메뉴 건너뛰기




Volumn , Issue , 2009, Pages 433-440

Group lasso with overlap and graph lasso

Author keywords

[No Author keywords available]

Indexed keywords

APRIORI; BREAST CANCER; COVARIATES; EMPIRICAL RISK MINIMIZATION; OVERLAPPING GROUPS; PENALTY FUNCTION; SPARSE VECTORS;

EID: 71149113559     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (614)

References (20)
  • 1
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • Bach, F. (2008). Consistency of the group lasso and multiple kernel learning. J. Mach. Learn. Res., 9, 1179-1225.
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 1179-1225
    • Bach, F.1
  • 2
    • 84858766876 scopus 로고    scopus 로고
    • Exploring large feature spaces with hierarchical multiple kernel learning
    • Bach, F. (2009). Exploring large feature spaces with hierarchical multiple kernel learning. Adv. Neural. Inform. Prvcess Syst., 105-112.
    • (2009) Adv. Neural. Inform. Prvcess Syst , pp. 105-112
    • Bach, F.1
  • 4
  • 5
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for Lasso-type estimators
    • Fu, W., & Knight, K. (2000). Asymptotics for Lasso-type estimators. Ann. Stat., 28, 1356-1378.
    • (2000) Ann. Stat , vol.28 , pp. 1356-1378
    • Fu, W.1    Knight, K.2
  • 7
    • 34250252133 scopus 로고
    • An implicit function theorem: Comment
    • Kumagai, S. (1980). An implicit function theorem: Comment. J. Optim. Theor. Appl., 31, 285-288.
    • (1980) J. Optim. Theor. Appl , vol.31 , pp. 285-288
    • Kumagai, S.1
  • 9
    • 70049105714 scopus 로고    scopus 로고
    • Joint co-variate selection and joint subspace selection for multiple classification problems
    • To appear
    • Obozinski, G., Taskar, B., & Jordan, M. (2009). Joint co-variate selection and joint subspace selection for multiple classification problems. Stat. Comput., To appear.
    • (2009) Stat. Comput
    • Obozinski, G.1    Taskar, B.2    Jordan, M.3
  • 12
    • 0345276233 scopus 로고    scopus 로고
    • The generalized lasso: A wrapper approach to gene selection for microarray data
    • Roth, V. (2002). The generalized lasso: a wrapper approach to gene selection for microarray data. Proc. Conference on Automated Deduction 14, 252-255.
    • (2002) Proc. Conference on Automated Deduction 14 , pp. 252-255
    • Roth, V.1
  • 13
    • 56449115709 scopus 로고    scopus 로고
    • The group-lasso for generalized linear models: Uniqueness of solutions and efficient algorithms
    • Roth, V., & Fischer, B. (2008). The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. Int. Conf. Mach. Learn., 848-855.
    • (2008) Int. Conf. Mach. Learn , pp. 848-855
    • Roth, V.1    Fischer, B.2
  • 14
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian, A., et al., (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 102, 15545-15550.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 15545-15550
    • Subramanian, A.1
  • 15
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc. B., 58, 267-288.
    • (1996) J. Royal. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 16
    • 0037137519 scopus 로고    scopus 로고
    • A gene-expression signature as a predictor of survival in breast cancer
    • Van de Vijver, M. J., et al., (2002). A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med., 347, 1999-2009.
    • (2002) N. Engl. J. Med , vol.347 , pp. 1999-2009
    • Van de Vijver, M.J.1
  • 17
    • 41949129774 scopus 로고    scopus 로고
    • Sharp thresholds for high-dimensional and noisy recovery of sparsity
    • 709, UC Berkeley, Department of Statistics
    • Wainwright, M. J. (2006). Sharp thresholds for high-dimensional and noisy recovery of sparsity (Technical Report 709). UC Berkeley, Department of Statistics.
    • (2006) Technical Report
    • Wainwright, M.J.1
  • 18
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M., & Lin, Y (2006). Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B, 68, 49-67.
    • (2006) J. R. Stat. Soc. Ser. B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 19
    • 34447335946 scopus 로고    scopus 로고
    • Grouped and hierarchical model selection through composite absolute penalties
    • To appear
    • Zhao, P., Rocha, G., & Yu, B. (2009). Grouped and hierarchical model selection through composite absolute penalties. Ann. Stat. To appear.
    • (2009) Ann. Stat
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 20
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • Zhao, P., & Yu, B. (2006). On model selection consistency of lasso. J. Mach. Learn. Res., 7, 2541-2563.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.