메뉴 건너뛰기




Volumn 5, Issue 4, 2017, Pages 37-78

Advances in Hyperspectral Image and Signal Processing: A Comprehensive Overview of the State of the Art

Author keywords

[No Author keywords available]

Indexed keywords

HYPERSPECTRAL IMAGING; SPECTROSCOPY;

EID: 85040360938     PISSN: 24732397     EISSN: 21686831     Source Type: Journal    
DOI: 10.1109/MGRS.2017.2762087     Document Type: Review
Times cited : (705)

References (338)
  • 3
    • 84950434348 scopus 로고
    • Hyperdimensional data analysis using parallel coordinates
    • E. J. Wegman, "Hyperdimensional data analysis using parallel coordinates," J. Amer. Statist. Assoc., vol. 85, no. 411, pp. 664-675, 1990.
    • (1990) J. Amer. Statist. Assoc , vol.85 , Issue.411 , pp. 664-675
    • Wegman, E.J.1
  • 9
    • 85104396136 scopus 로고    scopus 로고
    • Shalom: A commercial hyperspectral space mission
    • S.-E. Qian, Ed. Chichester, U.K.: Wiley, ch. 11
    • T. Feingersh and E. B. Dor, "Shalom: A commercial hyperspectral space mission," in Optical Payloads for Space Missions, S.-E. Qian, Ed. Chichester, U.K.: Wiley, 2015, ch. 11, pp. 247-263.
    • (2015) Optical Payloads for Space Missions , pp. 247-263
    • Feingersh, T.1    Dor, E.B.2
  • 10
    • 49349083884 scopus 로고    scopus 로고
    • NASA mission to measure global plant physiology and functional types
    • Mar
    • R. Green, G. Asner, S. Ungar, and R. Knox, "NASA mission to measure global plant physiology and functional types," in Proc. Aerospace Conf., Mar. 2008, pp. 1-7.
    • (2008) Proc. Aerospace Conf , pp. 1-7
    • Green, R.1    Asner, G.2    Ungar, S.3    Knox, R.4
  • 12
    • 84954100585 scopus 로고    scopus 로고
    • Unsupervised multitemporal spectral unmixing for detecting multiple changes in hyperspectral images
    • S. Liu, L. Bruzzone, F. Bovolo, and P. Du, "Unsupervised multitemporal spectral unmixing for detecting multiple changes in hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 5, pp. 1-16, 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.5 , pp. 1-16
    • Liu, S.1    Bruzzone, L.2    Bovolo, F.3    Du, P.4
  • 13
    • 84874545698 scopus 로고    scopus 로고
    • Feature mining for hyperspectral image classification
    • Mar
    • X. Jia, B. Kuo, and M. Crawford, "Feature mining for hyperspectral image classification," Proc. IEEE, vol. 101, no. 3, pp. 676-697, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 676-697
    • Jia, X.1    Kuo, B.2    Crawford, M.3
  • 14
    • 36749083452 scopus 로고    scopus 로고
    • Rank estimation and redundancy reduction of high dimensional noisy signals with preservation of rare vectors
    • D. M. O. Kuybeda and M. Barzohar, "Rank estimation and redundancy reduction of high dimensional noisy signals with preservation of rare vectors," IEEE Trans. Signal Process., vol. 55, no. 12, pp. 5579-5592, 2007.
    • (2007) IEEE Trans. Signal Process , vol.55 , Issue.12 , pp. 5579-5592
    • Kuybeda, D.M.O.1    Barzohar, M.2
  • 15
    • 85032778398 scopus 로고    scopus 로고
    • Effective feature extraction and data reduction in remote sensing using hyperspectral imaging
    • June
    • J. Ren, J. Zabalza, S. Marshall, and J. Zheng, "Effective feature extraction and data reduction in remote sensing using hyperspectral imaging," IEEE Signal Process. Mag., vol. 31, no. 4, pp. 149-154, June 2014.
    • (2014) IEEE Signal Process. Mag , vol.31 , Issue.4 , pp. 149-154
    • Ren, J.1    Zabalza, J.2    Marshall, S.3    Zheng, J.4
  • 16
    • 84945143708 scopus 로고    scopus 로고
    • Automatic analysis of the slight change image for unsupervised change detection
    • J. Yang and W. Sun, "Automatic analysis of the slight change image for unsupervised change detection," J. Appl. Remote Sens., vol. 9, no. 1, pp. 1-24, 2015.
    • (2015) J. Appl. Remote Sens , vol.9 , Issue.1 , pp. 1-24
    • Yang, J.1    Sun, W.2
  • 17
    • 84878146470 scopus 로고    scopus 로고
    • Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests
    • May
    • B. Somers and G. P. Asnerb, "Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests," Remote Sens. Environ., vol. 136, pp. 14-27, May 2013.
    • (2013) Remote Sens. Environ , vol.136 , pp. 14-27
    • Somers, B.1    Asnerb, G.P.2
  • 18
    • 85028948905 scopus 로고    scopus 로고
    • Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data
    • L. Liu, N. C. Coops, N. W. Aven, and Y. Pang, "Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data," Remote Sens. Environ., vol. 200, pp. 170-182, 2017.
    • (2017) Remote Sens. Environ , vol.200 , pp. 170-182
    • Liu, L.1    Coops, N.C.2    Aven, N.W.3    Pang, Y.4
  • 22
    • 0023854011 scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • Jan
    • A. Green, M. Berman, P. Switzer, and M. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, Jan. 1988.
    • (1988) IEEE Trans. Geosci. Remote Sens , vol.26 , Issue.1 , pp. 65-74
    • Green, A.1    Berman, M.2    Switzer, P.3    Craig, M.4
  • 25
    • 36349016757 scopus 로고    scopus 로고
    • Dimensionality reduction based on clonal selection for hyperspectral imagery
    • Dec
    • L. Zhang, Y. Zhong, B. Huang, J. Gong, and P. Li, "Dimensionality reduction based on clonal selection for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 4172-4186, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.12 , pp. 4172-4186
    • Zhang, L.1    Zhong, Y.2    Huang, B.3    Gong, J.4    Li, P.5
  • 26
    • 79951820684 scopus 로고    scopus 로고
    • Kernel maximum autocorrelation factor and minimum noise fraction transformations
    • Mar
    • A. Nielsen, "Kernel maximum autocorrelation factor and minimum noise fraction transformations," IEEE Trans. Image Process., vol. no. 203, pp. 612-624, Mar. 2011.
    • (2011) IEEE Trans. Image Process , vol.203 , pp. 612-624
    • Nielsen, A.1
  • 27
    • 39049111776 scopus 로고    scopus 로고
    • Dimensionality reduction of hyperspectral imagery using improved locally linear embedding
    • G. Chen and S.-E. Qian, "Dimensionality reduction of hyperspectral imagery using improved locally linear embedding," J. Appl. Remote Sens., vol. 1, pp. 1-10, 2007.
    • (2007) J. Appl. Remote Sens , vol.1 , pp. 1-10
    • Chen, G.1    Qian, S.-E.2
  • 28
    • 0036522403 scopus 로고    scopus 로고
    • Unsupervised feature selection using feature similarity
    • P. Mitra, C. A. Murthy, and S. K. Pal, "Unsupervised feature selection using feature similarity," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 301-312, 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , Issue.3 , pp. 301-312
    • Mitra, P.1    Murthy, C.A.2    Pal, S.K.3
  • 29
    • 4143064738 scopus 로고    scopus 로고
    • Methodology for hyperspectral band selection
    • P. Bajcsy and P. Groves, "Methodology for hyperspectral band selection," Photogramm. Eng. Remote Sens. J., vol. 70, no. 7, pp. 793-802, 2004.
    • (2004) Photogramm. Eng. Remote Sens. J , vol.70 , Issue.7 , pp. 793-802
    • Bajcsy, P.1    Groves, P.2
  • 30
    • 33947576864 scopus 로고    scopus 로고
    • Band selection in multispectral images by minimization of dependent information
    • J. M. Sotoca, F. Pla, and J. S. Sanchez, "Band selection in multispectral images by minimization of dependent information," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 37, no. 2, pp. 258-267, 2007.
    • (2007) IEEE Trans. Syst., Man, Cybern. C, Appl. Rev , vol.37 , Issue.2 , pp. 258-267
    • Sotoca, J.M.1    Pla, F.2    Sanchez, J.S.3
  • 32
    • 84949883469 scopus 로고    scopus 로고
    • Fusion of spectral and spatial information for classification of hyperspectral remote-sensed imagery by local graph
    • W. Liao, M. D. Mura, J. Chanussot, and A. Pizurica, "Fusion of spectral and spatial information for classification of hyperspectral remote-sensed imagery by local graph," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 9, no. 2, pp. 583-594, 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens , vol.9 , Issue.2 , pp. 583-594
    • Liao, W.1    Mura, M.D.2    Chanussot, J.3    Pizurica, A.4
  • 34
    • 85042539031 scopus 로고    scopus 로고
    • Simultaneous spectral-spatial feature selection and extraction for hyperspectral images
    • L. Zhang, Q. Zhang, B. Du, X. Huang, Y. Tang, and D. Tao, "Simultaneous spectral-spatial feature selection and extraction for hyperspectral images," IEEE Trans. Cybern., 2017. doi: 10.1109/ TCYB.2016.2605044.
    • (2017) IEEE Trans. Cybern
    • Zhang, L.1    Zhang, Q.2    Du, B.3    Huang, X.4    Tang, Y.5    Tao, D.6
  • 35
    • 84977998287 scopus 로고    scopus 로고
    • Salient band selection for hyperspectral image classification via manifold ranking
    • Q. Wang, J. Lin, and Y. Yuan, "Salient band selection for hyperspectral image classification via manifold ranking," IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 6, pp. 1279-1289, 2016.
    • (2016) IEEE Trans. Neural Netw. Learn. Syst , vol.27 , Issue.6 , pp. 1279-1289
    • Wang, Q.1    Lin, J.2    Yuan, Y.3
  • 36
    • 84981321229 scopus 로고    scopus 로고
    • Hyperspectral feature extraction using total variation component analysis
    • Dec
    • B. Rasti, M. O. Ulfarsson, and J. R. Sveinsson, "Hyperspectral feature extraction using total variation component analysis," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 6976-6985, Dec. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.12 , pp. 6976-6985
    • Rasti, B.1    Ulfarsson, M.O.2    Sveinsson, J.R.3
  • 37
    • 0033872604 scopus 로고    scopus 로고
    • An experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery
    • C.-I. Chang and H. Ren, "An experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 2, pp. 1044-1063, 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens , vol.38 , Issue.2 , pp. 1044-1063
    • Chang, C.-I.1    Ren, H.2
  • 38
    • 2642530204 scopus 로고    scopus 로고
    • Nonparametric weighted feature extraction for classification
    • May
    • B. Kuo and D. Landgrebe, "Nonparametric weighted feature extraction for classification," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 5, pp. 1096-1105, May 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.5 , pp. 1096-1105
    • Kuo, B.1    Landgrebe, D.2
  • 40
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • July
    • R. Battiti, "Using mutual information for selecting features in supervised neural net learning," IEEE Trans. Neural Netw., vol. 5, no. 4, pp. 537-550, July 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 41
    • 35348899451 scopus 로고    scopus 로고
    • On the performance evaluation of pan-sharpening techniques
    • Oct
    • Q. Du, N. Younan, R. King, and V. Shah, "On the performance evaluation of pan-sharpening techniques," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 518-522, Oct. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett , vol.4 , Issue.4 , pp. 518-522
    • Du, Q.1    Younan, N.2    King, R.3    Shah, V.4
  • 42
    • 61349199062 scopus 로고    scopus 로고
    • Classification of hyperspectral images with regularized linear discriminant analysis
    • T. V. Bandos, L. Bruzzone, and G. Camps-Valls, "Classification of hyperspectral images with regularized linear discriminant analysis," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862-873, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.3 , pp. 862-873
    • Bandos, T.V.1    Bruzzone, L.2    Camps-Valls, G.3
  • 43
  • 44
    • 63149143190 scopus 로고    scopus 로고
    • Kernel nonparametric weighted feature extraction for hyperspectral image classification
    • Apr
    • B. Kuo, C. Li, and J. Yang, "Kernel nonparametric weighted feature extraction for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 4, pp. 1139-1155, Apr. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.4 , pp. 1139-1155
    • Kuo, B.1    Li, C.2    Yang, J.3
  • 45
    • 70349332954 scopus 로고    scopus 로고
    • A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability
    • L. Bruzzone and C. Persello, "A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 9, pp. 3180-3191, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.9 , pp. 3180-3191
    • Bruzzone, L.1    Persello, C.2
  • 46
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 48
    • 84859784358 scopus 로고    scopus 로고
    • Locality-preserving dimensionality reduction and classification for hyperspectral image analysis
    • W. Li, S. Prasad, J. E. Fowled, and L. M. Bruce, "Locality-preserving dimensionality reduction and classification for hyperspectral image analysis," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1185-1198, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.4 , pp. 1185-1198
    • Li, W.1    Prasad, S.2    Fowled, J.E.3    Bruce, L.M.4
  • 49
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
    • M. Sugiyama, "Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis," J. Mach. Learn. Res., vol. 8, no. 5, pp. 1027-1061, 2007.
