메뉴 건너뛰기




Volumn , Issue , 2015, Pages 1665-1671

Data integration in machine learning

Author keywords

Bayesian network; data integration; decision tree; deep learning; feature extraction; multiple kernel learning; random forest

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; BIOINFORMATICS; DATA MINING; DECISION MAKING; DECISION TREES; FEATURE EXTRACTION; LEARNING SYSTEMS;

EID: 84962476203     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBM.2015.7359925     Document Type: Conference Paper
Times cited : (20)

References (53)
  • 1
    • 84908019121 scopus 로고    scopus 로고
    • Big data opportunities and challenges: Discussions from data analytics perspectives
    • Z. Zhou, N. Chawla, Y. Jin, and G. Williams, "Big data opportunities and challenges: Discussions from data analytics perspectives, " IEEE Computational Intelligence Magazine, vol. 9, no. 4, pp. 62-74, 2014.
    • (2014) IEEE Computational Intelligence Magazine , vol.9 , Issue.4 , pp. 62-74
    • Zhou, Z.1    Chawla, N.2    Jin, Y.3    Williams, G.4
  • 2
    • 1542559402 scopus 로고    scopus 로고
    • Support vector machine applications in computational biology
    • B. Scholkopf, K. Tsuda, and J.-P. Vert, Eds. The MIT Press, ch. 3
    • W. Nobel, "Support vector machine applications in computational biology, " in Kernel Methods in Computational Biology, B. Scholkopf, K. Tsuda, and J.-P. Vert, Eds. The MIT Press, 2004, ch. 3, pp. 71-92.
    • (2004) Kernel Methods in Computational Biology , pp. 71-92
    • Nobel, W.1
  • 4
    • 84925031191 scopus 로고    scopus 로고
    • Methods of integrating data to uncover genotype-phenotype interactions
    • M. Ritchie, E. Holzinger, R. Li, S. Pendergrass, and D. Kim, "Methods of integrating data to uncover genotype-phenotype interactions, " Nature Review Genetics, vol. 15, pp. 85-97, 2015.
    • (2015) Nature Review Genetics , vol.15 , pp. 85-97
    • Ritchie, M.1    Holzinger, E.2    Li, R.3    Pendergrass, S.4    Kim, D.5
  • 5
    • 34249753618 scopus 로고
    • Support vector networks
    • c. Cortes and V. Vapnik, "Support vector networks, " Machine Learning, vol. 20, pp. 273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 79952266465 scopus 로고    scopus 로고
    • Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data
    • R. Pique-Regi, J. Degner, A. Pai, D. Gaffney, Y. Gilad, and J. Pritchard, "Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data, " Genome Research, vol. 21, pp. 447-455, 2011.
    • (2011) Genome Research , vol.21 , pp. 447-455
    • Pique-Regi, R.1    Degner, J.2    Pai, A.3    Gaffney, D.4    Gilad, Y.5    Pritchard, J.6
  • 10
    • 34548183010 scopus 로고    scopus 로고
    • "Ideal parent" structure learning for continuous variable Bayesian networks
    • G. Elidan, I. Nachman, and N. Friedman, ""Ideal Parent " structure learning for continuous variable Bayesian networks, " Journal of Machine Learning Research, vol. 8, pp. 1799-1833, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1799-1833
    • Elidan, G.1    Nachman, I.2    Friedman, N.3
  • 11
    • 33847259436 scopus 로고    scopus 로고
    • Mix-nets: Factored mixtures of Gaussians in Bayesian networks with mixed continuous and discrete variables
    • San Francisco, CA: Morgan Kaufmann Publishers Inc
    • S. Davies and A. Moore, "Mix-nets: Factored mixtures of Gaussians in Bayesian networks with mixed continuous and discrete variables, " in Proceedings of The Sixteenth Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers Inc, 2000, pp. 168-175.
    • (2000) Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence , pp. 168-175
    • Davies, S.1    Moore, A.2
  • 19
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors, " Machine Learning, vol. 24, no. 3, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.3 , pp. 123-140
    • Breiman, L.1
  • 21
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman, "Arcing classifiers, " The Annals of Statistics, vol. 26, no. 3, pp. 801-849, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 22
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • R. Polikar, "Ensemble based systems in decision making, " IEEE Circuits and Systems Magazine, vol. 6, no. 3, pp. 21-45, 2006.
    • (2006) IEEE Circuits and Systems Magazine , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 23
    • 85032751446 scopus 로고    scopus 로고
    • Bootstrap inspired techniques in computational intelligence: Ensemble of classifiers, incremental learning, data fusion and missing features
