메뉴 건너뛰기




Volumn 16, Issue 1, 2014, Pages 3-17

A survey of multiple classifier systems as hybrid systems

Author keywords

Classifier ensemble; Classifier fusion; Combined classifier; Hybrid classifier; Multiple classifier system

Indexed keywords

CLASSIFIER ENSEMBLES; CLASSIFIER FUSION; COMBINED CLASSIFIERS; HYBRID CLASSIFIER; MULTIPLE CLASSIFIER SYSTEMS;

EID: 84887090067     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2013.04.006     Document Type: Article
Times cited : (868)

References (231)
  • 2
    • 0012623267 scopus 로고
    • Intellectual issues in the history of artificial intelligence
    • F. Machlup, U. Mansfield, John Wiley & Sons Inc. New York, NY, USA
    • A. Newell Intellectual issues in the history of artificial intelligence F. Machlup, U. Mansfield, The Study of Information: Interdisciplinary Messages 1983 John Wiley & Sons Inc. New York, NY, USA 187 294
    • (1983) The Study of Information: Interdisciplinary Messages , pp. 187-294
    • Newell, A.1
  • 4
    • 0010458830 scopus 로고
    • Statistical independence and threshold functions
    • C.K. Chow Statistical independence and threshold functions IEEE Transactions on Electronic Computers EC-14 1 1965 66 68
    • (1965) IEEE Transactions on Electronic Computers , vol.14 EC- , Issue.1 , pp. 66-68
    • Chow, C.K.1
  • 5
    • 0001644870 scopus 로고
    • Optimizing group judgmental accuracy in the presence of interdependencies
    • L. Shapley, and B. Grofman Optimizing group judgmental accuracy in the presence of interdependencies Public Choice 43 3 1984 329 333
    • (1984) Public Choice , vol.43 , Issue.3 , pp. 329-333
    • Shapley, L.1    Grofman, B.2
  • 6
    • 0018465664 scopus 로고
    • A composite classifier system design: Concepts and methodology
    • B.V. Dasarathy, and B.V. Sheela A composite classifier system design: concepts and methodology Proceedings of the IEEE 67 5 1979 708 713
    • (1979) Proceedings of the IEEE , vol.67 , Issue.5 , pp. 708-713
    • Dasarathy, B.V.1    Sheela, B.V.2
  • 9
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • L. Xu, A. Krzyzak, and C. Suen Methods of combining multiple classifiers and their applications to handwriting recognition IEEE Transactions on Systems, Man and Cybernetics 22 3 1992 418 435
    • (1992) IEEE Transactions on Systems, Man and Cybernetics , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.3
  • 10
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of decision boundaries in linearly combined neural classifiers
    • K. Tumer, and J. Ghosh Analysis of decision boundaries in linearly combined neural classifiers Pattern Recognition 29 2 1996 341 348
    • (1996) Pattern Recognition , vol.29 , Issue.2 , pp. 341-348
    • Tumer, K.1    Ghosh, J.2
  • 12
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 2 1996 123 140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 13
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. Schapire The strength of weak learnability Machine Learning 5 2 1990 197 227
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 14
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Y. Freund Boosting a weak learning algorithm by majority Information Computing 121 2 1995 256 285
    • (1995) Information Computing , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 16
    • 0000710299 scopus 로고
    • Queries and concept learning
    • D. Angluin Queries and concept learning Machine Learning 2 4 1988 319 342
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 319-342
    • Angluin, D.1
  • 18
    • 35348915328 scopus 로고    scopus 로고
    • Classifier ensembles: Select real-world applications
    • N. Oza, and K. Tumer Classifier ensembles: select real-world applications Information Fusion 9 1 2008 4 20
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 4-20
    • Oza, N.1    Tumer, K.2
  • 19
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • R. Polikar Ensemble based systems in decision making IEEE Circuits and Systems Magazine 6 3 2006 21 45
    • (2006) IEEE Circuits and Systems Magazine , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 20
    • 77949901722 scopus 로고    scopus 로고
    • Ensemble learning
    • R. Polikar Ensemble learning Scholarpedia 3 12 2008 2776
    • (2008) Scholarpedia , vol.3 , Issue.12 , pp. 2776
    • Polikar, R.1
  • 21
    • 69449097857 scopus 로고    scopus 로고
    • Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography
    • L. Rokach Taxonomy for characterizing ensemble methods in classification tasks: a review and annotated bibliography Computational Statistics and Data Analysis 53 12 2009 4046 4072
    • (2009) Computational Statistics and Data Analysis , vol.53 , Issue.12 , pp. 4046-4072
    • Rokach, L.1
  • 23
    • 84879747849 scopus 로고    scopus 로고
    • Series in Machine Perception and Artificial Intelligence World Scientific
    • L. Rokach Pattern Classification Using Ensemble Methods Series in Machine Perception and Artificial Intelligence 2010 World Scientific
    • (2010) Pattern Classification Using Ensemble Methods
    • Rokach, L.1
  • 29
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Lecture Notes in Computer Science Springer Berlin, Heidelberg
    • T. Dietterich Ensemble methods in machine learning Multiple Classifier Systems Lecture Notes in Computer Science vol. 1857 2000 Springer Berlin, Heidelberg 1 15
    • (2000) Multiple Classifier Systems , vol.1857 VOL. , pp. 1-15
    • Dietterich, T.1
  • 31
    • 0031171679 scopus 로고    scopus 로고
    • Optimal linear combinations of neural networks
    • S. Hashem Optimal linear combinations of neural networks Neural Networks 10 4 1997 599 614
    • (1997) Neural Networks , vol.10 , Issue.4 , pp. 599-614
    • Hashem, S.1
  • 32
    • 45249128876 scopus 로고
    • Combining forecasts: A review and annotated bibliography
    • R. Clemen Combining forecasts: a review and annotated bibliography International Journal of Forecasting 5 4 1989 559 583
    • (1989) International Journal of Forecasting , vol.5 , Issue.4 , pp. 559-583
    • Clemen, R.1
  • 33
    • 0003500248 scopus 로고
    • Morgan Kaufmann Series in Machine Learning Morgan Kaufman Publishers
    • J. Quinlan C4.5: Programs for Machine Learning Morgan Kaufmann Series in Machine Learning 1993 Morgan Kaufman Publishers
    • (1993) C4.5: Programs for Machine Learning
    • Quinlan, J.1
  • 34
    • 79957916572 scopus 로고    scopus 로고
    • Complexity and multithreaded implementation analysis of one class-classifiers fuzzy combiner
    • E. Corchado, M. Kurzynski, M. Wozniak, Lecture Notes in Computer Science Springer Berlin/Heidelberg
    • T. Wilk, and M. Wozniak Complexity and multithreaded implementation analysis of one class-classifiers fuzzy combiner E. Corchado, M. Kurzynski, M. Wozniak, Hybrid Artificial Intelligent Systems Lecture Notes in Computer Science vol. 6679 2011 Springer Berlin/Heidelberg 237 244
    • (2011) Hybrid Artificial Intelligent Systems , vol.6679 VOL. , pp. 237-244
    • Wilk, T.1    Wozniak, M.2
  • 35
    • 84864767801 scopus 로고    scopus 로고
    • Optimization of overlay distributed computing systems for multiple classifier system - Heuristic approach
    • doi:10.1093/jigpal/jzr020
    • T. Kacprzak, K. Walkowiak, M. Wozniak, Optimization of overlay distributed computing systems for multiple classifier system - heuristic approach, Logic Journal of IGPL, doi:10.1093/jigpal/jzr020.