    • (2007) J. Mach. Learn. Res , vol.8 , Issue.5 , pp. 1027-1061
    • Sugiyama, M.1
  • 50
    • 84906303790 scopus 로고    scopus 로고
    • Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification
    • Y. Zhou, J. Peng, and C. L. P. Chen, "Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 2, pp. 1082-1095, 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.2 , pp. 1082-1095
    • Zhou, Y.1    Peng, J.2    Chen, C.L.P.3
  • 51
    • 84954193345 scopus 로고    scopus 로고
    • Supervised band selection using local spatial information for hyperspectral image
    • X. Cao, T. Xiong, and L. Jiao, "Supervised band selection using local spatial information for hyperspectral image," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 3, pp. 329-333, 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett , vol.13 , Issue.3 , pp. 329-333
    • Cao, X.1    Xiong, T.2    Jiao, L.3
  • 52
    • 85009998155 scopus 로고    scopus 로고
    • Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning
    • May
    • Y. Dong, B. Du, L. Zhang, and L. Zhang, "Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5, pp. 2509-2524, May 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , Issue.5 , pp. 2509-2524
    • Dong, Y.1    Du, B.2    Zhang, L.3    Zhang, L.4
  • 53
    • 84896390467 scopus 로고    scopus 로고
    • Sparse graph-based discriminant analysis for hyperspectral imagery
    • N. H. Ly, D. Qian, and J. E. Fowler, "Sparse graph-based discriminant analysis for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 3872-3884, 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.7 , pp. 3872-3884
    • Ly, N.H.1    Qian, D.2    Fowler, J.E.3
  • 54
    • 85027931104 scopus 로고    scopus 로고
    • Simultaneous sparse graph embedding for hyperspectral image classification
    • Z. Xue, P. Du, J. Li, and H. Su, "Simultaneous sparse graph embedding for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 11, pp. 1-20, 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.11 , pp. 1-20
    • Xue, Z.1    Du, P.2    Li, J.3    Su, H.4
  • 55
    • 84906784859 scopus 로고    scopus 로고
    • Automatic spatial-spectral feature selection for hyperspectral image via discriminative sparse multimodal learning
    • Q. Zhang, Y. Tian, Y. Yang, and C. Pan, "Automatic spatial-spectral feature selection for hyperspectral image via discriminative sparse multimodal learning," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 261-279, 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.1 , pp. 261-279
    • Zhang, Q.1    Tian, Y.2    Yang, Y.3    Pan, C.4
  • 57
    • 84977998307 scopus 로고    scopus 로고
    • Weighted sparse graph based dimensionality reduction for hyperspectral images
    • W. He, H. Zhang, L. Zhang, W. Philips, and W. Liao, "Weighted sparse graph based dimensionality reduction for hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 5, pp. 686-690, 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett , vol.13 , Issue.5 , pp. 686-690
    • He, W.1    Zhang, H.2    Zhang, L.3    Philips, W.4    Liao, W.5
  • 58
    • 0002338687 scopus 로고
    • A genetic algorithm tutorial
    • D. Whitley, "A genetic algorithm tutorial," Statist. Computing, vol. 4, no. 2, pp. 65-85, 1994.
    • (1994) Statist. Computing , vol.4 , Issue.2 , pp. 65-85
    • Whitley, D.1
  • 60
    • 84878147291 scopus 로고    scopus 로고
    • A novel technique for optimal feature selection in attribute profiles based on genetic algorithms
    • M. Pedergnana, P. R. Marpu, M. D. Mura, J. A. Benediktsson, and L. Bruzzone, "A novel technique for optimal feature selection in attribute profiles based on genetic algorithms," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 6, pp. 3514-3528, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.6 , pp. 3514-3528
    • Pedergnana, M.1    Marpu, P.R.2    Mura, M.D.3    Benediktsson, J.A.4    Bruzzone, L.5
  • 61
    • 84921033974 scopus 로고    scopus 로고
    • A novel feature selection approach based on FODPSO and SVM
    • P. Ghamisi, M. S. Couceiro, and J. A. Benediktsson, "A novel feature selection approach based on FODPSO and SVM," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2935-2947, 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.5 , pp. 2935-2947
    • Ghamisi, P.1    Couceiro, M.S.2    Benediktsson, J.A.3
  • 62
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 63
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima, "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position," Biol. Cybern., vol. 36, no. 4, pp. 193-202, 1980.
    • (1980) Biol. Cybern , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 64
    • 84979492674 scopus 로고    scopus 로고
    • Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
    • W. Zhao and S. Du, "Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4544-4554, 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.8 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 65
    • 84982237011 scopus 로고    scopus 로고
    • A self-improving convolution neural network for the classification of hyperspectral data
    • P. Ghamisi, Y. Chen, and X. Zhu, "A self-improving convolution neural network for the classification of hyperspectral data," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 10, pp. 1537-1541, 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett , vol.13 , Issue.10 , pp. 1537-1541
    • Ghamisi, P.1    Chen, Y.2    Zhu, X.3
  • 67
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote-sensing images
    • L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVM for semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363-3373, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 68
    • 39049145967 scopus 로고    scopus 로고
    • Semisupervised graph-based hyperspectral image classification
    • G. Camps-Valls, T. Bandos, and D. Zhou, "Semisupervised graph-based hyperspectral image classification," IEEE Trans. Geosci. Remote Sens, vol. 45, no. 10, pp. 3044-3054, 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Bandos, T.2    Zhou, D.3
  • 70
    • 79952041437 scopus 로고    scopus 로고
    • Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage
    • G. Chen and S.-E. Qian, "Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 973-980, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.3 , pp. 973-980
    • Chen, G.1    Qian, S.-E.2
  • 72
    • 77952423823 scopus 로고    scopus 로고
    • Semi-supervised local Fisher discriminant analysis for dimensionality reduction
    • M. Sugiyama, T. Ide, S. Nakajima, and J. Sese, "Semi-supervised local Fisher discriminant analysis for dimensionality reduction," Mach. Learn., vol. 78, pp. 35-61, 2010.
    • Mach. Learn , vol.78 , Issue.2010 , pp. 35-61
    • Sugiyama, M.1    Ide, T.2    Nakajima, S.3    Sese, J.4
  • 73
    • 84871993453 scopus 로고    scopus 로고
    • Semisupervised local discriminant analysis for feature extraction in hyperspectral images
    • W. Liao, A. Pizurica, P. Scheunders, W. Philips, and Y. Pi, "Semisupervised local discriminant analysis for feature extraction in hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 184-198, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.1 , pp. 184-198
    • Liao, W.1    Pizurica, A.2    Scheunders, P.3    Philips, W.4    Pi, Y.5
  • 75
    • 84978289334 scopus 로고    scopus 로고
    • Semisupervised sparse manifold discriminative analysis for feature extraction of hyperspectral images
    • F. Luo, H. Huang, Z. Ma, and J. Liu, "Semisupervised sparse manifold discriminative analysis for feature extraction of hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6197-6211, 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.10 , pp. 6197-6211
    • Luo, F.1    Huang, H.2    Ma, Z.3    Liu, J.4
  • 76
    • 84903272411 scopus 로고    scopus 로고
    • Semisupervised manifold alignment of multimodal remote sensing images
    • D. Tuia, M. Volpi, M. Trolliet, and G. Camps-Valls, "Semisupervised manifold alignment of multimodal remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 12, pp. 7708-7720, 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.12 , pp. 7708-7720
    • Tuia, D.1    Volpi, M.2    Trolliet, M.3    Camps-Valls, G.4
  • 77
    • 85027954921 scopus 로고    scopus 로고
    • Semisupervised transfer component analysis for domain adaptation in remote sensing image classification
    • G. Matasci, M. Volpi, M. Kanevski, L. Bruzzone, and D. Tuia, "Semisupervised transfer component analysis for domain adaptation in remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 7, pp. 3550-3564, 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.7 , pp. 3550-3564
    • Matasci, G.1    Volpi, M.2    Kanevski, M.3    Bruzzone, L.4    Tuia, D.5
  • 78
    • 84905913009 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral subspace learning based on a generalized eigenvalue problem for regression and dimensionality reduction
    • K. Uto, Y. Kosugi, and G. Saito, "Semi-supervised hyperspectral subspace learning based on a generalized eigenvalue problem for regression and dimensionality reduction," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sensing, vol. 7, no. 6, pp. 2583-2599, 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sensing , vol.7 , Issue.6 , pp. 2583-2599
    • Uto, K.1    Kosugi, Y.2    Saito, G.3
  • 79
    • 84969326991 scopus 로고    scopus 로고
    • Kernel low rank and sparse graph for unsupervised and semi-supervised classification of hyperspectral images
    • F. Morsier, M. Borgeaud, V. Gass, J. Thiran, and D. Tuia, "Kernel low rank and sparse graph for unsupervised and semi-supervised classification of hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3410-3420, 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.6 , pp. 3410-3420
    • Morsier, F.1    Borgeaud, M.2    Gass, V.3    Thiran, J.4    Tuia, D.5
  • 80
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Mar
    • J. Benediktsson, J. Palmason, and J. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-490, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 480-490
    • Benediktsson, J.1    Palmason, J.2    Sveinsson, J.3
  • 82
    • 85021094400 scopus 로고    scopus 로고
    • Promoting partial reconstruction for the morphological analysis of very high resolution urban remote sensing images
    • W. Liao, J. Chanussot, M. D. Mura, X. Huang, R. Bellens, S. Gautama, and W. Philips, "Promoting partial reconstruction for the morphological analysis of very high resolution urban remote sensing images," IEEE Geosci. Remote Sens. Mag., vol. 5, no. 2, pp. 8-28, 2017.
    • (2017) IEEE Geosci. Remote Sens. Mag , vol.5 , Issue.2 , pp. 8-28
    • Liao, W.1    Chanussot, J.2    Mura, M.D.3    Huang, X.4    Bellens, R.5    Gautama, S.6    Philips, W.7
  • 83
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • T. Blaschke, "Object based image analysis for remote sensing," ISPRS J. Photogramm. Remote Sens., vol. 65, no. 1, pp. 2-16, 2010.
    • (2010) ISPRS J. Photogramm. Remote Sens , vol.65 , Issue.1 , pp. 2-16
    • Blaschke, T.1
  • 84
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Oct
    • Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, "Deep feature extraction and classification of hyperspectral images based on convolutional neural networks," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6232-6251, Oct. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.10 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 86
    • 84994619185 scopus 로고    scopus 로고
    • Hyperspectral data clustering based on density analysis ensemble
    • Y. Chen, S. Ma, X. Chen, and P. Ghamisi, "Hyperspectral data clustering based on density analysis ensemble," Remote Sens. Lett., vol. 8, no. 2, pp. 194-203, 2017.
    • (2017) Remote Sens. Lett , vol.8 , Issue.2 , pp. 194-203
    • Chen, Y.1    Ma, S.2    Chen, X.3    Ghamisi, P.4
  • 87
    • 0036875946 scopus 로고    scopus 로고
    • Adaptive Bayesian contextual classification based on Markov random fields
    • Q. Jackson and D. Landgrebe, "Adaptive Bayesian contextual classification based on Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11, pp. 2454-2463, 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , Issue.11 , pp. 2454-2463
    • Jackson, Q.1    Landgrebe, D.2
  • 88
    • 85016188297 scopus 로고    scopus 로고
    • Advanced spectral classifiers for hyperspectral images: A review
    • Mar
    • P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. Plaza, "Advanced spectral classifiers for hyperspectral images: A review," IEEE Geosci. Remote Sens. Mag., vol. 5, no. 1, pp. 8-32, Mar. 2017.
    • (2017) IEEE Geosci. Remote Sens. Mag , vol.5 , Issue.1 , pp. 8-32
    • Ghamisi, P.1    Plaza, J.2    Chen, Y.3    Li, J.4    Plaza, A.5
  • 89
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 90
    • 30344471525 scopus 로고    scopus 로고
    • Random forests for land cover classification
    • P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson, "Random forests for land cover classification," Patt. Recog. Lett., vol. 27, no. 4, pp. 294-300, 2006.
    • (2006) Patt. Recog. Lett , vol.27 , Issue.4 , pp. 294-300
    • Gislason, P.O.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 91
    • 84888299612 scopus 로고    scopus 로고
    • Hyperspectral remote sensing image classification based on rotation forest
    • Jan
    • J. Xia, P. Du, X. He, and J. Chanussot, "Hyperspectral remote sensing image classification based on rotation forest," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 239-243, Jan. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , Issue.1 , pp. 239-243
    • Xia, J.1    Du, P.2    He, X.3    Chanussot, J.4
  • 93
    • 84990845557 scopus 로고    scopus 로고
    • Hyperspectral image classification with canonical correlation forests
    • Jan
    • J. Xia, N. Yokoya, and A. Iwasaki, "Hyperspectral image classification with canonical correlation forests," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 1, pp. 421-431, Jan. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , Issue.1 , pp. 421-431
    • Xia, J.1    Yokoya, N.2    Iwasaki, A.3
  • 94
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • J. A. Benediktsson, P. H. Swain, and O. K. Ersoy, "Neural network approaches versus statistical methods in classification of multisource remote sensing data," IEEE Trans. Geosci. Remote Sens., vol. 28, no. 4, pp. 540-552, 1990.
    • (1990) IEEE Trans. Geosci. Remote Sens , vol.28 , Issue.4 , pp. 540-552
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 95
    • 70449409294 scopus 로고    scopus 로고
    • Extreme-learning-machine-based land cover classification
    • M. Pal, "Extreme-learning-machine-based land cover classification," Int. J. Remote Sens., vol. 30, no. 14, pp. 3835-3841, 2009.