    • -, "Bootstrap inspired techniques in computational intelligence: Ensemble of classifiers, incremental learning, data fusion and missing features, " IEEE Signal Processing Magazine, vol. 24, no. 4, pp. 59-72, 2007.
    • (2007) IEEE Signal Processing Magazine , vol.24 , Issue.4 , pp. 59-72
    • Polikar, R.1
  • 24
    • 84887090067 scopus 로고    scopus 로고
    • A survey of multiple classifier systems as hybrid systems
    • M. Wozniak, M. Grana, and E. Corchado, "A survey of multiple classifier systems as hybrid systems, " Information Fusion, vol. 16, pp. 3-17, 2014.
    • (2014) Information Fusion , vol.16 , pp. 3-17
    • Wozniak, M.1    Grana, M.2    Corchado, E.3
  • 25
    • 20444392475 scopus 로고    scopus 로고
    • Using random forest to learn imbalanced data
    • University of California, Berkeley, Tech. Rep.
    • C. Chen, A. Liaw, and L. Breiman, "Using Random Forest to Learn Imbalanced Data, " Department of Statistics, University of California, Berkeley, Tech. Rep., 2004.
    • (2004) Department of Statistics
    • Chen, C.1    Liaw, A.2    Breiman, L.3
  • 26
    • 84977474367 scopus 로고    scopus 로고
    • Problems with the nested granularity of feature domains in bioinformatics: The eXtasy case
    • D. Popovic, A. Sifrim, J. Davis, Y. Moreau, and B. D. Moor, "Problems with the nested granularity of feature domains in bioinformatics: The eXtasy case, " BMC Bioinformatics, vol. 16, no. 4, p. S2, 2015.
    • (2015) BMC Bioinformatics , vol.16 , Issue.4 , pp. S2
    • Popovic, D.1    Sifrim, A.2    Davis, J.3    Moreau, Y.4    Moor, B.D.5
  • 29
    • 85162550129 scopus 로고    scopus 로고
    • Metric learning with multiple kernels
    • J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, Eds.
    • J. Wang, H. T. Do, A. Woznica, and A. Kalousis, "Metric learning with multiple kernels, " in Advances in Neural Information Processing Systems 24, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, Eds., 2011, pp. 1170-1178.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 1170-1178
    • Wang, J.1    Do, H.T.2    Woznica, A.3    Kalousis, A.4
  • 30
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with sideinformation
    • S. Becker, S. Thrun, and K. Obermayer, Eds. MIT Press
    • E. P. Xing, M. I. Jordan, S. J. Russell, and A. Y. Ng, "Distance metric learning with application to clustering with sideinformation, " in Advances in Neural Information Processing Systems 15, S. Becker, S. Thrun, and K. Obermayer, Eds. MIT Press, 2003, pp. 521-528.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 521-528
    • Xing, E.P.1    Jordan, M.I.2    Russell, S.J.3    Ng, A.Y.4
  • 31
    • 84905378574 scopus 로고    scopus 로고
    • A survey on metric learning for feature vectors and structured data
    • vol. abs/1306.6709
    • A. Bellet, A. Habrard, and M. Sebban, "A survey on metric learning for feature vectors and structured data, " CoRR, vol. abs/1306.6709, 2013.
    • (2013) CoRR
    • Bellet, A.1    Habrard, A.2    Sebban, M.3
  • 33
    • 84908474112 scopus 로고    scopus 로고
    • A decomposition method for large-scale sparse coding in representation learning
    • IEEE, July
    • Y. Li, R. Caron, and A. Ngom, "A decomposition method for large-scale sparse coding in representation learning, " in World Congress on Computational Intelligence (lJCNNIWCCl). IEEE, July 2014, pp. 3732-2738.
    • (2014) World Congress on Computational Intelligence (LJCNNIWCCl) , pp. 3732-3738
    • Li, Y.1    Caron, R.2    Ngom, A.3
  • 36
    • 2542430932 scopus 로고    scopus 로고
    • Singular value decomposition and principal component analysis
    • D. Berrar, W. Dubitzky, and M. Granzow, Eds. Norwell, MA: Kluwer
    • M. Wall, A. Rechtsteiner, and L. Rocha, " Singular value decomposition and principal component analysis, " in A Practical Approach to Microarray Data Analysis, D. Berrar, W. Dubitzky, and M. Granzow, Eds. Norwell, MA: Kluwer, 2003, pp. 91-109.
    • (2003) A Practical Approach to Microarray Data Analysis , pp. 91-109
    • Wall, M.1    Rechtsteiner, A.2    Rocha, L.3
  • 37
    • 0003130097 scopus 로고
    • The estimation of factor loadings by the method of maximum likelihood
    • D. Lawley, 'The estimation of factor loadings by the method of maximum likelihood, " Proceedings of the Royal Society of Edinburgh, vol. 60, pp. 64-82, 1940.
