-
1
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
10.1093/bioinformatics/16.10.906, 11120680
-
Furey T, Cristianini N, Duffy N, Bednarski D, Schummer M, Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16(10):906-914. 10.1093/bioinformatics/16.10.906, 11120680.
-
(2000)
Bioinformatics
, vol.16
, Issue.10
, pp. 906-914
-
-
Furey, T.1
Cristianini, N.2
Duffy, N.3
Bednarski, D.4
Schummer, M.5
Haussler, D.6
-
2
-
-
84886468094
-
The regularized linear models and kernels toolbox in MATLAB
-
University of Windsor, Windsor, Ontario
-
Li Y, Ngom A. The regularized linear models and kernels toolbox in MATLAB. Tech. rep., School of Computer Science 2013, University of Windsor, Windsor, Ontario., https://sites.google.com/site/rlmktool
-
(2013)
Tech. rep., School of Computer Science
-
-
Li, Y.1
Ngom, A.2
-
3
-
-
2542430932
-
Singular value decomposition and principal component analysis
-
Kluwer, Berrar D, Dubitzky W, Granzow M, Norwell, MA
-
Wall M, Rechtsteiner A, Rocha L. Singular value decomposition and principal component analysis. A Practical Approach to Microarray Data Analysis 2003, 91-109. Kluwer, Berrar D, Dubitzky W, Granzow M, Norwell, MA.
-
(2003)
A Practical Approach to Microarray Data Analysis
, pp. 91-109
-
-
Wall, M.1
Rechtsteiner, A.2
Rocha, L.3
-
4
-
-
62549125109
-
High-dimensional sparse factor modeling: applications in gene expression genomics
-
10.1198/016214508000000869, 3017385, 21218139
-
Carvalho C, Chang J, Lucas J, Nevins J, Wang Q, West M. High-dimensional sparse factor modeling: applications in gene expression genomics. Journal of the American Statistical Association 2008, 103(484):1438-1456. 10.1198/016214508000000869, 3017385, 21218139.
-
(2008)
Journal of the American Statistical Association
, vol.103
, Issue.484
, pp. 1438-1456
-
-
Carvalho, C.1
Chang, J.2
Lucas, J.3
Nevins, J.4
Wang, Q.5
West, M.6
-
6
-
-
84881233012
-
Representation learning: a review and new perspectives
-
1206.5538v2
-
Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. Arxiv 2012, 1206.5538v2.
-
(2012)
Arxiv
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
7
-
-
33845584374
-
Image denoising via learned dictionaries and sparse representation
-
Washington DC: IEEE
-
Elad M, Aharon M. Image denoising via learned dictionaries and sparse representation. CVPR, IEEE Computer Society 2006, 895-900. Washington DC: IEEE.
-
(2006)
CVPR, IEEE Computer Society
, pp. 895-900
-
-
Elad, M.1
Aharon, M.2
-
8
-
-
84876097941
-
The non-negative matrix factorization toolbox for biological data mining
-
10.1186/1751-0473-8-10, 3736608, 23591137
-
Li Y, Ngom A. The non-negative matrix factorization toolbox for biological data mining. BMC Source Code for Biology and Medicine 2013, 8:10. 10.1186/1751-0473-8-10, 3736608, 23591137.
-
(2013)
BMC Source Code for Biology and Medicine
, vol.8
, pp. 10
-
-
Li, Y.1
Ngom, A.2
-
9
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
10.1038/44565, 10548103
-
Lee DD, Seung S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401:788-791. 10.1038/44565, 10548103.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, S.2
-
11
-
-
65349171459
-
Sparse representation for classification of tumors using gene expression data
-
2655631, 19300522
-
Hang X, Wu FX. Sparse representation for classification of tumors using gene expression data. J. Biomedicine and Biotechnology 2009, 2009:ID 403689. 2655631, 19300522.
-
(2009)
J. Biomedicine and Biotechnology
, vol.2009
-
-
Hang, X.1
Wu, F.X.2
-
13
-
-
0242295767
-
Bayesian factor regression models in the "large p, small n" paradigm
-
West M. Bayesian factor regression models in the "large p, small n" paradigm. Bayesian Statistics 2003, 7:723-732.
-
(2003)
Bayesian Statistics
, vol.7
, pp. 723-732
-
-
West, M.1
-
14
-
-
59749104367
-
From sparse solutions of systems of equations to sparse modeling of signals and images
-
Bruckstein AM, Donoho DL, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review 2009, 51:34-81.