    • (2009) Int. J. Remote Sens , vol.30 , Issue.14 , pp. 3835-3841
    • Pal, M.1
  • 96
    • 84880397408 scopus 로고    scopus 로고
    • Kernel-based extreme learning machine for remote-sensing image classification
    • M. Pal, A. E. Maxwell, and T. A. Warner, "Kernel-based extreme learning machine for remote-sensing image classification," Remote Sens. Lett., vol. 4, no. 9, pp. 853-862, 2013.
    • (2013) Remote Sens. Lett , vol.4 , Issue.9 , pp. 853-862
    • Pal, M.1    Maxwell, A.E.2    Warner, T.A.3
  • 97
    • 78049282844 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085-4098, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 99
    • 84947865496 scopus 로고    scopus 로고
    • Unsupervised spectralspatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
    • C. Tao, H. Pan, Y. Li, and Z. Zou, "Unsupervised spectralspatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 12, pp. 2438-2442, 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , Issue.12 , pp. 2438-2442
    • Tao, C.1    Pan, H.2    Li, Y.3    Zou, Z.4
  • 100
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on deep belief network
    • Y. Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyperspectral data based on deep belief network," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 8, no. 6, pp. 2381-2292, 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens , vol.8 , Issue.6 , pp. 2292-2381
    • Chen, Y.1    Zhao, X.2    Jia, X.3
  • 101
    • 84885019653 scopus 로고    scopus 로고
    • Combining support vector machines and Markov random fields in an integrated framework for contextual image classification
    • G. Moser and S. B. Serpico, "Combining support vector machines and Markov random fields in an integrated framework for contextual image classification," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2734-2752, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.5 , pp. 2734-2752
    • Moser, G.1    Serpico, S.B.2
  • 102
    • 84896316919 scopus 로고    scopus 로고
    • Spectral- spatial classification of hyperspectral images based on hidden Markov random fields
    • P. Ghamisi, J. A. Benediktsson, and M. O. Ulfarsson, "Spectral- spatial classification of hyperspectral images based on hidden Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2565-2574, 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.5 , pp. 2565-2574
    • Ghamisi, P.1    Benediktsson, J.A.2    Ulfarsson, M.O.3
  • 103
    • 84920948074 scopus 로고    scopus 로고
    • Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and markov random fields
    • J. Xia, J. Chanussot, P. Du, and X. He, "Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2532-2546, 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.5 , pp. 2532-2546
    • Xia, J.1    Chanussot, J.2    Du, P.3    He, X.4
  • 104
    • 85016483768 scopus 로고    scopus 로고
    • Self-taught feature learning for hyperspectral image classification
    • May
    • R. Kemker and C. Kanan, "Self-taught feature learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5, pp. 2693-2705, May 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , Issue.5 , pp. 2693-2705
    • Kemker, R.1    Kanan, C.2
  • 105
    • 84864429960 scopus 로고    scopus 로고
    • An efficient method for segmentation of images based on fractional calculus and natural selection
    • P. Ghamisi , M. S . Couceiro, J. A . Benediktsson, and N. M. F. Ferreira, "An efficient method for segmentation of images based on fractional calculus and natural selection," Expert Syst. Applicat., vol. 39, no. 16, pp. 12 407-12 417, 2012.
    • (2012) Expert Syst. Applicat , vol.39 , Issue.16 , pp. 12407-12417
    • Ghamisi, P.1    Couceiro, M.S.2    Benediktsson, J.A.3    Ferreira, N.M.F.4
  • 106
    • 84896317057 scopus 로고    scopus 로고
    • Multilevel image segmentation approach for remote sensing images based on fractional-order Darwinian particle swarm optimization
    • P. Ghamisi, M. S. Couceiro, F. M. Martins, and J. A. Benediktsson, "Multilevel image segmentation approach for remote sensing images based on fractional-order Darwinian particle swarm optimization," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2382-2394, 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.5 , pp. 2382-2394
    • Ghamisi, P.1    Couceiro, M.S.2    Martins, F.M.3    Benediktsson, J.A.4
  • 107
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE, vol. 101, no. 3, pp. 652-675, 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 108
    • 84888263781 scopus 로고    scopus 로고
    • Integration of segmentation techniques for classification of hyperspectral images
    • Jan
    • P. Ghamisi, M. Couceiro, M. Fauvel, and J. A. Benediktsson, "Integration of segmentation techniques for classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 342-346, Jan. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , Issue.1 , pp. 342-346
    • Ghamisi, P.1    Couceiro, M.2    Fauvel, M.3    Benediktsson, J.A.4
  • 109
    • 77956694762 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, "Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers," IEEE Trans. Syst. Man, Cybern. B, Cybern., 2010.
    • (2010) IEEE Trans. Syst. Man, Cybern. B, Cybern
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 110
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histogram
    • N. Otsu, "A threshold selection method from gray-level histogram," IEEE Trans. Syst., Man, Cybern., vol. 9, pp. 62-66, 1979.
    • (1979) IEEE Trans. Syst., Man, Cybern , vol.9 , pp. 62-66
    • Otsu, N.1
  • 111
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491, 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 112
    • 77957007028 scopus 로고    scopus 로고
    • Morphological attribute profiles for the analysis of very high resolution images
    • M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, "Morphological attribute profiles for the analysis of very high resolution images," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3747-3762, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.10 , pp. 3747-3762
    • Dalla Mura, M.1    Benediktsson, J.A.2    Waske, B.3    Bruzzone, L.4
  • 113
    • 84921020001 scopus 로고    scopus 로고
    • A survey on spectral-spatial classification techniques based on attribute profiles
    • P. Ghamisi, M. Dalla Mura, and J. A. Benediktsson, "A survey on spectral-spatial classification techniques based on attribute profiles," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2335-2353, 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.5 , pp. 2335-2353
    • Ghamisi, P.1    Dalla Mura, M.2    Benediktsson, J.A.3
  • 114
    • 84878147291 scopus 로고    scopus 로고
    • A novel technique for optimal feature selection in attribute profiles based on genetic algorithms
    • June
    • M. Pedergnana, P. R. Marpu, M. Dalla Mura, J. A. Benediktsson, and L. Bruzzone, "A novel technique for optimal feature selection in attribute profiles based on genetic algorithms," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 6, pp. 3514-3528, June 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.6 , pp. 3514-3528
    • Pedergnana, M.1    Marpu, P.R.2    Dalla Mura, M.3    Benediktsson, J.A.4    Bruzzone, L.5
  • 115
    • 84905903346 scopus 로고    scopus 로고
    • Automatic framework for spectral-spatial classification based on supervised feature extraction and morphological attribute profiles
    • P. Ghamisi, J. A. Benediktsson, G. Cavallaro, and A. Plaza, "Automatic framework for spectral-spatial classification based on supervised feature extraction and morphological attribute profiles," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2147-2160, 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , Issue.6 , pp. 2147-2160
    • Ghamisi, P.1    Benediktsson, J.A.2    Cavallaro, G.3    Plaza, A.4
  • 116
    • 84900815487 scopus 로고    scopus 로고
    • Automatic spectral-spatial classification framework based on attribute profiles and supervised feature extraction
    • P. Ghamisi, J. A. Benediktsson, and J. R. Sveinsson, "Automatic spectral-spatial classification framework based on attribute profiles and supervised feature extraction," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 5771-5782, 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.5 , pp. 5771-5782
    • Ghamisi, P.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 122
  • 123
    • 77957001686 scopus 로고    scopus 로고
    • Learning relevant image features with multiple-kernel classification
    • Oct
    • D. Tuia, G. Camps-Valls, G. Matasci, and M. Kanevski, "Learning relevant image features with multiple-kernel classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3780-3791, Oct. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.10 , pp. 3780-3791
    • Tuia, D.1    Camps-Valls, G.2    Matasci, G.3    Kanevski, M.4
  • 125
    • 84949870847 scopus 로고    scopus 로고
    • An active learning framework for hyperspectral image classification using hierarchical segmentation
    • Feb
    • Z. Zhang, E. Pasolli, M. M. Crawford, and J. C. Tilton, "An active learning framework for hyperspectral image classification using hierarchical segmentation," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 9, no. 2, pp. 640-654, Feb. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens , vol.9 , Issue.2 , pp. 640-654
    • Zhang, Z.1    Pasolli, E.2    Crawford, M.M.3    Tilton, J.C.4
  • 126
    • 84874518998 scopus 로고    scopus 로고
    • Active learning: Any value for classification of remotely sensed data?
    • Mar
    • M. M. Crawford, D. Tuia, and H. L. Yang, "Active learning: Any value for classification of remotely sensed data?" Proc. IEEE, vol. 101, no. 3, pp. 593-608, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 593-608
    • Crawford, M.M.1    Tuia, D.2    Yang, H.L.3
  • 127
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • June
    • D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari, "A survey of active learning algorithms for supervised remote sensing image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 606-617, June 2011.
    • (2011) IEEE J. Sel. Topics Signal Process , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 128
    • 84920949749 scopus 로고    scopus 로고
    • Collaborative active and semisupervised learning for hyperspectral remote sensing image classification
    • May
    • L. Wan, K. Tang, M. Li, Y. Zhong, and A. K. Qin, "Collaborative active and semisupervised learning for hyperspectral remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2384-2396, May 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.5 , pp. 2384-2396
    • Wan, L.1    Tang, K.2    Li, M.3    Zhong, Y.4    Qin, A.K.5
  • 129
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse represenation
    • Oct
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classification using dictionary-based sparse represenation," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 130
    • 84907816910 scopus 로고    scopus 로고
    • Sparse alignment for robust tensor learning
    • Oct
    • Z. Lai, W. K. Wong, Y. Xu, C. Zhao, and M. Sun. (2014, Oct.). Sparse alignment for robust tensor learning. IEEE Trans. Neural Netw. Learn. Syst. [Online]. 25(10), pp. 1779-1792. Available: http://dx.doi.org/10.1109/TNNLS.2013.2295717
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. [Online] , vol.25 , Issue.10 , pp. 1779-1792
    • Lai, Z.1    Wong, W.K.2    Xu, Y.3    Zhao, C.4    Sun, M.5
  • 131
    • 80455122805 scopus 로고    scopus 로고
    • Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery
    • Dec
    • A. Castrodad, Z. Xing, J. Greer, E. Bosch, L. Carin, and G. Sapiro, "Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4263-4281, Dec. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.11 , pp. 4263-4281
    • Castrodad, A.1    Xing, Z.2    Greer, J.3    Bosch, E.4    Carin, L.5    Sapiro, G.6
  • 132
    • 0021892045 scopus 로고
    • Imaging spectrometry for Earth remote sensing
    • June
    • A. Goetz, G. Vane, J. Solomon, and B. Rock, "Imaging spectrometry for Earth remote sensing," Science, vol. 228, no. 4704, pp. 1147-1153, June 1985.
    • (1985) Science , vol.228 , Issue.4704 , pp. 1147-1153
    • Goetz, A.1    Vane, G.2    Solomon, J.3    Rock, B.4
  • 135
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • C.-I. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 137
    • 84866234414 scopus 로고    scopus 로고
    • Empirical automatic estimation of the number of endmembers in hyperspectral images
    • Jan
    • B. Luo, J. Chanussot, S. Doute, and L. Zhang, "Empirical automatic estimation of the number of endmembers in hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 1, pp. 24-28, Jan. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett , vol.10 , Issue.1 , pp. 24-28
    • Luo, B.1    Chanussot, J.2    Doute, S.3    Zhang, L.4
  • 138
    • 77952595305 scopus 로고    scopus 로고
    • Estimating the number of endmembers in hyperspectral images using the normal compositional model and a hierarchical Bayesian algorithm
    • June
    • O. Eches, N. Dobigeon, and J. Y. Tourneret, "Estimating the number of endmembers in hyperspectral images using the normal compositional model and a hierarchical Bayesian algorithm," IEEE J. Sel. Topics Signal Process., vol. 4, no. 3, pp. 582-591, June 2010.
    • (2010) IEEE J. Sel. Topics Signal Process , vol.4 , Issue.3 , pp. 582-591
    • Eches, O.1    Dobigeon, N.2    Tourneret, J.Y.3
  • 140
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," in Proc. Society of Photographic Instrumentation Engineers, Imaging Spectrometry V, 2003, vol. 3753, pp. 266-277.
    • (2003) Proc. Society of Photographic Instrumentation Engineers, Imaging Spectrometry v , vol.3753 , pp. 266-277
    • Winter, M.E.1
  • 141
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • J. C. Harsanyi and C.-I. Chang, "Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785, 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.-I.2
  • 142
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • J. Nascimento and J. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.1    Bioucas-Dias, J.2
  • 143
    • 57049104040 scopus 로고    scopus 로고
    • A weighted linear spectral mixture analysis approach to address endmember variability in agricultural production systems
    • B. Somers, S. Delalieux, J. Stuckens, W. W. Verstraeten, and P. Coppin, "A weighted linear spectral mixture analysis approach to address endmember variability in agricultural production systems," Int. J. Remote Sens., vol. 30, no. 1, pp. 139-147, 2009.