    • Logic Journal of IGPL
    • Kacprzak, T.1    Walkowiak, K.2    Wozniak, M.3
  • 36
  • 37
    • 0041783510 scopus 로고    scopus 로고
    • Privacy-preserving data mining
    • R. Agrawal, and R. Srikant Privacy-preserving data mining SIGMOD Records 29 2 2000 439 450
    • (2000) SIGMOD Records , vol.29 , Issue.2 , pp. 439-450
    • Agrawal, R.1    Srikant, R.2
  • 45
    • 84855847597 scopus 로고    scopus 로고
    • A two stage sequential ensemble applied to the classification of alzheimer's disease based on MRI features
    • M. Termenon, and M. Graña A two stage sequential ensemble applied to the classification of alzheimer's disease based on MRI features Neural Processing Letters 35 1 2012 1 12
    • (2012) Neural Processing Letters , vol.35 , Issue.1 , pp. 1-12
    • Termenon, M.1    Graña, M.2
  • 46
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • P. Clark, and T. Niblett The CN2 induction algorithm Machine Learning 3 4 1989 261 283
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 47
    • 1442267080 scopus 로고
    • Learning decision lists
    • R. Rivest Learning decision lists Machine Learning 2 3 1987 229 246
    • (1987) Machine Learning , vol.2 , Issue.3 , pp. 229-246
    • Rivest, R.1
  • 48
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • 10.1006/jcss.1997.1504
    • Y. Freund, and R. Schapire A decision-theoretic generalization of on-line learning and an application to boosting Journal of Computer and System Sciences 55 1 1997 119 139 10.1006/jcss.1997.1504
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 50
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • 10.1023/A:1022648800760
    • R. Schapire The strength of weak learnability Machine Learning 5 2 1990 197 227 10.1023/A:1022648800760
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 52
    • 0031244715 scopus 로고    scopus 로고
    • Software diversity: Practical statistics for its measurement and exploitation
    • D. Partridge, and W. Krzanowski Software diversity: practical statistics for its measurement and exploitation Information and Software Technology 39 10 1997 707 717
    • (1997) Information and Software Technology , vol.39 , Issue.10 , pp. 707-717
    • Partridge, D.1    Krzanowski, W.2
  • 53
    • 77952046540 scopus 로고    scopus 로고
    • "good" and "bad" diversity in majority vote ensembles
    • G. Brown, L. Kuncheva, "good" And "bad" diversity in majority vote ensembles, in: Proceedings MCS 2010, pp. 124-133.
    • Proceedings MCS 2010 , pp. 124-133
    • Brown, G.1    Kuncheva, L.2
  • 54
    • 80053928378 scopus 로고    scopus 로고
    • Selection of heterogeneous fuzzy model ensembles using self-adaptive genetic algorithms
    • M. Smetek, and B. Trawinski Selection of heterogeneous fuzzy model ensembles using self-adaptive genetic algorithms New Generation Computing 29 2011 309 327
    • (2011) New Generation Computing , vol.29 , pp. 309-327
    • Smetek, M.1    Trawinski, B.2
  • 57
    • 0038154329 scopus 로고    scopus 로고
    • Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
    • G. Zenobi, and P. Cunningham Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error Machine Learning: ECML 2001 2001 576 587
    • (2001) Machine Learning: ECML , vol.2001 , pp. 576-587
    • Zenobi, G.1    Cunningham, P.2
  • 58
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • G. Brown, J. Wyatt, R. Harris, and X. Yao Diversity creation methods: a survey and categorisation Information Fusion 6 1 2005 5 20
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 62
    • 84858795085 scopus 로고    scopus 로고
    • The impact of diversity on the accuracy of evidential classifier ensembles
    • Y. Bi The impact of diversity on the accuracy of evidential classifier ensembles International Journal of Approximate Reasoning 53 4 2012 584 607
    • (2012) International Journal of Approximate Reasoning , vol.53 , Issue.4 , pp. 584-607
    • Bi, Y.1
  • 65
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification purposes
    • G. Giacinto, and F. Roli Design of effective neural network ensembles for image classification purposes Image Vision Computing 19 9-10 2001 699 707
    • (2001) Image Vision Computing , vol.19 , Issue.910 , pp. 699-707
    • Giacinto, G.1    Roli, F.2
  • 66
    • 0002872346 scopus 로고    scopus 로고
    • Bias plus variance decomposition for zero-one loss functions
    • R. Kohavi, D. Wolpert, Bias plus variance decomposition for zero-one loss functions, in: ICML-96, 1996.