-
(2009)
SIAM Review
, vol.51
, pp. 34-81
-
-
Bruckstein, A.M.1
Donoho, D.L.2
Elad, M.3
-
16
-
-
80955131778
-
Kernel sparse representation based classification
-
Yin J, Liu X, Jin Z, Yang W. Kernel sparse representation based classification. Neurocomputing 2012, 77:120-128.
-
(2012)
Neurocomputing
, vol.77
, pp. 120-128
-
-
Yin, J.1
Liu, X.2
Jin, Z.3
Yang, W.4
-
17
-
-
78149343905
-
Kernel sparse representation for image classification and face recognition
-
Springer
-
Gao S, Tsang IWH, Chia LT. Kernel sparse representation for image classification and face recognition. ECCV 2010, 1-14. Springer.
-
(2010)
ECCV
, pp. 1-14
-
-
Gao, S.1
Tsang, I.W.H.2
Chia, L.T.3
-
18
-
-
0030779611
-
Sparse coding with an overcomplete basis set: a strategy employed by V1?
-
10.1016/S0042-6989(97)00169-7, 9425546
-
Olshausen B, Field D. Sparse coding with an overcomplete basis set: a strategy employed by V1?. Vision Research 1997, 37(23):3311-3325. 10.1016/S0042-6989(97)00169-7, 9425546.
-
(1997)
Vision Research
, vol.37
, Issue.23
, pp. 3311-3325
-
-
Olshausen, B.1
Field, D.2
-
19
-
-
61549128441
-
Robust face recognition via sparse representation
-
Wright J, Yang A, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. TPAMI 2009, 31(2):210-227.
-
(2009)
TPAMI
, vol.31
, Issue.2
, pp. 210-227
-
-
Wright, J.1
Yang, A.2
Ganesh, A.3
Sastry, S.S.4
Ma, Y.5
-
22
-
-
39449109476
-
An interior-point method for large-scale l1-regularized least squares
-
Kim SJ, Koh K, Lustig M, Boyd S, Gorinevsky D. An interior-point method for large-scale l1-regularized least squares. IEEE J. Selected Topics in Signal Processing 2007, 1(4):606-617.
-
(2007)
IEEE J. Selected Topics in Signal Processing
, vol.1
, Issue.4
, pp. 606-617
-
-
Kim, S.J.1
Koh, K.2
Lustig, M.3
Boyd, S.4
Gorinevsky, D.5
-
23
-
-
80052234083
-
Proximal methods for hierarchical sparse coding
-
Jenatton R, Mairal J, Obozinski G, Bach F. Proximal methods for hierarchical sparse coding. JMLR 2011, 12(2011):2297-2334.
-
(2011)
JMLR
, vol.12
, Issue.2011
, pp. 2297-2334
-
-
Jenatton, R.1
Mairal, J.2
Obozinski, G.3
Bach, F.4
-
24
-
-
33646874546
-
The molecular portraits of breast tumors are conserved across microarray platforms
-
10.1186/1471-2164-7-96, 1468408, 16643655
-
Hu Z, et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 2006, 7:96. 10.1186/1471-2164-7-96, 1468408, 16643655.
-
(2006)
BMC Genomics
, vol.7
, pp. 96
-
-
Hu, Z.1
-
25
-
-
0037120949
-
Serum proteomic patterns for detection of prostate cancer
-
10.1093/jnci/94.20.1576, 12381711
-
Petricoin EI, et al. Serum proteomic patterns for detection of prostate cancer. J. National Cancer Institute 2002, 94(20):1576-1578. 10.1093/jnci/94.20.1576, 12381711.
-
(2002)
J. National Cancer Institute
, vol.94
, Issue.20
, pp. 1576-1578
-
-
Petricoin, E.I.1
-
26
-
-
84871617105
-
Convex and semi-nonnegative matrix factorizations
-
Ding C, Li T, Jordan MI. Convex and semi-nonnegative matrix factorizations. TPAMI 2010, 32:45-55.
-
(2010)
TPAMI
, vol.32
, pp. 45-55
-
-
Ding, C.1
Li, T.2
Jordan, M.I.3
-
27
-
-
84884470016
-
The sparse representation toolbox in MATLAB
-
The sparse representation toolbox in MATLAB., https://sites.google.com/site/sparsereptool
-
-
-
|