    • (2009) Int. J. Remote Sens , vol.30 , Issue.1 , pp. 139-147
    • Somers, B.1    Delalieux, S.2    Stuckens, J.3    Verstraeten, W.W.4    Coppin, P.5
  • 145
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 146
    • 34547229626 scopus 로고    scopus 로고
    • Sparsity promoting iterated constrained endmember detection in hyperspectral imagery
    • July
    • A. Zare and P. Gader, "Sparsity promoting iterated constrained endmember detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 3, pp. 446-450, July 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett , vol.4 , Issue.3 , pp. 446-450
    • Zare, A.1    Gader, P.2
  • 147
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Nov
    • T. H. Chan, C. Y. Chi, Y. M. Huang, and W. K. Ma, "A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.H.1    Chi, C.Y.2    Huang, Y.M.3    Ma, W.K.4
  • 148
    • 85027942490 scopus 로고    scopus 로고
    • Minimum volume simplex analysis: A fast algorithm for linear hyperspectral unmixing
    • Sept
    • J. Li, A. Agathos, D. Zaharie, J. M. Bioucas-Dias, A. Plaza, and X. Li, "Minimum volume simplex analysis: A fast algorithm for linear hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 9, pp. 5067-5082, Sept. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.9 , pp. 5067-5082
    • Li, J.1    Agathos, A.2    Zaharie, D.3    Bioucas-Dias, J.M.4    Plaza, A.5    Li, X.6
  • 149
    • 84862998205 scopus 로고    scopus 로고
    • A new minimum-volume enclosing algorithm for endmember identification and abundance estimation in hyperspectral data
    • July
    • E. M. T. Hendrix, I. Garcia, J. Plaza, G. Martin, and A. Plaza, "A new minimum-volume enclosing algorithm for endmember identification and abundance estimation in hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 7, pp. 2744-2757, July 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.7 , pp. 2744-2757
    • Hendrix, E.M.T.1    Garcia, I.2    Plaza, J.3    Martin, G.4    Plaza, A.5
  • 151
    • 80052775340 scopus 로고    scopus 로고
    • Hyperspectral unmixing based on mixtures of Dirichlet components
    • J. Nascimento and J. Bioucas-Dias, "Hyperspectral unmixing based on mixtures of Dirichlet components," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, 2012.
    • IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.3 , pp. 2012
    • Nascimento, J.1    Bioucas-Dias, J.2
  • 152
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/spectral endmember extraction by multidimensional morphological operations
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "Spatial/spectral endmember extraction by multidimensional morphological operations," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 2025-2041, 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , Issue.9 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 153
    • 34548036670 scopus 로고    scopus 로고
    • Integration of spatial-spectral information for the improved extraction of endmembers
    • D. M. Rogge, B. Rivard, J. Zhang, A. Sánchez, J. Harris, and J. Feng, "Integration of spatial-spectral information for the improved extraction of endmembers," Remote Sens. Environ., vol. 110, no. 3, pp. 287-303, 2007.
    • (2007) Remote Sens. Environ , vol.110 , Issue.3 , pp. 287-303
    • Rogge, D.M.1    Rivard, B.2    Zhang, J.3    Sánchez, A.4    Harris, J.5    Feng, J.6
  • 154
    • 67949098957 scopus 로고    scopus 로고
    • Spatial preprocessing for endmember extraction
    • M. Zortea and A. Plaza, "Spatial preprocessing for endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 47, pp. 2679-2693, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2
  • 155
    • 79959766442 scopus 로고    scopus 로고
    • Region-based spatial preprocessing for endmember extraction and spectral unmixing
    • July
    • G. Martin and A. Plaza, "Region-based spatial preprocessing for endmember extraction and spectral unmixing," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 745-749, July 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett , vol.8 , Issue.4 , pp. 745-749
    • Martin, G.1    Plaza, A.2
  • 156
    • 84861723546 scopus 로고    scopus 로고
    • Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data
    • Apr
    • G. Martin and A. Plaza, "Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sensing, vol. 5, no. 2, pp. 380-395, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sensing , vol.5 , Issue.2 , pp. 380-395
    • Martin, G.1    Plaza, A.2
  • 158
    • 84985930889 scopus 로고    scopus 로고
    • Hyperspectral unmixing in presence of endmember variability, nonlinearity, or mismodeling effects
    • A. Halimi, P. Honeine, and J. M. Bioucas-Dias, "Hyperspectral unmixing in presence of endmember variability, nonlinearity, or mismodeling effects," IEEE Trans. Image Process., vol. 25, no. 10, pp. 4565-4579, 2016.
    • (2016) IEEE Trans. Image Process , vol.25 , Issue.10 , pp. 4565-4579
    • Halimi, A.1    Honeine, P.2    Bioucas-Dias, J.M.3
  • 159
    • 85010006500 scopus 로고    scopus 로고
    • Hyperspectral unmixing with spectral variability using a perturbed linear mixing model
    • P.-A. Thouvenin, N. Dobigeon, and J.-Y. Tourneret, "Hyperspectral unmixing with spectral variability using a perturbed linear mixing model," IEEE Trans. Signal Process., vol. 64, no. 2, pp. 525-538, 2016.
    • (2016) IEEE Trans. Signal Process , vol.64 , Issue.2 , pp. 525-538
    • Thouvenin, P.-A.1    Dobigeon, N.2    Tourneret, J.-Y.3
  • 160
    • 84979034974 scopus 로고    scopus 로고
    • Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability
    • L. Drumetz, M.-A. Veganzones, S. Henrot, R. Phlypo, J. Chanussot, and C. Jutten, "Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability," IEEE Trans. Image Process., vol. 25, no. 8, pp. 3890-3905, 2016.
    • (2016) IEEE Trans. Image Process , vol.25 , Issue.8 , pp. 3890-3905
    • Drumetz, L.1    Veganzones, M.-A.2    Henrot, S.3    Phlypo, R.4    Chanussot, J.5    Jutten, C.6
  • 162
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatial regularization for sparse hyperspectral unmixing
    • Nov
    • M.-D. Iordache, J. Bioucas-Dias, and A. Plaza, "Total variation spatial regularization for sparse hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4484-4502, Nov. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.11 , pp. 4484-4502
    • Iordache, M.-D.1    Bioucas-Dias, J.2    Plaza, A.3
  • 163
    • 84898600161 scopus 로고    scopus 로고
    • Music-CSR: Multiple signal classification collaborative sparse regression for hyperspectral unmixing
    • M.-D. Iordache, J. Bioucas-Dias, and A. Plaza, "Music-CSR: Multiple signal classification collaborative sparse regression for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 4364-4382, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.7 , pp. 4364-4382
    • Iordache, M.-D.1    Bioucas-Dias, J.2    Plaza, A.3
  • 164
    • 84890430996 scopus 로고    scopus 로고
    • Collaborative sparse regression for hyperspectral unmixing
    • M.-D. Iordache, J. Bioucas-Dias, and A. Plaza, "Collaborative sparse regression for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 341-354, 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.1 , pp. 341-354
    • Iordache, M.-D.1    Bioucas-Dias, J.2    Plaza, A.3
  • 165
    • 84978953872 scopus 로고    scopus 로고
    • Robust collaborative nonnegative matrix factorization for hyperspectral unmixing
    • Oct
    • J. Li, J. M. Bioucas-Dias, A. Plaza, and L. Liu, "Robust collaborative nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6076-6090, Oct. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.10 , pp. 6076-6090
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3    Liu, L.4
  • 167
    • 84896314126 scopus 로고    scopus 로고
    • Nonlinear estimation of material abundances in hyperspectral images with l1-norm spatial regularization
    • J. Chen, C. Richard, and P. Honeine, "Nonlinear estimation of material abundances in hyperspectral images with l1-norm spatial regularization," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2654-2665, 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.5 , pp. 2654-2665
    • Chen, J.1    Richard, C.2    Honeine, P.3
  • 168
    • 84942436898 scopus 로고    scopus 로고
    • Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization
    • C. Févotte and N. Dobigeon, "Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization," IEEE Trans. Image Process., vol. 24, no. 12, pp. 4810-4819, 2015.
    • (2015) IEEE Trans. Image Process , vol.24 , Issue.12 , pp. 4810-4819
    • Févotte, C.1    Dobigeon, N.2
  • 169
    • 85027922248 scopus 로고    scopus 로고
    • Nonlinear hyperspectral unmixing using nonlinearity order estimation and polytope decomposition
    • June
    • A. Marinoni, J. Plaza, A. Plaza, and P. Gamba, "Nonlinear hyperspectral unmixing using nonlinearity order estimation and polytope decomposition," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 8, no. 6, pp. 2644-2654, June 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens , vol.8 , Issue.6 , pp. 2644-2654
    • Marinoni, A.1    Plaza, J.2    Plaza, A.3    Gamba, P.4
  • 170
    • 80455158223 scopus 로고    scopus 로고
    • Nonlinear unmixing of hyperspectral images using a generalized bilinear model
    • Nov
    • A. Halimi, Y. Altmann, N. Dobigeon, and J.-Y. Tourneret, "Nonlinear unmixing of hyperspectral images using a generalized bilinear model," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4153-4162, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.11 , pp. 4153-4162
    • Halimi, A.1    Altmann, Y.2    Dobigeon, N.3    Tourneret, J.-Y.4
  • 171
    • 84890350706 scopus 로고    scopus 로고
    • Nonlinear spectral unmixing of hyperspectral images using Gaussian processes
    • May
    • Y. Altmann, N. Dobigeon, S. McLaughlin, and J.-Y. Tourneret, "Nonlinear spectral unmixing of hyperspectral images using Gaussian processes," IEEE Trans. Signal Process., vol. 61, no. 10, pp. 2442-2453, May 2013.
    • (2013) IEEE Trans. Signal Process , vol.61 , Issue.10 , pp. 2442-2453
    • Altmann, Y.1    Dobigeon, N.2    McLaughlin, S.3    Tourneret, J.-Y.4
  • 172
    • 84890998815 scopus 로고    scopus 로고
    • Nonlinear unmixing of hyperspectral data using semi-nonnegative matrix factorization
    • N. Yokoya, J. Chanussot, and A. Iwasaki, "Nonlinear unmixing of hyperspectral data using semi-nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 1430-1437, 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.2 , pp. 1430-1437
    • Yokoya, N.1    Chanussot, J.2    Iwasaki, A.3
  • 173
    • 84896399920 scopus 로고    scopus 로고
    • Abundance estimation for bilinear mixture models via joint sparse and low-rank representation
    • Q. Qu, N. M. Nasrabadi, and T. D. Tran, "Abundance estimation for bilinear mixture models via joint sparse and low-rank representation," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 4404-4423, 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.7 , pp. 4404-4423
    • Qu, Q.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 174
    • 84861144324 scopus 로고    scopus 로고
    • Supervised nonlinear spectral unmixing using a post-nonlinear mixing model for hyperspectral imagery
    • Y. Altmann, A. Halimi, N. Dobigeon, and J.-Y. Tourneret, "Supervised nonlinear spectral unmixing using a post-nonlinear mixing model for hyperspectral imagery," IEEE Trans. Image Process., vol. 21, no. 6, pp. 3017-3025, 2012.
    • (2012) IEEE Trans. Image Process , vol.21 , Issue.6 , pp. 3017-3025
    • Altmann, Y.1    Halimi, A.2    Dobigeon, N.3    Tourneret, J.-Y.4
  • 175
    • 84947491514 scopus 로고    scopus 로고
    • A multilinear mixing model for nonlinear spectral unmixing
    • R. Heylen and P. Scheunders, "A multilinear mixing model for nonlinear spectral unmixing," IEEE Ttrans. Geosci. Remote Sens., vol. 54, no. 1, pp. 240-251, 2016.
    • (2016) IEEE Ttrans. Geosci. Remote Sens , vol.54 , Issue.1 , pp. 240-251
    • Heylen, R.1    Scheunders, P.2
  • 176
    • 0001473286 scopus 로고
    • Bidirectional reflectance spectroscopy: 1. Theory
    • Apr
    • B. Hapke, "Bidirectional reflectance spectroscopy: 1. Theory," J. Geophys. Res., vol. 86, no. B4, pp. 3039-3054, Apr. 1981.
    • (1981) J. Geophys. Res , vol.86 , Issue.B4 , pp. 3039-3054
    • Hapke, B.1
  • 177
    • 84872104815 scopus 로고    scopus 로고
    • Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation mode
    • J. Chen, C. Richard, and P. Honeine, "Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation mode," IEEE Trans. Signal Process., vol. 61, no. 2, pp. 480-492, 2013.
    • (2013) IEEE Trans. Signal Process , vol.61 , Issue.2 , pp. 480-492
    • Chen, J.1    Richard, C.2    Honeine, P.3
  • 178
    • 34548294894 scopus 로고    scopus 로고
    • Nonlinear estimation of subpixel proportion via kernel least square regression
    • L. Zhang, B. Wu, B. Huang, and P. Li, "Nonlinear estimation of subpixel proportion via kernel least square regression," Int. J. Remote Sens., vol. 28, no. 18, pp. 4157-4172, 2007.