    • (1996) ICML-96
    • Kohavi, R.1    Wolpert, D.2
  • 67
    • 84970216868 scopus 로고
    • The reliability of dichotomous judgments: Unequal numbers of judgments per subject
    • J. Fleiss, and J. Cuzick The reliability of dichotomous judgments: unequal numbers of judgments per subject Applied Psychological Measurement 4 3 1979 537 542
    • (1979) Applied Psychological Measurement , vol.4 , Issue.3 , pp. 537-542
    • Fleiss, J.1    Cuzick, J.2
  • 69
    • 0036609602 scopus 로고    scopus 로고
    • Relationships between combination methods and measures of diversity in combining classifiers
    • C. Shipp, and L. Kuncheva Relationships between combination methods and measures of diversity in combining classifiers Information Fusion 3 2 2002 135 148
    • (2002) Information Fusion , vol.3 , Issue.2 , pp. 135-148
    • Shipp, C.1    Kuncheva, L.2
  • 70
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • E.K. Tang, P.N. Suganthan, and X. Yao An analysis of diversity measures Machine Learning 65 1 2006 247 271
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 72
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • D. Ruta, and B. Gabrys Classifier selection for majority voting Information Fusion 6 1 2005 63 81
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 73
    • 10444241978 scopus 로고    scopus 로고
    • Ensemble diversity measures and their application to thinning
    • R. Banfield, L. Hall, K. Bowyer, and W. Kegelmeyer Ensemble diversity measures and their application to thinning Information Fusion 6 1 2005 49 62
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 49-62
    • Banfield, R.1    Hall, L.2    Bowyer, K.3    Kegelmeyer, W.4
  • 74
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z.-H. Zhou, J. Wu, and W. Tang Ensembling neural networks: many could be better than all Artificial Intelligence 137 1-2 2002 239 263
    • (2002) Artificial Intelligence , vol.137 , Issue.12 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 75
    • 33746672590 scopus 로고    scopus 로고
    • Genetic algorithms in classifier fusion
    • B. Gabrys, and D. Ruta Genetic algorithms in classifier fusion Applied Soft Computing 6 4 2006 337 347
    • (2006) Applied Soft Computing , vol.6 , Issue.4 , pp. 337-347
    • Gabrys, B.1    Ruta, D.2
  • 76
    • 61849098236 scopus 로고    scopus 로고
    • Pruning an ensemble of classifiers via reinforcement learning
    • I. Partalas, G. Tsoumakas, and I. Vlahavas Pruning an ensemble of classifiers via reinforcement learning Neurocomputing 72 7-9 2009 1900 1909
    • (2009) Neurocomputing , vol.72 , Issue.79 , pp. 1900-1909
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 77
    • 84870065802 scopus 로고    scopus 로고
    • A competitive ensemble pruning approach based on cross-validation technique
    • 10.1016/j.knosys.2012.08.024
    • Q. Dai A competitive ensemble pruning approach based on cross-validation technique Knowledge-Based Systems 0 2012 10.1016/j.knosys.2012.08.024
    • (2012) Knowledge-Based Systems , Issue.0
    • Dai, Q.1
  • 78
    • 26944475562 scopus 로고    scopus 로고
    • Cost-sensitive ensemble of support vector machines for effective detection of microcalcification in breast cancer diagnosis
    • L. Wang, Y. Jin, Lecture Notes in Computer Science Springer Berlin/Heidelberg
    • Y. Peng, Q. Huang, P. Jiang, and J. Jiang Cost-sensitive ensemble of support vector machines for effective detection of microcalcification in breast cancer diagnosis L. Wang, Y. Jin, Fuzzy Systems and Knowledge Discovery Lecture Notes in Computer Science vol. 3614 2005 Springer Berlin/Heidelberg 483 493
    • (2005) Fuzzy Systems and Knowledge Discovery , vol.3614 VOL. , pp. 483-493
    • Peng, Y.1    Huang, Q.2    Jiang, P.3    Jiang, J.4
  • 79
    • 84865030862 scopus 로고    scopus 로고
    • Cost-sensitive splitting and selection method for medical decision support system
    • H. Yin, J.A. Costa, G. Barreto, Lecture Notes in Computer Science Springer Berlin Heidelberg
    • K. Jackowski, B. Krawczyk, and M. Woniak Cost-sensitive splitting and selection method for medical decision support system H. Yin, J.A. Costa, G. Barreto, Intelligent Data Engineering and Automated Learning - IDEAL 2012 Lecture Notes in Computer Science vol. 7435 2012 Springer Berlin Heidelberg 850 857
    • (2012) Intelligent Data Engineering and Automated Learning - IDEAL 2012 , vol.7435 VOL. , pp. 850-857
    • Jackowski, K.1    Krawczyk, B.2    Woniak, M.3
  • 81
    • 84885096738 scopus 로고    scopus 로고
    • Privacy preserving models of k-NN algorithm
    • R. Burduk, M. Kurzynski, M. Wozniak, A. Zolnierek, Advances in Intelligent and Soft Computing Springer Berlin/Heidelberg
    • B. Krawczyk, and M. Wozniak Privacy preserving models of k-NN algorithm R. Burduk, M. Kurzynski, M. Wozniak, A. Zolnierek, Computer Recognition Systems 4 Advances in Intelligent and Soft Computing vol. 95 2011 Springer Berlin/Heidelberg 207 217
    • (2011) Computer Recognition Systems 4 , vol.95 VOL. , pp. 207-217
    • Krawczyk, B.1    Wozniak, M.2
  • 82
    • 70350390430 scopus 로고    scopus 로고
    • Secure multiparty computation for privacy-preserving data mining
    • Y. Lindell, and B. Pinkas Secure multiparty computation for privacy-preserving data mining IACR Cryptology ePrint Archive 2008 2008 197
    • (2008) IACR Cryptology EPrint Archive , vol.2008 , pp. 197
    • Lindell, Y.1    Pinkas, B.2
  • 83
    • 79960322465 scopus 로고    scopus 로고
    • Decentralized distributed computing system for privacy-preserving combined classifiers - Modeling and optimization
    • B. Murgante, O. Gervasi, A. Iglesias, D. Taniar, B. Apduhan, Springer Berlin/Heidelberg
    • K. Walkowiak, S. Sztajer, and M. Wozniak Decentralized distributed computing system for privacy-preserving combined classifiers - modeling and optimization B. Murgante, O. Gervasi, A. Iglesias, D. Taniar, B. Apduhan, Computational Science and Its Applications - ICCSA 2011, Lecture Notes in Computer Science Vol. 6782 2011 Springer Berlin/Heidelberg 512 525
    • (2011) Computational Science and Its Applications - ICCSA 2011, Lecture Notes in Computer Science , vol.6782 VOL. , pp. 512-525
    • Walkowiak, K.1    Sztajer, S.2    Wozniak, M.3
  • 88
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Machine Learning 45 1 2001 5 32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 89
    • 0036080160 scopus 로고    scopus 로고
    • Bagging, boosting and the random subspace method for linear classifiers
    • M. Skurichina, and R. Duin Bagging, boosting and the random subspace method for linear classifiers Pattern Analysis and Applications 5 2 2002 121 135
    • (2002) Pattern Analysis and Applications , vol.5 , Issue.2 , pp. 121-135