    • (1940) Proceedings of the Royal Society of Edinburgh , vol.60 , pp. 64-82
    • Lawley, D.1
  • 38
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the "large p, small n " paradigm
    • M. West, "Bayesian factor regression models in the "large p, small n " paradigm, " Bayesian Statistics, vol. 7, pp. 723-732, 2003.
    • (2003) Bayesian Statistics , vol.7 , pp. 723-732
    • West, M.1
  • 39
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and S. Seung, "Learning the parts of objects by non-negative matrix factorization, " Nature, vol. 401, pp. 788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, S.2
  • 40
    • 77958479692 scopus 로고    scopus 로고
    • CoGAPS: An RJC++ package to identify patterns and biological process activity in transcriptomic data
    • E. Fertig, J. Ding, A. Favorov, G. Parmigiani, and M. Ochs, "CoGAPS: an RJC++ package to identify patterns and biological process activity in transcriptomic data, " Bioinformatics, vol. 26, no. 21, pp. 2792-2793, 2010.
    • (2010) Bioinformatics , vol.26 , Issue.21 , pp. 2792-2793
    • Fertig, E.1    Ding, J.2    Favorov, A.3    Parmigiani, G.4    Ochs, M.5
  • 41
    • 84876097941 scopus 로고    scopus 로고
    • The non-negative matrix factorization toolbox for biological data mining
    • Y. Li and A. Ngom, "The non-negative matrix factorization toolbox for biological data mining, " BMC Source Code for Biology and Medicine, vol. 8, no. 1, p. 10, 2013, https://sites.google.com/site/nmftool.
    • (2013) BMC Source Code for Biology and Medicine , vol.8 , Issue.1 , pp. 10
    • Li, Y.1    Ngom, A.2
  • 42
    • 84959350566 scopus 로고    scopus 로고
    • The identification of cis-regulatory elements: A review from a machine learning perspective
    • under revision
    • Y. Li, C. Chen, A. Kaye, and W. Wasserman, "The identification of cis-regulatory elements: A review from a machine learning perspective, " BioSystems, 2015, under revision.
    • (2015) BioSystems
    • Li, Y.1    Chen, C.2    Kaye, A.3    Wasserman, W.4
  • 43
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • T. Kolda and B. Bader, "Tensor decompositions and applications, " SlAM Review, vol. 51, no. 3, pp. 455-500, 2009.
    • (2009) SlAM Review , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.1    Bader, B.2
  • 44
    • 79952383578 scopus 로고    scopus 로고
    • Non-negative matrix and tensor factorization based classification of clinical microarray gene expression data
    • Piscataway, NJ: IEEE Press, Dec
    • Y. Li and A. Ngom, "Non-negative matrix and tensor factorization based classification of clinical microarray gene expression data, " in IEEE lnternational Conference on Bioinformatics & Biomedicine, IEEE. Piscataway, NJ: IEEE Press, Dec. 2010, pp. 438-443.
    • (2010) IEEE Lnternational Conference on Bioinformatics & Biomedicine, IEEE , pp. 438-443
    • Li, Y.1    Ngom, A.2
  • 45
    • 84906938126 scopus 로고    scopus 로고
    • Versatile sparse matrix factorization: Theory and applications
    • -, "Versatile sparse matrix factorization: Theory and applications, " Neurocomputing, vol. 145, pp. 23-29, 2014.
    • (2014) Neurocomputing , vol.145 , pp. 23-29
    • Li, Y.1    Ngom, A.2
  • 48
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning, " Nature, vol. 521, pp. 436-444, 2015.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 49
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets, " Neural Computation, vol. 18, pp. 1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 50
    • 0002263996 scopus 로고
    • Convolutional networks for images, speech, and time series
    • Cambridge, MA: MIT Press
    • Y. LeCun and Y. Bengio, "Convolutional networks for images, speech, and time series, " in The Handbook of Brain Theory and Neural Networks. Cambridge, MA: MIT Press, 1995, pp. 255-258.
    • (1995) The Handbook of Brain Theory and Neural Networks , pp. 255-258
    • LeCun, Y.1    Bengio, Y.2
  • 52
    • 84959400381 scopus 로고    scopus 로고
    • Deep feature selection: Theory and application to identify enhancers and promoters
    • accepted (RECOMB 2015 Special Issue)
    • Y. Li, C. Chen, and W. Wasserman, "Deep feature selection: Theory and application to identify enhancers and promoters, " Journal of Computational Biology, 2015, accepted (RECOMB 2015 Special Issue).
    • (2015) Journal of Computational Biology
    • Li, Y.1    Chen, C.2    Wasserman, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.