    • (2007) Int. J. Remote Sens , vol.28 , Issue.18 , pp. 4157-4172
    • Zhang, L.1    Wu, B.2    Huang, B.3    Li, P.4
  • 179
    • 0034270699 scopus 로고    scopus 로고
    • Linear spectral mixture models and support vector machines for remote sensing
    • M. Brown, H. G. Lewis, and S. R. Gunn, "Linear spectral mixture models and support vector machines for remote sensing," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 5, pp. 2346-2360, 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens , vol.38 , Issue.5 , pp. 2346-2360
    • Brown, M.1    Lewis, H.G.2    Gunn, S.R.3
  • 180
    • 67651155779 scopus 로고    scopus 로고
    • Integration of soft and hard classifications using extended support vector machines
    • L. Wang and X. Jia, "Integration of soft and hard classifications using extended support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 6, no. 3, pp. 543-547, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.6 , Issue.3 , pp. 543-547
    • Wang, L.1    Jia, X.2
  • 181
    • 0029750642 scopus 로고    scopus 로고
    • Relating the land-cover composition of mixed pixels to artificial neural network classification output
    • G. Foody, "Relating the land-cover composition of mixed pixels to artificial neural network classification output," Photogramm. Eng. Remote Sens., vol. 62, no. 5, pp. 491-499, 1996.
    • (1996) Photogramm. Eng. Remote Sens , vol.62 , Issue.5 , pp. 491-499
    • Foody, G.1
  • 182
    • 0031105570 scopus 로고    scopus 로고
    • Non-linear mixture modeling without end-members using an artificial neural network
    • G. Foody, R. Lucas, P. Curran, and M. Honzak, "Non-linear mixture modeling without end-members using an artificial neural network," Int. J. Remote Sens., vol. 18, no. 4, pp. 937-953, 1997.
    • (1997) Int. J. Remote Sens , vol.18 , Issue.4 , pp. 937-953
    • Foody, G.1    Lucas, R.2    Curran, P.3    Honzak, M.4
  • 183
    • 0035330750 scopus 로고    scopus 로고
    • Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data
    • A. Baraldi, E. Binaghi, P. Blonda, P. A. Brivio, and A. Rampini, "Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 5, pp. 994-1005, 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.5 , pp. 994-1005
    • Baraldi, A.1    Binaghi, E.2    Blonda, P.3    Brivio, P.A.4    Rampini, A.5
  • 184
    • 67649398795 scopus 로고    scopus 로고
    • On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images
    • Nov
    • J. Plaza, A. Plaza, R. Perez, and P. Martinez, "On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images," Pattern Recogn., vol. 42, no. 11, pp. 3032-3045, Nov. 2009.
    • (2009) Pattern Recogn , vol.42 , Issue.11 , pp. 3032-3045
    • Plaza, J.1    Plaza, A.2    Perez, R.3    Martinez, P.4
  • 185
    • 67649413745 scopus 로고    scopus 로고
    • Joint linear/nonlinear spectral unmixing of hyperspectral image data
    • Barcelona, Spain, July
    • J. Plaza, A. Plaza, R. Perez, and P. Martinez, "Joint linear/nonlinear spectral unmixing of hyperspectral image data," in Proc. Int. Geoscience and Remote Sensing Symp., Barcelona, Spain, July 2007, p.4037-4040.
    • (2007) Proc. Int. Geoscience and Remote Sensing Symp , pp. 4037-4040
    • Plaza, J.1    Plaza, A.2    Perez, R.3    Martinez, P.4
  • 186
    • 80455173952 scopus 로고    scopus 로고
    • Pixel unmixing in hyperspectral data by means of neural networks
    • Nov
    • G. Licciardi and F. Del Frate, "Pixel unmixing in hyperspectral data by means of neural networks," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4163-4172, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.11 , pp. 4163-4172
    • Licciardi, G.1    Del Frate, F.2
  • 188
    • 27844467218 scopus 로고    scopus 로고
    • Super-resolution reconstruction of hyperspectral images
    • T. Akgun, Y. Altunbasak, and R. M. Mersereau, "Super-resolution reconstruction of hyperspectral images," IEEE Trans. Image Process., vol. 14, no. 11, pp. 1860-1875, 2005.
    • (2005) IEEE Trans. Image Process , vol.14 , Issue.11 , pp. 1860-1875
    • Akgun, T.1    Altunbasak, Y.2    Mersereau, R.M.3
  • 190
    • 77952582332 scopus 로고    scopus 로고
    • Superresolution enhancement of hyperspectral CHRIS/Proba images with a thin-plate spline nonrigid transform model
    • J. C.-W. Chan, J. Ma, P. Kempeneers, and F. Canters, "Superresolution enhancement of hyperspectral CHRIS/Proba images with a thin-plate spline nonrigid transform model," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2569-2579, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.6 , pp. 2569-2579
    • Chan, J.C.-W.1    Ma, J.2    Kempeneers, P.3    Canters, F.4
  • 191
    • 80255123767 scopus 로고    scopus 로고
    • Preliminary results of superresolution-enhanced angular hyperspectral (CHRIS/Proba) images for land-cover classification
    • J. C.-W. Chan, J. Ma, T. Van de Voorde, and F. Canters, "Preliminary results of superresolution-enhanced angular hyperspectral (CHRIS/Proba) images for land-cover classification," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 6, pp. 1011-1015, 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett , vol.8 , Issue.6 , pp. 1011-1015
    • Chan, J.C.-W.1    Ma, J.2    Van de Voorde, T.3    Canters, F.4
  • 192
    • 84864095444 scopus 로고    scopus 로고
    • Mapping impervious surfaces from superresolution enhanced CHRIS/ Proba imagery using multiple endmember unmixing
    • Aug
    • L. Demarchi, J. C.-W. Chan, J. Ma, and F. Canters, "Mapping impervious surfaces from superresolution enhanced CHRIS/ Proba imagery using multiple endmember unmixing," ISPRS J. Photogramm. Remote Sens., vol. 72, pp. 99-112, Aug. 2012.
    • (2012) ISPRS J. Photogramm. Remote Sens , vol.72 , pp. 99-112
    • Demarchi, L.1    Chan, J.C.-W.2    Ma, J.3    Canters, F.4
  • 193
    • 84870418950 scopus 로고    scopus 로고
    • Enhancing spatial resolution of hyperspectral imagery using sensor's intrinsic keystone distortion
    • S. Qian and G. Chen, "Enhancing spatial resolution of hyperspectral imagery using sensor's intrinsic keystone distortion," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 12, pp. 5033-5048, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.12 , pp. 5033-5048
    • Qian, S.1    Chen, G.2
  • 194
    • 84863061822 scopus 로고    scopus 로고
    • Hyperspectral imagery super-resolution by sparse representation and spectral regularization
    • Y. Zhao, J. Yang, Q. Zhang, L. Song, Y. Cheng, and Q. Pan, "Hyperspectral imagery super-resolution by sparse representation and spectral regularization," EURASIP J. Adv. Signal Process., vol. 2011, no. 87, 2011.
    • (2011) EURASIP J. Adv. Signal Process , vol.2011 , Issue.87
    • Zhao, Y.1    Yang, J.2    Zhang, Q.3    Song, L.4    Cheng, Y.5    Pan, Q.6
  • 195
    • 84905900899 scopus 로고    scopus 로고
    • Hyperspectral imagery super-resolution by spatial-spectral joint nonlocal similarity
    • Y. Zhao, J. Yang, and J. C.-W. Chan, "Hyperspectral imagery super-resolution by spatial-spectral joint nonlocal similarity," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 7, no. 6, pp. 2671-2679, 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens , vol.7 , Issue.6 , pp. 2671-2679
    • Zhao, Y.1    Yang, J.2    Chan, J.C.-W.3
  • 196
    • 85027933187 scopus 로고    scopus 로고
    • Super-resolution of hyperspectral images: Use of optimum wavelet filter coefficients and sparsity regularization
    • R. C. Patel and M. V. Joshi, "Super-resolution of hyperspectral images: Use of optimum wavelet filter coefficients and sparsity regularization," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 1728-1736, 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.4 , pp. 1728-1736
    • Patel, R.C.1    Joshi, M.V.2
  • 197
    • 0000468525 scopus 로고    scopus 로고
    • Mapping sub-pixel boundaries from remotely sensed images
    • Apr
    • P. M. Atkinson, "Mapping sub-pixel boundaries from remotely sensed images," Innovations in GIS, vol. 4, pp. 166-180, Apr. 1997.
    • (1997) Innovations in GIS , vol.4 , pp. 166-180
    • Atkinson, P.M.1
  • 198
    • 84885018411 scopus 로고    scopus 로고
    • Attraction-repulsion model-based subpixel mapping of multi-/hyperspectral imagery
    • X. Tong, X. Zhang, J. Shan, H. Xie, and M. Liu, "Attraction-repulsion model-based subpixel mapping of multi-/hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2799-2814, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.5 , pp. 2799-2814
    • Tong, X.1    Zhang, X.2    Shan, J.3    Xie, H.4    Liu, M.5
  • 199
  • 200
    • 84907455204 scopus 로고    scopus 로고
    • An adaptive subpixel mapping method based on map model and class determination strategy for hyperspectral remote sensing imagery
    • Y. Zhong, Y. Wu, X. Xu, and L. Zhang, "An adaptive subpixel mapping method based on map model and class determination strategy for hyperspectral remote sensing imagery," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1411-1426, 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.3 , pp. 1411-1426
    • Zhong, Y.1    Wu, Y.2    Xu, X.3    Zhang, L.4
  • 201
    • 84962524833 scopus 로고    scopus 로고
    • Nonlocal total variation subpixel mapping for hyperspectral remote sensing imagery
    • R. Feng, Y. Zhong, Y. Wu, D. He, X. Xu, and L. Zhang, "Nonlocal total variation subpixel mapping for hyperspectral remote sensing imagery," Remote Sens., vol. 8, no. 3, p. 250, 2016.
    • (2016) Remote Sens , vol.8 , Issue.3 , pp. 250
    • Feng, R.1    Zhong, Y.2    Wu, Y.3    He, D.4    Xu, X.5    Zhang, L.6
  • 204
    • 0025573209 scopus 로고
    • The use of intensity- hue-saturation transformations for merging spot panchromatic and multispectral image data
    • Apr
    • W. Carper, T. M. Lillesand, and P. W. Kiefer, "The use of intensity- hue-saturation transformations for merging spot panchromatic and multispectral image data," Photogramm. Eng. Remote Sens., vol. 56, no. 4, pp. 459-467, Apr. 1990.
    • (1990) Photogramm. Eng. Remote Sens , vol.56 , Issue.4 , pp. 459-467
    • Carper, W.1    Lillesand, T.M.2    Kiefer, P.W.3
  • 206
    • 65049091833 scopus 로고    scopus 로고
    • Improving component substitution pansharpening through multivariate regression of MS + Pan data
    • Oct
    • B. Aiazzi, S. Baronti, and M. Selva, "Improving component substitution pansharpening through multivariate regression of MS + Pan data," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3230-3239, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.10 , pp. 3230-3239
    • Aiazzi, B.1    Baronti, S.2    Selva, M.3
  • 207
    • 0034521444 scopus 로고    scopus 로고
    • Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details
    • Jan
    • J. G. Liu, "Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details," Int. J. Remote Sens., vol. 21, no. 18, pp. 3461-3472, Jan. 2000.
    • (2000) Int. J. Remote Sens , vol.21 , Issue.18 , pp. 3461-3472
    • Liu, J.G.1
  • 208
    • 33744926663 scopus 로고    scopus 로고
    • MTF-tailored multiscale fusion of high-resolution MS and Pan imagery
    • May
    • B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, "MTF-tailored multiscale fusion of high-resolution MS and Pan imagery," Photogramm. Eng. Remote Sens., vol. 72, no. 5, pp. 591-596, May 2006.
    • (2006) Photogramm. Eng. Remote Sens , vol.72 , Issue.5 , pp. 591-596
    • Aiazzi, B.1    Alparone, L.2    Baronti, S.3    Garzelli, A.4    Selva, M.5
  • 209
    • 79151485703 scopus 로고    scopus 로고
    • A new pan-sharpening method using a compressed sensing technique
    • Feb
    • S. Li and B. Yang, "A new pan-sharpening method using a compressed sensing technique," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 738-746, Feb. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.2 , pp. 738-746
    • Li, S.1    Yang, B.2
  • 210
    • 84885018469 scopus 로고    scopus 로고
    • A sparse image fusion algorithm with application to pan-sharpening
    • May
    • X. X. Zhu and R. Bamler, "A sparse image fusion algorithm with application to pan-sharpening," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2827-2836, May 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.5 , pp. 2827-2836
    • Zhu, X.X.1    Bamler, R.2
  • 211
    • 27844607355 scopus 로고    scopus 로고
    • Introduction of sensor spectral response into image fusion methods: Application to wavelet-based methods
    • X. Otazu, M. González-Audícana, O. Fors, and J. Núñez, "Introduction of sensor spectral response into image fusion methods: Application to wavelet-based methods," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 10, pp. 2376-2385, 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.10 , pp. 2376-2385
    • Otazu, X.1    González-Audícana, M.2    Fors, O.3    Núñez, J.4
  • 212
    • 78650906277 scopus 로고    scopus 로고
    • Remote-sensing image compression using two-dimensional oriented wavelet transform
    • Jan
    • B. Li, R. Yang, and H. Jiang, "Remote-sensing image compression using two-dimensional oriented wavelet transform," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 1, pp. 236-250, Jan. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.1 , pp. 236-250
    • Li, B.1    Yang, R.2    Jiang, H.3
  • 215
    • 85021068034 scopus 로고    scopus 로고
    • Hyperspectral and multispectral data fusion: A comparative review of the recent literature
    • June
    • N. Yokoya, C. Grohnfeldt, and J. Chanussot, "Hyperspectral and multispectral data fusion: A comparative review of the recent literature," IEEE Geosci. Remote Sens. Mag., vol. 5, no. 2, pp. 29-56, June 2017.