    • Skurichina, M.1    Duin, R.2
  • 91
    • 33744958288 scopus 로고    scopus 로고
    • Nearest neighbor classification from multiple feature subsets
    • S. Bay Nearest neighbor classification from multiple feature subsets Intelligent Data Analysis 3 3 1999 191 209
    • (1999) Intelligent Data Analysis , vol.3 , Issue.3 , pp. 191-209
    • Bay, S.1
  • 92
    • 32544454675 scopus 로고    scopus 로고
    • Letters: Experimental comparison of one-class classifiers for online signature verification
    • L. Nanni Letters: Experimental comparison of one-class classifiers for online signature verification Neurocomputing 69 7-9 2006 869 873
    • (2006) Neurocomputing , vol.69 , Issue.79 , pp. 869-873
    • Nanni, L.1
  • 93
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • D. Tao, X. Tang, X. Li, and X. Wu Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval IEEE Transactions on Pattern Analysis Machine Intelligence 28 7 2006 1088 1099
    • (2006) IEEE Transactions on Pattern Analysis Machine Intelligence , vol.28 , Issue.7 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 94
    • 79958861311 scopus 로고    scopus 로고
    • Feature-subspace aggregating: Ensembles for stable and unstable learners
    • K. Ting, J. Wells, S. Tan, S. Teng, and G. Webb Feature-subspace aggregating: ensembles for stable and unstable learners Machine Learning 82 2011 375 397
    • (2011) Machine Learning , vol.82 , pp. 375-397
    • Ting, K.1    Wells, J.2    Tan, S.3    Teng, S.4    Webb, G.5
  • 95
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets
    • R. Bryll, R. Gutierrez-Osuna, and F. Quek Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets Pattern Recognition 36 6 2003 1291 1302
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 97
    • 84867045810 scopus 로고    scopus 로고
    • A cascaded multiple expert system for verification
    • Lecture Notes in Computer Science Springer Berlin/Heidelberg
    • L. Cordella, P. Foggia, C. Sansone, F. Tortorella, and M. Vento A cascaded multiple expert system for verification Multiple Classifier Systems Lecture Notes in Computer Science vol. 1857 2000 Springer Berlin/Heidelberg 330 339
    • (2000) Multiple Classifier Systems , vol.1857 VOL. , pp. 330-339
    • Cordella, L.1    Foggia, P.2    Sansone, C.3    Tortorella, F.4    Vento, M.5
  • 99
    • 80053917912 scopus 로고    scopus 로고
    • Hybrid classification ensemble using topology-preserving clustering
    • B. Baruque, S. Porras, and E. Corchado Hybrid classification ensemble using topology-preserving clustering New Generation Computing 29 2011 329 344
    • (2011) New Generation Computing , vol.29 , pp. 329-344
    • Baruque, B.1    Porras, S.2    Corchado, E.3
  • 101
    • 70350581242 scopus 로고    scopus 로고
    • Algorithm of designing compound recognition system on the basis of combining classifiers with simultaneous splitting feature space into competence areas
    • K. Jackowski, and M. Wozniak Algorithm of designing compound recognition system on the basis of combining classifiers with simultaneous splitting feature space into competence areas Pattern Analysis and Applications 12 4 2009 415 425
    • (2009) Pattern Analysis and Applications , vol.12 , Issue.4 , pp. 415-425
    • Jackowski, K.1    Wozniak, M.2
  • 104
    • 34848849013 scopus 로고    scopus 로고
    • Fingerprint classification using one-vs-all support vector machines dynamically ordered with naïve bayes classifiers
    • J. Hong, J. Min, U. Cho, and S. Cho Fingerprint classification using one-vs-all support vector machines dynamically ordered with naïve bayes classifiers Pattern Recognition 41 2008 662 671
    • (2008) Pattern Recognition , vol.41 , pp. 662-671
    • Hong, J.1    Min, J.2    Cho, U.3    Cho, S.4
  • 105
    • 38349135448 scopus 로고    scopus 로고
    • From dynamic classifier selection to dynamic ensemble selection
    • A.R. Ko, R. Sabourin, and A. Britto From dynamic classifier selection to dynamic ensemble selection Pattern Recognition 41 5 2008 1735 1748
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1735-1748
    • Ko, A.R.1    Sabourin, R.2    Britto, A.3
  • 106
    • 24044449939 scopus 로고    scopus 로고
    • A study on the performances of dynamic classifier selection based on local accuracy estimation
    • L. Didaci, G. Giacinto, F. Roli, and G. Marcialis A study on the performances of dynamic classifier selection based on local accuracy estimation Pattern Recognition 38 11 2005 2188 2191
    • (2005) Pattern Recognition , vol.38 , Issue.11 , pp. 2188-2191
    • Didaci, L.1    Giacinto, G.2    Roli, F.3    Marcialis, G.4
  • 107
    • 84994037050 scopus 로고    scopus 로고
    • Dynamic classifier selection based on multiple classifier behavior
    • G. Giacinto, and F. Roli Dynamic classifier selection based on multiple classifier behavior Pattern Recognition 34 9 2001 1879 1881
    • (2001) Pattern Recognition , vol.34 , Issue.9 , pp. 1879-1881
    • Giacinto, G.1    Roli, F.2
  • 109
    • 79958833224 scopus 로고    scopus 로고
    • A probabilistic model of classifier competence for dynamic ensemble selection
    • T. Woloszynski, and M. Kurzynski A probabilistic model of classifier competence for dynamic ensemble selection Pattern Recognition 44 1011 2011 2656 2668
    • (2011) Pattern Recognition , vol.44 , Issue.1011 , pp. 2656-2668
    • Woloszynski, T.1    Kurzynski, M.2
  • 110
    • 84858073995 scopus 로고    scopus 로고
    • A measure of competence based on random classification for dynamic ensemble selection
    • T. Woloszynski, M. Kurzynski, P. Podsiadlo, and G. Stachowiak A measure of competence based on random classification for dynamic ensemble selection Information Fusion 13 3 2012 207 213
    • (2012) Information Fusion , vol.13 , Issue.3 , pp. 207-213
    • Woloszynski, T.1    Kurzynski, M.2    Podsiadlo, P.3    Stachowiak, G.4
  • 113
    • 33749587572 scopus 로고    scopus 로고
    • An automatic construction and organization strategy for ensemble learning on data streams
    • Y. Zhang, and X. Jin An automatic construction and organization strategy for ensemble learning on data streams SIGMOD Record 35 3 2006 28 33
    • (2006) SIGMOD Record , vol.35 , Issue.3 , pp. 28-33
    • Zhang, Y.1    Jin, X.2
  • 116
    • 33645543384 scopus 로고    scopus 로고
    • Effective classification of noisy data streams with attribute-oriented dynamic classifier selection
    • X. Zhu, X. Wu, and Y. Yang Effective classification of noisy data streams with attribute-oriented dynamic classifier selection Knowledge Information Systems 9 3 2006 339 363
    • (2006) Knowledge Information Systems , vol.9 , Issue.3 , pp. 339-363
    • Zhu, X.1    Wu, X.2    Yang, Y.3
