RQ. Neural network learning to non-linear principal component analysis. Anal. Chim. Acta 1996; 336: 209-222.
    • (1996) Anal. Chim. Acta , vol.336 , pp. 209-222
    • Jiang, J.H.1    Wang, J.H.2    Chu, X.3    Yu, R.Q.4
  • 26
    • 1342343985 scopus 로고    scopus 로고
    • Support vector machines for the discrimination of analytical chemical data: Application to the determination of tablet production by pyrolysis-gas chromatography-mass spectrometry
    • Zomer S, Brereton RG, Carter JF, Eckers C. Support vector machines for the discrimination of analytical chemical data: application to the determination of tablet production by pyrolysis-gas chromatography-mass spectrometry. Analyst 2004; 129: 175-181.
    • (2004) Analyst , vol.129 , pp. 175-181
    • Zomer, S.1    Brereton, R.G.2    Carter, J.F.3    Eckers, C.4
  • 27
    • 2442569953 scopus 로고    scopus 로고
    • Toxicological classification of urine samples using pattern recognition techniques and capillary electrophoresis
    • Zomer S, Guillo C, Brereton RG, Hanna-Brown M. Toxicological classification of urine samples using pattern recognition techniques and capillary electrophoresis. Anal. Bioanal. Chem. 2004; 378: 2008-2020.
    • (2004) Anal. Bioanal. Chem , vol.378 , pp. 2008-2020
    • Zomer, S.1    Guillo, C.2    Brereton, R.G.3    Hanna-Brown, M.4
  • 28
    • 0037191113 scopus 로고    scopus 로고
    • A flexible classification approach with optimal generalisation performance: Support vector machines
    • Belousov AI, Verzakov SA, von Frese J. A flexible classification approach with optimal generalisation performance: support vector machines. Chemometrics Intell. Lab. Syst. 2002; 64: 15-25.
    • (2002) Chemometrics Intell. Lab. Syst , vol.64 , pp. 15-25
    • Belousov, A.I.1    Verzakov, S.A.2    von Frese, J.3
  • 29
    • 24044461725 scopus 로고    scopus 로고
    • A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction
    • Kim K, Lee JM, Lee IB. A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction. Chemometrics Intell. Lab. Syst. 2005; 79: 22-30.
    • (2005) Chemometrics Intell. Lab. Syst , vol.79 , pp. 22-30
    • Kim, K.1    Lee, J.M.2    Lee, I.B.3
  • 31
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003; 3: 1157-1182.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 32
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002; 46: 389-422.
    • (2002) Mach. Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.