    • (2017) IEEE Geosci. Remote Sens. Mag , vol.5 , Issue.2 , pp. 29-56
    • Yokoya, N.1    Grohnfeldt, C.2    Chanussot, J.3
  • 216
    • 84897027199 scopus 로고    scopus 로고
    • Fusion of hyperspectral and multispectral images: A novel framework based on generalization of pan-sharpening methods
    • Aug
    • Z. Chen, H. Pu, B. Wang, and G.-M. Jiang, "Fusion of hyperspectral and multispectral images: A novel framework based on generalization of pan-sharpening methods," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 8, pp. 1418-1422, Aug. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , Issue.8 , pp. 1418-1422
    • Chen, Z.1    Pu, H.2    Wang, B.3    Jiang, G.-M.4
  • 219
    • 14644411721 scopus 로고    scopus 로고
    • Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions
    • Mar
    • M. T. Eismann and R. C. Hardie, "Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 455-465, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 455-465
    • Eismann, M.T.1    Hardie, R.C.2
  • 224
    • 84856329450 scopus 로고    scopus 로고
    • Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion
    • Feb
    • N. Yokoya, T. Yairi, and A. Iwasaki, "Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, pp. 528-537, Feb. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.2 , pp. 528-537
    • Yokoya, N.1    Yairi, T.2    Iwasaki, A.3
  • 225
    • 84906342676 scopus 로고    scopus 로고
    • Sparse spatio-spectral representation for hyperspectral image super-resolution
    • N. Akhtar, F. Shafait, and A. Mian, "Sparse spatio-spectral representation for hyperspectral image super-resolution," in Proc. European Conf. Computer Vision, 2014, pp. 63-78.
    • (2014) Proc. European Conf. Computer Vision , pp. 63-78
    • Akhtar, N.1    Shafait, F.2    Mian, A.3
  • 226
    • 84891555923 scopus 로고    scopus 로고
    • Spatial and spectral image fusion using sparse matrix factorization
    • Mar
    • B. Huang, H. Song, H. Cui, J. Peng, and Z. Xu, "Spatial and spectral image fusion using sparse matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 3, pp. 1693-1704, Mar. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.3 , pp. 1693-1704
    • Huang, B.1    Song, H.2    Cui, H.3    Peng, J.4    Xu, Z.5
  • 229
    • 85027944334 scopus 로고    scopus 로고
    • A convex formulation for hyperspectral image superresolution via subspace- based regularization
    • June
    • M. Simões, J. B. Dias, L. Almeida, and J. Chanussot, "A convex formulation for hyperspectral image superresolution via subspace- based regularization," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3373-3388, June 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.6 , pp. 3373-3388
    • Simões, M.1    Dias, J.B.2    Almeida, L.3    Chanussot, J.4
  • 231
    • 84939234402 scopus 로고    scopus 로고
    • Fast fusion of multiband images based on solving a Sylvester equation
    • Nov
    • Q. Wei, N. Dobigeon, and J.-Y. Tourneret, "Fast fusion of multiband images based on solving a Sylvester equation," IEEE Trans. Image Process., vol. 24, no. 11, pp. 4109-4121, Nov. 2015.
    • (2015) IEEE Trans. Image Process , vol.24 , Issue.11 , pp. 4109-4121
    • Wei, Q.1    Dobigeon, N.2    Tourneret, J.-Y.3
  • 232
    • 85009259853 scopus 로고    scopus 로고
    • Hyperspectral superresolution of locally low rank images from complementary multisource data
    • Jan
    • M. Veganzones , M. Simões, G. Licc iardi , N. Yokoya, J. Bioucas-Dias, and J. Chanussot, "Hyperspectral superresolution of locally low rank images from complementary multisource data," IEEE Trans. Image Process., vol. 25, no. 1, pp. 274-288, Jan. 2016.
    • (2016) IEEE Trans. Image Process , vol.25 , Issue.1 , pp. 274-288
    • Veganzones, M.1    Simões, M.2    Licciardi, G.3    Yokoya, N.4    Bioucas-Dias, J.5    Chanussot, J.6
  • 233
    • 84962520929 scopus 로고    scopus 로고
    • Potential of resolutionenhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images
    • N. Yokoya, J. C. W. Chan, and K. Segl, "Potential of resolutionenhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images," Remote Sens., vol. 8, no. 3, p. 172, 2016.
    • (2016) Remote Sens , vol.8 , Issue.3 , pp. 172
    • Yokoya, N.1    Chan, J.C.W.2    Segl, K.3
  • 234
    • 33748648069 scopus 로고    scopus 로고
    • Hyperspectral imaging system modeling
    • J. P. Kerekes and J. E. Baum, "Hyperspectral imaging system modeling," Lincoln Laboratory, vol. 14, no. 1, pp. 117-130, 2003.
    • (2003) Lincoln Laboratory , vol.14 , Issue.1 , pp. 117-130
    • Kerekes, J.P.1    Baum, J.E.2
  • 235
    • 0022690253 scopus 로고
    • Noise in remote-sensing systems: The effect on classification error
    • Mar
    • D. Landgrebe and E. Malaret, "Noise in remote-sensing systems: The effect on classification error," IEEE Trans. Geosci. Remote Sens., vol. GE-24, no. 2, pp. 294-300, Mar. 1986.
    • (1986) IEEE Trans. Geosci. Remote Sens , vol.GE-24 , Issue.2 , pp. 294-300
    • Landgrebe, D.1    Malaret, E.2
  • 237
    • 84923385742 scopus 로고    scopus 로고
    • Exploiting spatiospectral correlation for impulse denoising in hyperspectral images
    • H. K. Aggarwal and A. Majumdar. (2015). Exploiting spatiospectral correlation for impulse denoising in hyperspectral images. J. Electron. Imaging. [Online]. 24(1). Available: http:// dx.doi.org/10.1117/1.JEI.24.1.013027
    • (2015) J. Electron. Imaging. [Online] , vol.24 , Issue.1
    • Aggarwal, H.K.1    Majumdar, A.2
  • 238
    • 60749118363 scopus 로고    scopus 로고
    • Correction of systematic spatial noise in push-broom hyperspectral sensors: Application to CHRIS/PROBA images
    • L. Gomez-Chova, L. Alonso, L. Guanter, G. Camps-Valls, J. Calpe, and J. Moreno, "Correction of systematic spatial noise in push-broom hyperspectral sensors: Application to CHRIS/PROBA images," Appl. Optics, vol. 47, no. 28, pp. f46-f60, 2008.
    • (2008) Appl. Optics , vol.47 , Issue.28 , pp. f46-f60
    • Gomez-Chova, L.1    Alonso, L.2    Guanter, L.3    Camps-Valls, G.4    Calpe, J.5    Moreno, J.6
  • 239
    • 59949103166 scopus 로고    scopus 로고
    • Destriping modis data using overlapping field-of-view method
    • Feb
    • M. di Bisceglie, R. Episcopo, C. Galdi, and S. L. Ullo, "Destriping modis data using overlapping field-of-view method," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 2, pp. 637-651, Feb. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.2 , pp. 637-651
    • Di Bisceglie, M.1    Episcopo, R.2    Galdi, C.3    Ullo, S.L.4
  • 240
    • 34249809456 scopus 로고    scopus 로고
    • Stripe noise reduction in modis data by combining histogram matching with facet filter
    • June
    • P. Rakwatin, W. Takeuchi, and Y. Yasuoka, "Stripe noise reduction in modis data by combining histogram matching with facet filter," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1844-1856, June 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.6 , pp. 1844-1856
    • Rakwatin, P.1    Takeuchi, W.2    Yasuoka, Y.3
  • 241
    • 79953194762 scopus 로고    scopus 로고
    • Subspace-based striping noise reduction in hyperspectral images
    • Apr
    • N. Acito, M. Diani, and G. Corsini, "Subspace-based striping noise reduction in hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 4, pp. 1325-1342, Apr. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.4 , pp. 1325-1342
    • Acito, N.1    Diani, M.2    Corsini, G.3
  • 242
    • 84880066314 scopus 로고    scopus 로고
    • Graph-regularized low-rank representation for destriping of hyperspectral images
    • July
    • X. Lu, Y. Wang, and Y. Yuan, "Graph-regularized low-rank representation for destriping of hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 7, pp. 4009-4018, July 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.7 , pp. 4009-4018
    • Lu, X.1    Wang, Y.2    Yuan, Y.3
  • 243
    • 84960970926 scopus 로고    scopus 로고
    • Multidimensional striping noise compensation in hyperspectral imaging: Exploiting hypercubes' spatial, spectral, and temporal redundancy
    • Sept
    • P. Meza, J. E. Pezoa, and S. N. Torres, "Multidimensional striping noise compensation in hyperspectral imaging: Exploiting hypercubes' spatial, spectral, and temporal redundancy," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 9, no. 9, pp. 4428-4441, Sept. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens , vol.9 , Issue.9 , pp. 4428-4441
    • Meza, P.1    Pezoa, J.E.2    Torres, S.N.3
  • 244
    • 48849088937 scopus 로고    scopus 로고
    • Hyperspectral subspace identification
    • Aug
    • J. Bioucas-Dias and J. Nascimento, "Hyperspectral subspace identification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2435-2445, Aug. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.8 , pp. 2435-2445
    • Bioucas-Dias, J.1    Nascimento, J.2
  • 245
    • 79960904516 scopus 로고    scopus 로고
    • Signal-dependent noise modeling and model parameter estimation in hyperspectral images
    • N. Acito, M. Diani, and G. Corsini, "Signal-dependent noise modeling and model parameter estimation in hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 8, pp. 2957-2971, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.8 , pp. 2957-2971
    • Acito, N.1    Diani, M.2    Corsini, G.3
  • 246
    • 84901822956 scopus 로고    scopus 로고
    • Wavelet-based sparse reduced-rank regression for hyperspectral image restoration
    • Oct
    • B. Rasti, J. Sveinsson, and M. Ulfarsson, "Wavelet-based sparse reduced-rank regression for hyperspectral image restoration," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6688-6698, Oct. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.10 , pp. 6688-6698
    • Rasti, B.1    Sveinsson, J.2    Ulfarsson, M.3
  • 249
    • 34948839352 scopus 로고    scopus 로고
    • Denoising hyperspectral imagery and recovering junk bands using wavelets and sparse approximation
    • Aug
    • A. Zelinski and V. Goyal, "Denoising hyperspectral imagery and recovering junk bands using wavelets and sparse approximation," in Proc. IEEE Int. Geoscience and Remote Sensing Symp., pp. 387-390, Aug 2006.
    • (2006) Proc. IEEE Int. Geoscience and Remote Sensing Symp , pp. 387-390
    • Zelinski, A.1    Goyal, V.2
  • 253
    • 85037540482 scopus 로고    scopus 로고
    • Hyperspectral image denoising with cubic total variation model
    • H. Zhang, "Hyperspectral image denoising with cubic total variation model," ISPRS Ann. Photogramm., Remote Sens. and Spatial Inform. Sci., vol. I-7, pp. 95-98, 2012. doi: 10.5194/ isprsannals-I-7-95-2012.
    • (2012) ISPRS Ann. Photogramm., Remote Sens. and Spatial Inform. Sci , vol.I-7 , pp. 95-98
    • Zhang, H.1
  • 254
    • 84867063792 scopus 로고    scopus 로고
    • Hyperspectral image denoising employing a spectral-spatial adaptive total variation model
    • Q. Yuan, L. Zhang, and H. Shen, "Hyperspectral image denoising employing a spectral-spatial adaptive total variation model," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3660-3677, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.10 , pp. 3660-3677
    • Yuan, Q.1    Zhang, L.2    Shen, H.3
  • 255
    • 31344444452 scopus 로고    scopus 로고
    • Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage
    • Feb
    • H. Othman and S.-E. Qian, "Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 2, pp. 397-408, Feb. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.2 , pp. 397-408
    • Othman, H.1    Qian, S.-E.2
  • 256
    • 84865355259 scopus 로고    scopus 로고
    • Hyperspectral imagery denoising using a spatial-spectral domain mixing prior
    • S. L. Chen, X. Y. Hu, and S. L. Peng, "Hyperspectral imagery denoising using a spatial-spectral domain mixing prior," J. Comput. Sci. Technol., vol. 27, no. 4, pp. 851-861, 2012.
    • (2012) J. Comput. Sci. Technol , vol.27 , Issue.4 , pp. 851-861
    • Chen, S.L.1    Hu, X.Y.2    Peng, S.L.3
  • 257
    • 79952041437 scopus 로고    scopus 로고
    • Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage
    • Mar
    • G. Chen and S. E. Qian, "Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 973-980, Mar. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.3 , pp. 973-980
    • Chen, G.1    Qian, S.E.2
  • 258
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • Sept
    • L. R. Tucker, "Some mathematical notes on three-mode factor analysis," Psychometrika, vol. 31, no. 3, pp. 279-311, Sept. 1966.