  • 118
  • 121
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • T. Wu, C. Lin, and R. Weng Probability estimates for multi-class classification by pairwise coupling Journal of Machine Learning Research 5 2004 975 1005
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 975-1005
    • Wu, T.1    Lin, C.2    Weng, R.3
  • 123
    • 68949163778 scopus 로고    scopus 로고
    • Combining predictions in pairwise classification: An optimal adaptive voting strategy and its relation to weighted voting
    • E. Hüllermeier, and S. Vanderlooy Combining predictions in pairwise classification: an optimal adaptive voting strategy and its relation to weighted voting Pattern Recognition 43 1 2010 128 142
    • (2010) Pattern Recognition , vol.43 , Issue.1 , pp. 128-142
    • Hüllermeier, E.1    Vanderlooy, S.2
  • 124
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
    • M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes Pattern Recognition 44 8 2011 1761 1776
    • (2011) Pattern Recognition , vol.44 , Issue.8 , pp. 1761-1776
    • Galar, M.1    Fernandez, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 127
    • 82455199200 scopus 로고    scopus 로고
    • Soft computing methods applied to combination of one-class classifiers
    • T. Wilk, and M. Wozniak Soft computing methods applied to combination of one-class classifiers Neurocomputing 75 2012 185 193
    • (2012) Neurocomputing , vol.75 , pp. 185-193
    • Wilk, T.1    Wozniak, M.2
  • 128
    • 35348821822 scopus 로고    scopus 로고
    • Intrusion detection in computer networks by a modular ensemble of one-class classifiers
    • G. Giacinto, R. Perdisci, M. Del Rio, and F. Roli Intrusion detection in computer networks by a modular ensemble of one-class classifiers Information Fusion 9 2008 69 82
    • (2008) Information Fusion , vol.9 , pp. 69-82
    • Giacinto, G.1    Perdisci, R.2    Del Rio, M.3    Roli, F.4
  • 131
    • 79952139706 scopus 로고    scopus 로고
    • Combining classifiers using trained fuser - Analytical and experimental results
    • M. Wozniak, and M. Zmyslony Combining classifiers using trained fuser - analytical and experimental results Neural Network World 13 7 2010 925 934
    • (2010) Neural Network World , vol.13 , Issue.7 , pp. 925-934
    • Wozniak, M.1    Zmyslony, M.2
  • 132
    • 33751205340 scopus 로고    scopus 로고
    • Trainable fusion rules. I. Large sample size case
    • S. Raudys Trainable fusion rules. I. Large sample size case Neural Networks 19 10 2006 1506 1516
    • (2006) Neural Networks , vol.19 , Issue.10 , pp. 1506-1516
    • Raudys, S.1
  • 134
    • 70350655395 scopus 로고    scopus 로고
    • Some remarks on chosen methods of classifier fusion based on weighted voting
    • E. Corchado, X. Wu, E. Oja, A. Herrero, B. Baruque, Lecture Notes in Computer Science Springer Berlin/Heidelberg
    • M. Wozniak, and K. Jackowski Some remarks on chosen methods of classifier fusion based on weighted voting E. Corchado, X. Wu, E. Oja, A. Herrero, B. Baruque, Hybrid Artificial Intelligence Systems Lecture Notes in Computer Science vol. 5572 2009 Springer Berlin/Heidelberg 541 548
    • (2009) Hybrid Artificial Intelligence Systems , vol.5572 VOL. , pp. 541-548
    • Wozniak, M.1    Jackowski, K.2
  • 135
    • 33751229918 scopus 로고    scopus 로고
    • Trainable fusion rules. II. Small sample-size effects
    • S. Raudys Trainable fusion rules. II. Small sample-size effects Neural Networks 19 10 2006 1517 1527
    • (2006) Neural Networks , vol.19 , Issue.10 , pp. 1517-1527
    • Raudys, S.1
  • 136
    • 84887058326 scopus 로고    scopus 로고
    • Optimizing a multiple classifier system
    • M. Ishizuka, A. Sattar, Lecture Notes in Computer Science Springer Berlin/Heidelberg
    • H. Inoue, and H. Narihisa Optimizing a multiple classifier system M. Ishizuka, A. Sattar, PRICAI 2002: Trends in Artificial Intelligence Lecture Notes in Computer Science vol. 2417 2002 Springer Berlin/Heidelberg 1 16
    • (2002) PRICAI 2002: Trends in Artificial Intelligence , vol.2417 VOL. , pp. 1-16
    • Inoue, H.1    Narihisa, H.2
  • 137
    • 34147093883 scopus 로고    scopus 로고
    • Combining independent and unbiased classifiers using weighted average
    • L. Alexandre, A. Campilho, M. Kamel, Combining independent and unbiased classifiers using weighted average., in: Proceedings ICPR 2000, 2000, pp. 2495-2498.
    • (2000) Proceedings ICPR 2000 , pp. 2495-2498
    • Alexandre, L.1    Campilho, A.2    Kamel, M.3
  • 140
    • 35048820961 scopus 로고    scopus 로고
    • A generic sensor fusion problem: Classification and function estimation
    • F. Roli, J. Kittler, T. Windeatt, Lecture Notes in Computer Science Springer
    • N. Rao A generic sensor fusion problem: classification and function estimation F. Roli, J. Kittler, T. Windeatt, Multiple Classifier Systems Lecture Notes in Computer Science vol. 3077 2004 Springer 16 30
    • (2004) Multiple Classifier Systems , vol.3077 VOL. , pp. 16-30
    • Rao, N.1
  • 141
    • 85156192015 scopus 로고
    • Generating accurate and diverse members of a neural-network ensemble
    • D. Opitz, J. Shavlik, Generating accurate and diverse members of a neural-network ensemble, in: NIPS, 1995, pp. 535-541.
    • (1995) NIPS , pp. 535-541
    • Opitz, D.1    Shavlik, J.2
  • 142
    • 38349127796 scopus 로고    scopus 로고
    • Feature set decomposition for decision trees
    • L. Rokach, and O. Maimon Feature set decomposition for decision trees Intelligent Data Analysis 9 2 2005 131 158
    • (2005) Intelligent Data Analysis , vol.9 , Issue.2 , pp. 131-158
    • Rokach, L.1    Maimon, O.2
  • 143
    • 21244501361 scopus 로고    scopus 로고
    • A theoretical and experimental analysis of linear combiners for multiple classifier systems
    • 10.1109/TPAMI.2005.109
    • G. Fumera, and F. Roli A theoretical and experimental analysis of linear combiners for multiple classifier systems IEEE Transactions on Pattern Analysis and Machine Intelligence 27 6 2005 942 956 10.1109/TPAMI.2005.109
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.6 , pp. 942-956
    • Fumera, G.1    Roli, F.2
  • 144
    • 58149183998 scopus 로고    scopus 로고
    • Experiments on linear combiners
    • E. Pietka, J. Kawa, Advances in Soft Computing Springer Berlin/Heidelberg
    • M. Wozniak Experiments on linear combiners E. Pietka, J. Kawa, Information Technologies in Biomedicine Advances in Soft Computing vol. 47 2008 Springer Berlin/Heidelberg 445 452
    • (2008) Information Technologies in Biomedicine , vol.47 VOL. , pp. 445-452
    • Wozniak, M.1
  • 147
    • 0029372769 scopus 로고
    • Methods for combining experts' probability assessments