    • (1966) Psychometrika , vol.31 , Issue.3 , pp. 279-311
    • Tucker, L.R.1
  • 259
    • 0034144761 scopus 로고    scopus 로고
    • On the best Rank-1 and Rank-(R1, R2, ..., Rn) approximation of higherorder tensors
    • Mar
    • L. D. Lathauwer, B. D. Moor, J. Vandewalle, "On the best Rank-1 and Rank-(R1, R2, ..., Rn) approximation of higherorder tensors," SIAM J. Matrix Anal. Applicat., vol. 21, no. 4, pp. 1324-1342, Mar. 2000.
    • (2000) SIAM J. Matrix Anal. Applicat , vol.21 , Issue.4 , pp. 1324-1342
    • Lathauwer, L.D.1    Moor, B.D.2    Vandewalle, J.3
  • 260
    • 48849103262 scopus 로고    scopus 로고
    • Denoising and dimensionality reduction using multilinear tools for hyperspectral images
    • Apr
    • N. Renard, S. Bourennane, and J. Blanc-Talon, "Denoising and dimensionality reduction using multilinear tools for hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 138-142, Apr. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett , vol.5 , Issue.2 , pp. 138-142
    • Renard, N.1    Bourennane, S.2    Blanc-Talon, J.3
  • 261
    • 78650934561 scopus 로고    scopus 로고
    • Best rank-r tensor selection using genetic algorithm for better noise reduction and compression of hyperspectral images
    • July
    • A. Karami, M. Yazdi, and A. Asli, "Best rank-r tensor selection using genetic algorithm for better noise reduction and compression of hyperspectral images," in Proc. 5th Int. Conf. Digital Information Management (ICDIM), July 2010, pp. 169-173.
    • (2010) Proc. 5th Int. Conf. Digital Information Management (ICDIM) , pp. 169-173
    • Karami, A.1    Yazdi, M.2    Asli, A.3
  • 262
    • 79957491414 scopus 로고    scopus 로고
    • Noise reduction of hyperspectral images using kernel non-negative tucker decomposition
    • June
    • A. Karami, M. Yazdi, and A. Zolghadre Asli, "Noise reduction of hyperspectral images using kernel non-negative tucker decomposition," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 487-493, June 2011.
    • (2011) IEEE J. Sel. Topics Signal Process , vol.5 , Issue.3 , pp. 487-493
    • Karami, A.1    Yazdi, M.2    Zolghadre Asli, A.3
  • 263
    • 45849101292 scopus 로고    scopus 로고
    • Noise removal from hyperspectral images by multidimensional filtering
    • July
    • D. Letexier and S. Bourennane, "Noise removal from hyperspectral images by multidimensional filtering," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 7, pp. 2061-2069, July 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.7 , pp. 2061-2069
    • Letexier, D.1    Bourennane, S.2
  • 264
    • 84867090591 scopus 로고    scopus 로고
    • Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis
    • Oct
    • X. Liu, S. Bourennane, and C. Fossati, "Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3717-3724, Oct. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.10 , pp. 3717-3724
    • Liu, X.1    Bourennane, S.2    Fossati, C.3
  • 268
    • 84877927306 scopus 로고    scopus 로고
    • Hyperspectral imagery restoration using nonlocal spectral-spatial structured sparse representation with noise estimation
    • Apr
    • Y. Qian and M. Ye, "Hyperspectral imagery restoration using nonlocal spectral-spatial structured sparse representation with noise estimation," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 6, no. 2, pp. 499-515, Apr. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens , vol.6 , Issue.2 , pp. 499-515
    • Qian, Y.1    Ye, M.2
  • 269
    • 84898600752 scopus 로고    scopus 로고
    • Reduction of signal-dependent noise from hyperspectral images for target detection
    • Sept
    • X. Liu, S. Bourennane, and C. Fossati, "Reduction of signal-dependent noise from hyperspectral images for target detection," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 9, pp. 5396-5411, Sept. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.9 , pp. 5396-5411
    • Liu, X.1    Bourennane, S.2    Fossati, C.3
  • 270
    • 84896388891 scopus 로고    scopus 로고
    • Hyperspectral image restoration using low-rank matrix recovery
    • Aug
    • H. Zhang, W. He, L. Zhang, H. Shen, and Q. Yuan, "Hyperspectral image restoration using low-rank matrix recovery," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4729-4743, Aug. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.8 , pp. 4729-4743
    • Zhang, H.1    He, W.2    Zhang, L.3    Shen, H.4    Yuan, Q.5
  • 271
    • 84947485589 scopus 로고    scopus 로고
    • Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration
    • Jan
    • W. He, H. Zhang, L. Zhang, and H. Shen, "Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 178-188, Jan. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.1 , pp. 178-188
    • He, W.1    Zhang, H.2    Zhang, L.3    Shen, H.4
  • 272
    • 85027932384 scopus 로고    scopus 로고
    • Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation
    • June
    • W. He, H. Zhang, L. Zhang, and H. Shen, "Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 8, no. 6, pp. 3050-3061, June 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens , vol.8 , Issue.6 , pp. 3050-3061
    • He, W.1    Zhang, H.2    Zhang, L.3    Shen, H.4
  • 273
    • 84981763416 scopus 로고    scopus 로고
    • Hyperspectral image restoration via iteratively regularized weighted Schatten p-norm minimization
    • Aug
    • Y. Xie, Y. Qu, D. Tao, W. Wu, Q. Yuan, and W. Zhang, "Hyperspectral image restoration via iteratively regularized weighted Schatten p-norm minimization," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4642-4659, Aug. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.8 , pp. 4642-4659
    • Xie, Y.1    Qu, Y.2    Tao, D.3    Wu, W.4    Yuan, Q.5    Zhang, W.6
  • 274
    • 84950459514 scopus 로고
    • Adapting to unknown smoothness via wavelet shrinkage
    • Dec
    • D. Donoho and I. M. Johnstone, "Adapting to unknown smoothness via wavelet shrinkage," J. Amer. Statist. Assoc., vol. 90, no. 432, pp. 1200-1224, Dec. 1995.
    • (1995) J. Amer. Statist. Assoc , vol.90 , Issue.432 , pp. 1200-1224
    • Donoho, D.1    Johnstone, I.M.2
  • 275
    • 85040315170 scopus 로고    scopus 로고
    • May
    • B. Rasti. (2016, May). FORPDN-SURE. [Online]. Available: https://www.researchgate.net/publication/303445288-FORPDN- SURE
    • (2016) FORPDN-SURE
    • Rasti, B.1
  • 276
    • 85040328326 scopus 로고    scopus 로고
    • May
    • B. Rasti. (2016, May). HySURE. [Online]. Available: https:// www.researchgate.net/publication/303784304-HySURE
    • (2016) HySURE
    • Rasti, B.1
  • 277
    • 85037106932 scopus 로고    scopus 로고
    • May
    • B. Rasti. (2016, May). Wavelab-fast. [Online]. Available: https:// www.researchgate.net/publication/303445667-Wavelab-fast
    • (2016) Wavelab-fast
    • Rasti, B.1
  • 278
    • 84874545870 scopus 로고    scopus 로고
    • A novel framework for the design of change-detection systems for very-high-resolution remote sensing images
    • L. Bruzzone and F. Bovolo, "A novel framework for the design of change-detection systems for very-high-resolution remote sensing images," Proc. IEEE, vol. 101, no. 3, pp. 609-630, 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 609-630
    • Bruzzone, L.1    Bovolo, F.2
  • 280
    • 1942536045 scopus 로고    scopus 로고
    • Digital change detection methods in ecosystem monitoring: A review
    • P. Coppin, I. Jonckheere, K. Nackaerts, B. Muys, and E. Lambin, "Digital change detection methods in ecosystem monitoring: A review," Int. J. Remote Sens., vol. 25, no. 9, pp. 1565-1596, 2004.
    • (2004) Int. J. Remote Sens , vol.25 , Issue.9 , pp. 1565-1596
    • Coppin, P.1    Jonckheere, I.2    Nackaerts, K.3    Muys, B.4    Lambin, E.5
  • 281
    • 85011298923 scopus 로고    scopus 로고
    • Oil spill detection via multitemporal optical remote sensing images: A change detection perspective
    • S. Liu, M. Chi, Y. Zou, A. Samat, J. A. Benediktsson, and A. Plaza, "Oil spill detection via multitemporal optical remote sensing images: a change detection perspective," IEEE Geosci. Remote Sens. Lett., vol. 14, no. 3, pp. 324-328, 2017.
    • (2017) IEEE Geosci. Remote Sens. Lett , vol.14 , Issue.3 , pp. 324-328
    • Liu, S.1    Chi, M.2    Zou, Y.3    Samat, A.4    Benediktsson, J.A.5    Plaza, A.6
  • 282
    • 84906782734 scopus 로고    scopus 로고
    • Hierarchical unsupervised change detection in multitemporal hyperspectral images
    • S. Liu, L. Bruzzone, F. Bovolo, and P. Du, "Hierarchical unsupervised change detection in multitemporal hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 244-260, 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.1 , pp. 244-260
    • Liu, S.1    Bruzzone, L.2    Bovolo, F.3    Du, P.4
  • 284
    • 84922829753 scopus 로고    scopus 로고
    • Hyperspectral anomaly change detection with slow feature analysis
    • Mar
    • C. Wu, L. Zhang, and B. Du, "Hyperspectral anomaly change detection with slow feature analysis," Neurocomput., vol. 151, pp. 175-187, Mar. 2015.
    • (2015) Neurocomput , vol.151 , pp. 175-187
    • Wu, C.1    Zhang, L.2    Du, B.3
  • 287
    • 77951208379 scopus 로고    scopus 로고
    • Elliptically contoured distributions for anomalous change detection in hyperspectral imagery
    • Apr
    • J. Theiler, C. Scovel, B. Wohlberg, and B. R. Foy, "Elliptically contoured distributions for anomalous change detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 2, pp. 271-275, Apr. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett , vol.7 , Issue.2 , pp. 271-275
    • Theiler, J.1    Scovel, C.2    Wohlberg, B.3    Foy, B.R.4
  • 288
    • 84978841986 scopus 로고    scopus 로고
    • A novel cluster kernel RX algorithm for anomaly and change detection using hyperspectral images
    • J. Zhou, C. Kwan, B. Ayhan, and M. T. Eismann, "A novel cluster kernel RX algorithm for anomaly and change detection using hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 11, pp. 6497-6504, 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.11 , pp. 6497-6504
    • Zhou, J.1    Kwan, C.2    Ayhan, B.3    Eismann, M.T.4
  • 291
    • 85008024035 scopus 로고    scopus 로고
    • Hyperspectral change detection in the presence of diurnal and seasonal variations
    • M. T. Eismann, J. Meola, and R. C. Hardie, "Hyperspectral change detection in the presence of diurnal and seasonal variations," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 1, pp. 237-249, 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.1 , pp. 237-249
    • Eismann, M.T.1    Meola, J.2    Hardie, R.C.3
  • 292
    • 0033707763 scopus 로고    scopus 로고
    • Automatic analysis of the difference image for unsupervised change detection
    • L. Bruzzone and D. F. Prieto, "Automatic analysis of the difference image for unsupervised change detection," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 3, pp. 1171-1182, 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens , vol.38 , Issue.3 , pp. 1171-1182
    • Bruzzone, L.1    Prieto, D.F.2
  • 293
    • 70350347100 scopus 로고    scopus 로고
    • Unsupervised change detection in satellite images using principal component analysis and k-means clustering
    • T. Celik, "Unsupervised change detection in satellite images using principal component analysis and k-means clustering," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 4, pp. 772-776, 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett , vol.6 , Issue.4 , pp. 772-776
    • Celik, T.1
  • 294
    • 0032036301 scopus 로고    scopus 로고
    • Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies
    • A. A. Nielsen, K. Conradsen, and J. J. Simpson, "Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies," Remote Sens. Environ., vol. 64, no. 1, pp. 1-19, 1998.
    • (1998) Remote Sens. Environ , vol.64 , Issue.1 , pp. 1-19
    • Nielsen, A.A.1    Conradsen, K.2    Simpson, J.J.3
  • 296
    • 33847751877 scopus 로고    scopus 로고
    • The regularized iteratively reweighted mad method for change detection in multi- and hyperspectral data
    • A. A. Nielsen, "The regularized iteratively reweighted mad method for change detection in multi- and hyperspectral data," IEEE Trans. Image Process., vol. 16, no. 2, pp. 463-478, 2007.
    • (2007) IEEE Trans. Image Process , vol.16 , Issue.2 , pp. 463-478
    • Nielsen, A.A.1
  • 299
    • 84877922630 scopus 로고    scopus 로고
    • A subspace-based change detection method for hyperspectral images
    • C. Wu, B. Du, and L. Zhang, "A subspace-based change detection method for hyperspectral images," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 6, no. 2, pp. 815-830, 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens , vol.6 , Issue.2 , pp. 815-830
    • Wu, C.1    Du, B.2    Zhang, L.3
  • 300
    • 84908059485 scopus 로고    scopus 로고
    • Semi-supervised change detection method for multi-temporal hyperspectral images
    • Jan
    • Y. Yuan, H. Lv, and X. Lu, "Semi-supervised change detection method for multi-temporal hyperspectral images," Neurocomput., vol. 148, pp. 363-375, Jan. 2015.
    • (2015) Neurocomput , vol.148 , pp. 363-375
    • Yuan, Y.1    Lv, H.2    Lu, X.3
  • 302
    • 85027934693 scopus 로고    scopus 로고
    • Informative change detection by unmixing for hyperspectral images
    • A. Erturk and A. Plaza, "Informative change detection by unmixing for hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 6, pp. 1252-1256, 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , Issue.6 , pp. 1252-1256
    • Erturk, A.1    Plaza, A.2
  • 303
  • 304
    • 84987932377 scopus 로고    scopus 로고
    • Sub-pixel change detection for urban land-cover analysis via multi-temporal remote sensing images
    • P. Du, S. Liu, P. Liu, K. Tan, and L. Cheng, "Sub-pixel change detection for urban land-cover analysis via multi-temporal remote sensing images," Geo-spatial Inf. Sci., vol. 17, no. 1, pp. 26-38, 2014.
    • (2014) Geo-spatial Inf. Sci , vol.17 , Issue.1 , pp. 26-38
    • Du, P.1    Liu, S.2    Liu, P.3    Tan, K.4    Cheng, L.5
  • 305
    • 0034959023 scopus 로고    scopus 로고
    • Monitoring the magnitude of land-cover change around the southern limits of the Sahara
    • G. M. Foody, "Monitoring the magnitude of land-cover change around the southern limits of the Sahara," Photogramm. Eng. Remote Sens., vol. 67, no. 7, pp. 841-848, 2001.
    • (2001) Photogramm. Eng. Remote Sens , vol.67 , Issue.7 , pp. 841-848
    • Foody, G.M.1
  • 306
    • 84871752699 scopus 로고    scopus 로고
    • Multispectro- temporal analysis of hyperspectral imagery based on 3-D spectral modeling and multilinear algebra
    • S. Hemissi, I. R. Farah, K. S. Ettabaa, and B. Solaiman, "Multispectro- temporal analysis of hyperspectral imagery based on 3-D spectral modeling and multilinear algebra," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 199-216, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.1 , pp. 199-216
    • Hemissi, S.1    Farah, I.R.2    Ettabaa, K.S.3    Solaiman, B.4
  • 307
    • 85027926154 scopus 로고    scopus 로고
    • Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images
    • S. Liu, L. Bruzzone, F. Bovolo, and M. Zanetti, "Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8, pp. 4363-4378, 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.8 , pp. 4363-4378
    • Liu, S.1    Bruzzone, L.2    Bovolo, F.3    Zanetti, M.4
  • 308
    • 84861340870 scopus 로고    scopus 로고
    • A framework for automatic and unsupervised detection of multiple changes in multitemporal images
    • F. Bovolo, S. Marchesi, and L. Bruzzone, "A framework for automatic and unsupervised detection of multiple changes in multitemporal images," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 6, pp. 2196-2212, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.6 , pp. 2196-2212
    • Bovolo, F.1    Marchesi, S.2    Bruzzone, L.3
  • 310
    • 85032752191 scopus 로고    scopus 로고
    • Parallel hyperspectral image and signal processing
    • A. Plaza, J. Plaza, A. Paz, and S. Sánchez, "Parallel hyperspectral image and signal processing," IEEE Signal Process. Mag., vol. 28, no. 3, pp. 119-126, 2011.
    • (2011) IEEE Signal Process. Mag , vol.28 , Issue.3 , pp. 119-126
    • Plaza, A.1    Plaza, J.2    Paz, A.3    Sánchez, S.4
  • 313
    • 80051786396 scopus 로고    scopus 로고
    • Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units
    • S. Sánchez, A. Paz, G. Martin, and A. Plaza, "Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units," Concurrency and Computation: Practice and Experience, vol. 23, no. 13, pp. 1538-1557, 2011.
    • (2011) Concurrency and Computation: Practice and Experience , vol.23 , Issue.13 , pp. 1538-1557
    • Sánchez, S.1    Paz, A.2    Martin, G.3    Plaza, A.4
  • 314
    • 32444436826 scopus 로고    scopus 로고
    • Commodity cluster-based parallel processing of hyperspectral imagery
    • A. Plaza, D. Valencia, J. Plaza, and P. Martinez, "Commodity cluster-based parallel processing of hyperspectral imagery," J. Parallel Distrib. Comput., vol. 66, no. 3, pp. 345-358, 2006.
    • (2006) J. Parallel Distrib. Comput , vol.66 , Issue.3 , pp. 345-358
    • Plaza, A.1    Valencia, D.2    Plaza, J.3    Martinez, P.4
  • 315
    • 77953397770 scopus 로고    scopus 로고
    • Parallel heterogeneous CBIR system for efficient hyperspectral image retrieval using spectral mixture analysis
    • A. Plaza, J. Plaza, and A. Paz, "Parallel heterogeneous CBIR system for efficient hyperspectral image retrieval using spectral mixture analysis," Concurrency and Computation: Practice and Experience, vol. 22, no. 9, pp. 1138-1159, 2010.
    • (2010) Concurrency and Computation: Practice and Experience , vol.22 , Issue.9 , pp. 1138-1159
    • Plaza, A.1    Plaza, J.2    Paz, A.3
  • 316
    • 84939263140 scopus 로고    scopus 로고
    • Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs
    • Sept
    • S. Sánchez, R. Ramalho, L. Sousa, and A. Plaza, "Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs," J. Real-Time Image Process., vol. 10, no. 3, pp. 469-483, Sept. 2015.
    • (2015) J. Real-Time Image Process , vol.10 , Issue.3 , pp. 469-483
    • Sánchez, S.1    Ramalho, R.2    Sousa, L.3    Plaza, A.4
  • 317
    • 84871925740 scopus 로고    scopus 로고
    • Use of FPGA or GPU-based architectures for remotely sensed hyperspectral image processing
    • C. Gonzalez, S. Sánchez, A. Paz, J. Resano, D. Mozos, and A. Plaza, "Use of FPGA or GPU-based architectures for remotely sensed hyperspectral image processing," INTEGRATION: The VLSI J., vol. 46, no. 2, pp. 89-103, 2013.
    • (2013) INTEGRATION: The VLSI J , vol.46 , Issue.2 , pp. 89-103
    • Gonzalez, C.1    Sánchez, S.2    Paz, A.3    Resano, J.4    Mozos, D.5    Plaza, A.6
  • 318
    • 84874542998 scopus 로고    scopus 로고
    • The promise of reconfigurable computing for hyperspectral imaging onboard systems: A review and trends
    • S. Lopez, T. Vladimirova, C. Gonzalez, J. Resano, D. Mozos, and A. Plaza, "The promise of reconfigurable computing for hyperspectral imaging onboard systems: A review and trends," Proc. IEEE, vol. 101, no. 3, pp. 698-722, 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 698-722
    • Lopez, S.1    Vladimirova, T.2    Gonzalez, C.3    Resano, J.4    Mozos, D.5    Plaza, A.6
  • 319
    • 84962237683 scopus 로고    scopus 로고
    • Multispectral and hyperspectral lossless compressor for space applications (HyLoC): A low-complexity FPGA implementation of the CCSDS 123 standard
    • L. Santos, L. Berrojo, J. Moreno, J. F. López, and R. Sarmiento, "Multispectral and hyperspectral lossless compressor for space applications (HyLoC): A low-complexity FPGA implementation of the CCSDS 123 standard," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 9, no. 2, pp. 757-770, 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens , vol.9 , Issue.2 , pp. 757-770
    • Santos, L.1    Berrojo, L.2    Moreno, J.3    López, J.F.4    Sarmiento, R.5
  • 320
    • 55549087222 scopus 로고    scopus 로고
    • Clusters versus FPGA for parallel processing of hyperspectral imagery
    • A. Plaza and C.-I. Chang, "Clusters versus FPGA for parallel processing of hyperspectral imagery," Int. J. High Performance Comput. Applicat., vol. 22, no. 4, pp. 366-385, 2008.
    • (2008) Int. J. High Performance Comput. Applicat , vol.22 , Issue.4 , pp. 366-385
    • Plaza, A.1    Chang, C.-I.2
  • 322
    • 84939243532 scopus 로고    scopus 로고
    • FPGA implementation of the HySime algorithm for the determination of the number of endmembers in hyperspectral data
    • C. Gonzalez, S. Lopez, D. Mozos, and R. Sarmiento, "FPGA implementation of the HySime algorithm for the determination of the number of endmembers in hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 8, no. 6, pp. 2870-2883, 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens , vol.8 , Issue.6 , pp. 2870-2883
    • Gonzalez, C.1    Lopez, S.2    Mozos, D.3    Sarmiento, R.4
  • 323
    • 77951154340 scopus 로고    scopus 로고
    • The GPU computing era
    • Mar
    • J. Nickolls and W. J. Dally, "The GPU computing era," IEEE Micro, vol. 30, no. 2, pp. 56-69, Mar. 2010.
    • (2010) IEEE Micro , vol.30 , Issue.2 , pp. 56-69
    • Nickolls, J.1    Dally, W.J.2
  • 324
    • 85009990576 scopus 로고    scopus 로고
    • Performance-power evaluation of an opencl implementation of the simplex growing algorithm for hyperspectral unmixing
    • S. Bernabé, G. Botella, J. Navarro, C. Orueta, F. Igual, M. Prieto-Matias, and A. Plaza, "Performance-power evaluation of an opencl implementation of the simplex growing algorithm for hyperspectral unmixing," IEEE Geosci. Remote Sens. Lett., vol. 14, no. 3, pp. 304-308, 2017.
    • (2017) IEEE Geosci. Remote Sens. Lett , vol.14 , Issue.3 , pp. 304-308
    • Bernabé, S.1    Botella, G.2    Navarro, J.3    Orueta, C.4    Igual, F.5    Prieto-Matias, M.6    Plaza, A.7
  • 325
    • 84869502405 scopus 로고    scopus 로고
    • GPU implementation of an automatic target detection and classification algorithm for hyperspectral image analysis
    • S. Bernabe, S. Lopez, A. Plaza, and R. Sarmiento, "GPU implementation of an automatic target detection and classification algorithm for hyperspectral image analysis," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 2, pp. 221-225, 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett , vol.10 , Issue.2 , pp. 221-225
    • Bernabe, S.1    Lopez, S.2    Plaza, A.3    Sarmiento, R.4
  • 326
    • 80051786396 scopus 로고    scopus 로고
    • Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units
    • S. Sánchez, A. Paz, G. Martin, and A. Plaza, "Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units," Concurrency and Computation: Practice and Experience, vol. 23, no. 13, pp. 1538-1557, 2011.
    • (2011) Concurrency and Computation: Practice and Experience , vol.23 , Issue.13 , pp. 1538-1557
    • Sánchez, S.1    Paz, A.2    Martin, G.3    Plaza, A.4
  • 327
    • 84898596791 scopus 로고    scopus 로고
    • Real-time implementation of the pixel purity index algorithm for endmember identification on GPUs
    • X. Wu, B. Huang, A. Plaza, Y. Li, and C. Wu, "Real-time implementation of the pixel purity index algorithm for endmember identification on GPUs," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 5, pp. 955-959, 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , Issue.5 , pp. 955-959
    • Wu, X.1    Huang, B.2    Plaza, A.3    Li, Y.4    Wu, C.5
  • 328
    • 85179430957 scopus 로고    scopus 로고
    • Spectral-spatial classification of multispectral images using kernel feature space representation
    • S. Bernabé, P. R. Marpu, and A. Plaza, "Spectral-spatial classification of multispectral images using kernel feature space representation," IEEE Geosci. Remote Sens. Lett., 2013.
    • IEEE Geosci. Remote Sens. Lett , vol.2013
    • Bernabé, S.1    Marpu, P.R.2    Plaza, A.3
  • 330
    • 85027941141 scopus 로고    scopus 로고
    • Parallel implementation of sparse representation classifiers for hyperspectral imagery on GPUs
    • Z. Wu, Q. Wang, A. Plaza, J. Li, J. Liu, and Z. Wei, "Parallel implementation of sparse representation classifiers for hyperspectral imagery on GPUs," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 8, no. 6, pp. 2912-2925, 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens , vol.8 , Issue.6 , pp. 2912-2925
    • Wu, Z.1    Wang, Q.2    Plaza, A.3    Li, J.4    Liu, J.5    Wei, Z.6
  • 331
    • 84919877609 scopus 로고    scopus 로고
    • Unmixing-based content retrieval system for remotely sensed hyperspectral imagery on GPUs
    • J. Sevilla, S. Bernabe, and A. Plaza, "Unmixing-based content retrieval system for remotely sensed hyperspectral imagery on GPUs," J. Supercomput., vol. 70, no. 2, pp. 588-599, 2014.
    • (2014) J. Supercomput , vol.70 , Issue.2 , pp. 588-599
    • Sevilla, J.1    Bernabe, S.2    Plaza, A.3
  • 335
  • 337
    • 84995529466 scopus 로고    scopus 로고
    • Hyperspectral image classification using deep pixel-pair features
    • W. Li, G. Wu, F. Zhang, and Q. Du, "Hyperspectral image classification using deep pixel-pair features," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 2, pp. 844-853, 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , Issue.2 , pp. 844-853
    • Li, W.1    Wu, G.2    Zhang, F.3    Du, Q.4
  • 338
    • 84995532079 scopus 로고    scopus 로고
    • Deep learning with attribute profiles for hyperspectral image classification
    • E. Aptoula, M. Ozdemir, and B. Yanikoglu, "Deep learning with attribute profiles for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 12, pp. 1970-1974, 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett , vol.13 , Issue.12 , pp. 1970-1974
    • Aptoula, E.1    Ozdemir, M.2    Yanikoglu, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.