    • R. Jacobs Methods for combining experts' probability assessments Neural Computation 7 5 1995 867 888
    • (1995) Neural Computation , vol.7 , Issue.5 , pp. 867-888
    • Jacobs, R.1
  • 150
    • 0025588128 scopus 로고
    • Multiple binary decision tree classifiers
    • S. Shlien Multiple binary decision tree classifiers Pattern Recognition 23 7 1990 757 763
    • (1990) Pattern Recognition , vol.23 , Issue.7 , pp. 757-763
    • Shlien, S.1
  • 151
    • 61349120072 scopus 로고    scopus 로고
    • Experiments with trained and untrained fusers
    • E. Corchado, J. Corchado, A. Abraham, Advances in Soft Computing Springer Berlin/Heidelberg
    • M. Wozniak Experiments with trained and untrained fusers E. Corchado, J. Corchado, A. Abraham, Innovations in Hybrid Intelligent Systems Advances in Soft Computing vol. 44 2007 Springer Berlin/Heidelberg 144 150
    • (2007) Innovations in Hybrid Intelligent Systems , vol.44 VOL. , pp. 144-150
    • Wozniak, M.1
  • 154
    • 61349101813 scopus 로고    scopus 로고
    • Constructing ensembles from data envelopment analysis
    • Z. Zheng, and B. Padmanabhan Constructing ensembles from data envelopment analysis INFORMS Journal on Computing 19 4 2007 486 496
    • (2007) INFORMS Journal on Computing , vol.19 , Issue.4 , pp. 486-496
    • Zheng, Z.1    Padmanabhan, B.2
  • 155
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. Wolpert Stacked generalization Neural Networks 5 1992 241 259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1
  • 156
    • 0029230267 scopus 로고
    • A method of combining multiple experts for the recognition of unconstrained handwritten numerals
    • Y. Huang, and C. Suen A method of combining multiple experts for the recognition of unconstrained handwritten numerals IEEE Transactions on Pattern Analysis and Machine Intelligence 17 1 1995 90 94
    • (1995) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.17 , Issue.1 , pp. 90-94
    • Huang, Y.1    Suen, C.2
  • 158
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: Existing solutions and latest technological trends
    • A. Patcha, and J.-M. Park An overview of anomaly detection techniques: existing solutions and latest technological trends Computer Network 51 12 2007 3448 3470
    • (2007) Computer Network , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, A.1    Park, J.-M.2
  • 162
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review - Part 1: Statistical approaches
    • M. Markou, and S. Singh Novelty detection: a review - Part 1: Statistical approaches Signal Process 83 12 2003 2481 2497
    • (2003) Signal Process , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 167
    • 0034072495 scopus 로고    scopus 로고
    • Combination of neural and statistical algorithms for supervised classification of remote-sensing images
    • G. Giacinto, F. Roli, and L. Bruzzone Combination of neural and statistical algorithms for supervised classification of remote-sensing images Pattern Recognition Letters 21 5 2000 385 397
    • (2000) Pattern Recognition Letters , vol.21 , Issue.5 , pp. 385-397
    • Giacinto, G.1    Roli, F.2    Bruzzone, L.3
  • 170
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of random forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • J.-W. Chan, and D. Paelinckx Evaluation of random forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery Remote Sensing of Environment 112 6 2008 2999 3011
    • (2008) Remote Sensing of Environment , vol.112 , Issue.6 , pp. 2999-3011
    • Chan, J.-W.1    Paelinckx, D.2
  • 171
    • 60649106133 scopus 로고    scopus 로고
    • Uncertainty propagation in vegetation distribution models based on ensemble classifiers
    • J. Peters, N. Verhoest, R. Samson, M. Meirvenne, L. Cockx, and B. Baets Uncertainty propagation in vegetation distribution models based on ensemble classifiers Ecological Modelling 220 6 2009 791 804
    • (2009) Ecological Modelling , vol.220 , Issue.6 , pp. 791-804
    • Peters, J.1    Verhoest, N.2    Samson, R.3    Meirvenne, M.4    Cockx, L.5    Baets, B.6
  • 172
    • 82655173888 scopus 로고    scopus 로고
    • Remote sensing image classification based on neural network ensemble algorithm
    • M. Han, X. Zhu, and W. Yao Remote sensing image classification based on neural network ensemble algorithm Neurocomputing 78 1 2012 133 138
    • (2012) Neurocomputing , vol.78 , Issue.1 , pp. 133-138
    • Han, M.1    Zhu, X.2    Yao, W.3
  • 173
    • 69849104695 scopus 로고    scopus 로고
    • Classifier ensembles for land cover mapping using multitemporal SAR imagery
    • (theme Issue: Mapping with SAR: Techniques and Applications)
    • B. Waske, and M. Braun Classifier ensembles for land cover mapping using multitemporal SAR imagery ISPRS Journal of Photogrammetry and Remote Sensing 64 5 2009 450 457 (theme Issue: Mapping with SAR: Techniques and Applications)
    • (2009) ISPRS Journal of Photogrammetry and Remote Sensing , vol.64 , Issue.5 , pp. 450-457
    • Waske, B.1    Braun, M.2
  • 175
    • 78649321657 scopus 로고    scopus 로고
    • A self-trained ensemble with semisupervised SVM: An application to pixel classification of remote sensing imagery
    • U. Maulik, and D. Chakraborty A self-trained ensemble with semisupervised SVM: an application to pixel classification of remote sensing imagery Pattern Recognition 44 3 2011 615 623
    • (2011) Pattern Recognition , vol.44 , Issue.3 , pp. 615-623
    • Maulik, U.1    Chakraborty, D.2
  • 176
    • 77949264826 scopus 로고    scopus 로고
    • Classification of multispectral images in coral environments using a hybrid of classifier ensembles
    • A. Henriques, A. Doria-Neto, and R. Amaral Classification of multispectral images in coral environments using a hybrid of classifier ensembles Neurocomputing 73 7-9 2010 1256 1264
    • (2010) Neurocomputing , vol.73 , Issue.79 , pp. 1256-1264
    • Henriques, A.1    Doria-Neto, A.2    Amaral, R.3
  • 178
    • 0036896357 scopus 로고    scopus 로고
    • Combining parametric and non-parametric algorithms for a partially unsupervised classification of multitemporal remote-sensing images
    • L. Bruzzone, R. Cossu, and G. Vernazza Combining parametric and non-parametric algorithms for a partially unsupervised classification of multitemporal remote-sensing images Information Fusion 3 4 2002 289 297
    • (2002) Information Fusion , vol.3 , Issue.4 , pp. 289-297
    • Bruzzone, L.1    Cossu, R.2    Vernazza, G.3
  • 179
    • 4544379476 scopus 로고    scopus 로고
    • Detection of land-cover transitions by combining multidate classifiers
    • L. Bruzzone, R. Cossu, and G. Vernazza Detection of land-cover transitions by combining multidate classifiers Pattern Recognition Letters 25 13 2004 1491 1500
    • (2004) Pattern Recognition Letters , vol.25 , Issue.13 , pp. 1491-1500
    • Bruzzone, L.1    Cossu, R.2    Vernazza, G.3
  • 180
    • 84867335433 scopus 로고    scopus 로고
    • Information fusion techniques for change detection from multi-temporal remote sensing images
    • P. Du, S. Liu, J. Xia, and Y. Zhao Information fusion techniques for change detection from multi-temporal remote sensing images Information Fusion 14 1 2013 19 27
    • (2013) Information Fusion , vol.14 , Issue.1 , pp. 19-27
    • Du, P.1    Liu, S.2    Xia, J.3    Zhao, Y.4
  • 181
    • 79957736179 scopus 로고    scopus 로고
    • Distributed denial of service attack detection using an ensemble of neural classifier
    • P. Arun-Raj-Kumar, and S. Selvakumar Distributed denial of service attack detection using an ensemble of neural classifier Computer Communications 34 11 2011 1328 1341
    • (2011) Computer Communications , vol.34 , Issue.11 , pp. 1328-1341
    • Arun-Raj-Kumar, P.1    Selvakumar, S.2
  • 182
    • 84887069453 scopus 로고    scopus 로고
    • Detection of distributed denial of service attacks using an ensemble of adaptive and hybrid neuro-fuzzy systems
    • P. Kumar, and S. Selvakumar Detection of distributed denial of service attacks using an ensemble of adaptive and hybrid neuro-fuzzy systems Computer Communications 0 2012
    • (2012) Computer Communications , Issue.0
    • Kumar, P.1    Selvakumar, S.2
  • 183
    • 65749099969 scopus 로고    scopus 로고
    • Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey
    • A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer Detection of malicious code by applying machine learning classifiers on static features: a state-of-the-art survey Information Security Technical Report 14 1 2009 16 29
    • (2009) Information Security Technical Report , vol.14 , Issue.1 , pp. 16-29
    • Shabtai, A.1    Moskovitch, R.2    Elovici, Y.3    Glezer, C.4
  • 187
    • 84859212083 scopus 로고    scopus 로고
    • Ensemble based sensing anomaly detection in wireless sensor networks
    • D.-I. Curiac, and C. Volosencu Ensemble based sensing anomaly detection in wireless sensor networks Expert Systems with Applications 39 10 2012 9087 9096
    • (2012) Expert Systems with Applications , vol.39 , Issue.10 , pp. 9087-9096
    • Curiac, D.-I.1    Volosencu, C.2
  • 188
    • 0042421807 scopus 로고    scopus 로고
    • Statistical fraud detection: A review
    • R.J. Bolton, and D.J. Hand Statistical fraud detection: a review Statistical Science 17 3 2002 235 255
    • (2002) Statistical Science , vol.17 , Issue.3 , pp. 235-255
    • Bolton, R.J.1    Hand, D.J.2
  • 189
    • 84861812802 scopus 로고    scopus 로고
    • Bagging k-dependence probabilistic networks: An alternative powerful fraud detection tool
    • F. Louzada, and A. Ara Bagging k-dependence probabilistic networks: an alternative powerful fraud detection tool Expert Systems with Applications 39 14 2012 11583 11592
    • (2012) Expert Systems with Applications , vol.39 , Issue.14 , pp. 11583-11592
    • Louzada, F.1    Ara, A.2
  • 191
    • 71749114830 scopus 로고    scopus 로고
    • Support vector machine based multiagent ensemble learning for credit risk evaluation
    • L. Yu, W. Yue, S. Wang, and K. Lai Support vector machine based multiagent ensemble learning for credit risk evaluation Expert Systems with Applications 37 2 2010 1351 1360
    • (2010) Expert Systems with Applications , vol.37 , Issue.2 , pp. 1351-1360
    • Yu, L.1    Yue, W.2    Wang, S.3    Lai, K.4
  • 193
    • 71349085322 scopus 로고    scopus 로고
    • Multiple classifier application to credit risk assessment
    • B. Twala Multiple classifier application to credit risk assessment Expert Systems with Applications 37 4 2010 3326 3336
    • (2010) Expert Systems with Applications , vol.37 , Issue.4 , pp. 3326-3336
    • Twala, B.1
  • 194
    • 78650417769 scopus 로고    scopus 로고
    • Multiple classifier architectures and their application to credit risk assessment
    • S. Finlay Multiple classifier architectures and their application to credit risk assessment European Journal of Operational Research 210 2 2011 368 378
    • (2011) European Journal of Operational Research , vol.210 , Issue.2 , pp. 368-378
    • Finlay, S.1
  • 195
    • 84855863614 scopus 로고    scopus 로고
    • A hybrid ensemble approach for enterprise credit risk assessment based on support vector machine
    • G. Wang, and J. Ma A hybrid ensemble approach for enterprise credit risk assessment based on support vector machine Expert Systems with Applications 39 5 2012 5325 5331
    • (2012) Expert Systems with Applications , vol.39 , Issue.5 , pp. 5325-5331
    • Wang, G.1    Ma, J.2
  • 196
    • 84862826692 scopus 로고    scopus 로고
    • Classifiers selection in ensembles using genetic algorithms for bankruptcy prediction
    • M. Kim, and D. Kang Classifiers selection in ensembles using genetic algorithms for bankruptcy prediction Expert Systems with Applications 39 10 2012 9308 9314
    • (2012) Expert Systems with Applications , vol.39 , Issue.10 , pp. 9308-9314
    • Kim, M.1    Kang, D.2
  • 197
    • 75149191307 scopus 로고    scopus 로고
    • Failure prediction of dotcom companies using neural network-genetic programming hybrids
    • P. Ravisankar, V. Ravi, and I. Bose Failure prediction of dotcom companies using neural network-genetic programming hybrids Information Sciences 180 8 2010 1257 1267
    • (2010) Information Sciences , vol.180 , Issue.8 , pp. 1257-1267
    • Ravisankar, P.1    Ravi, V.2    Bose, I.3
  • 198
    • 78650176118 scopus 로고    scopus 로고
    • Detection of financial statement fraud and feature selection using data mining techniques
    • P. Ravisankar, V. Ravi, G. Rao, and I. Bose Detection of financial statement fraud and feature selection using data mining techniques Decision Support Systems 50 2 2011 491 500
    • (2011) Decision Support Systems , vol.50 , Issue.2 , pp. 491-500
    • Ravisankar, P.1    Ravi, V.2    Rao, G.3    Bose, I.4
  • 199
    • 84887080166 scopus 로고    scopus 로고
    • Combining cluster analysis with classifier ensembles to predict financial distress
    • C. Tsai Combining cluster analysis with classifier ensembles to predict financial distress Information Fusion 0 2011
    • (2011) Information Fusion , Issue.0
    • Tsai, C.1
  • 200
    • 78751639426 scopus 로고    scopus 로고
    • An empirical study of classification algorithm evaluation for financial risk prediction
    • Y. Peng, G. Wang, G. Kou, and Y. Shi An empirical study of classification algorithm evaluation for financial risk prediction Applied Soft Computing 11 2 2011 2906 2915
    • (2011) Applied Soft Computing , vol.11 , Issue.2 , pp. 2906-2915
    • Peng, Y.1    Wang, G.2    Kou, G.3    Shi, Y.4
  • 202
    • 56349155552 scopus 로고    scopus 로고
    • Effects of feature construction on classification performance: An empirical study in bank failure prediction
    • H. Zhao, A. Sinha, and W. Ge Effects of feature construction on classification performance: an empirical study in bank failure prediction Expert Systems with Applications 36 2, Part 2 2009 2633 2644
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 2633-2644
    • Zhao, H.1    Sinha, A.2    Ge, W.3
  • 205
    • 78649651248 scopus 로고    scopus 로고
    • A data mining framework for detecting subscription fraud in telecommunication
    • H. Farvaresh, and M. Sepehri A data mining framework for detecting subscription fraud in telecommunication Engineering Applications of Artificial Intelligence 24 1 2011 182 194
    • (2011) Engineering Applications of Artificial Intelligence , vol.24 , Issue.1 , pp. 182-194
    • Farvaresh, H.1    Sepehri, M.2
  • 206
    • 77956610365 scopus 로고    scopus 로고
    • An expert system for detecting automobile insurance fraud using social network analysis
    • L. Subelj, S. Furlan, and M. Bajec An expert system for detecting automobile insurance fraud using social network analysis Expert Systems with Applications 38 1 2011 1039 1052
    • (2011) Expert Systems with Applications , vol.38 , Issue.1 , pp. 1039-1052
    • Subelj, L.1    Furlan, S.2    Bajec, M.3
  • 208
    • 38749112231 scopus 로고    scopus 로고
    • AptaCDSS-E: A classifier ensemble-based clinical decision support system for cardiovascular disease level prediction
    • J. Eom, S. Kim, and B. Zhang AptaCDSS-E: a classifier ensemble-based clinical decision support system for cardiovascular disease level prediction Expert Systems with Applications 34 4 2008 2465 2479
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 2465-2479
    • Eom, J.1    Kim, S.2    Zhang, B.3
  • 209
    • 60249097051 scopus 로고    scopus 로고
    • Effective diagnosis of heart disease through neural networks ensembles
    • R. Das, I. Turkoglu, and A. Sengur Effective diagnosis of heart disease through neural networks ensembles Expert Systems with Applications 36 4 2009 7675 7680
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 7675-7680
    • Das, R.1    Turkoglu, I.2    Sengur, A.3
  • 210
  • 211
    • 0001526276 scopus 로고
    • Improving the accuracy of an artificial neural network using multiple differently trained networks
    • W. Baxt Improving the accuracy of an artificial neural network using multiple differently trained networks Neural Computation 4 5 1992 772 780
    • (1992) Neural Computation , vol.4 , Issue.5 , pp. 772-780
    • Baxt, W.1
  • 212
    • 0026771388 scopus 로고
    • Hybrid system for protein secondary structure prediction
    • X. Zhang, J. Mesirov, and D. Waltz Hybrid system for protein secondary structure prediction Journal of Molecular Biology 225 4 1992 1049 1063
    • (1992) Journal of Molecular Biology , vol.225 , Issue.4 , pp. 1049-1063
    • Zhang, X.1    Mesirov, J.2    Waltz, D.3
  • 213
    • 32544440611 scopus 로고    scopus 로고
    • Ensemble of classifiers for protein fold recognition
    • L. Nanni Ensemble of classifiers for protein fold recognition Neurocomputing 69 7 2006 850 853
    • (2006) Neurocomputing , vol.69 , Issue.7 , pp. 850-853
    • Nanni, L.1
  • 216
    • 82455164245 scopus 로고    scopus 로고
    • Hybrid dendritic computing with kernel-LICA applied to alzheimer's disease detection in MRI
    • D. Chyzhyk, M. Graña, A. Savio, and J. Maiora Hybrid dendritic computing with kernel-LICA applied to alzheimer's disease detection in MRI Neurocomputing 75 1 2012 72 77
    • (2012) Neurocomputing , vol.75 , Issue.1 , pp. 72-77
    • Chyzhyk, D.1    Graña, M.2    Savio, A.3    Maiora, J.4
  • 217
    • 77952293118 scopus 로고    scopus 로고
    • Classifier ensembles for fMRI data analysis: An experiment
    • L. Kuncheva, and J. Rodriguez Classifier ensembles for fMRI data analysis: an experiment Magnetic Resonance Imaging 28 4 2010 583 593
    • (2010) Magnetic Resonance Imaging , vol.28 , Issue.4 , pp. 583-593
    • Kuncheva, L.1    Rodriguez, J.2
  • 218
    • 84857037836 scopus 로고    scopus 로고
    • Naive random subspace ensemble with linear classifiers for real-time classification of fMRI data
    • C. Plumpton, L. Kuncheva, N. Oosterhof, and S. Johnston Naive random subspace ensemble with linear classifiers for real-time classification of fMRI data Pattern Recognition 45 6 2012 2101 2108
    • (2012) Pattern Recognition , vol.45 , Issue.6 , pp. 2101-2108
    • Plumpton, C.1    Kuncheva, L.2    Oosterhof, N.3    Johnston, S.4
  • 219
    • 84857050388 scopus 로고    scopus 로고
    • Decoding visual brain states from fMRI using an ensemble of classifiers
    • C. Cabral, M. Silveira, and P. Figueiredo Decoding visual brain states from fMRI using an ensemble of classifiers Pattern Recognition 45 6 2012 2064 2074
    • (2012) Pattern Recognition , vol.45 , Issue.6 , pp. 2064-2074
    • Cabral, C.1    Silveira, M.2    Figueiredo, P.3
  • 220
  • 221
    • 84887085059 scopus 로고    scopus 로고
    • How online merchants predict your preferences and prod you to purchase
    • J. Konstan, and J. Riedl How online merchants predict your preferences and prod you to purchase IEEE Spectrum 49 10 2012 48 56
    • (2012) IEEE Spectrum , vol.49 , Issue.10 , pp. 48-56
    • Konstan, J.1    Riedl, J.2
  • 222
    • 0036959356 scopus 로고    scopus 로고
    • Hybrid recommender systems: Survey and experiments
    • R. Burke Hybrid recommender systems: survey and experiments User Modeling and User-Adapted Interaction 12 4 2002 331 370
    • (2002) User Modeling and User-Adapted Interaction , vol.12 , Issue.4 , pp. 331-370
    • Burke, R.1
  • 224
    • 0033325071 scopus 로고    scopus 로고
    • A framework for collaborative, content-based and demographic filtering
    • M.J. Pazzani A framework for collaborative, content-based and demographic filtering Artificial Intelligence Review 13 5-6 1999 393 408
    • (1999) Artificial Intelligence Review , vol.13 , Issue.56 , pp. 393-408
    • Pazzani, M.J.1
  • 226
    • 80055043595 scopus 로고    scopus 로고
    • A hybrid recommender system for the selective dissemination of research resources in a technology transfer office
    • C. Porcel, A. Tejeda-Lorente, M. Martínez, and E. Herrera-Viedma A hybrid recommender system for the selective dissemination of research resources in a technology transfer office Information Sciences 184 1 2012 1 19
    • (2012) Information Sciences , vol.184 , Issue.1 , pp. 1-19
    • Porcel, C.1    Tejeda-Lorente, A.2    Martínez, M.3    Herrera-Viedma, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.