메뉴 건너뛰기




Volumn 53, Issue 8, 2015, Pages 4363-4378

Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images

Author keywords

Change detection (CD); change representation; change vector analysis (CVA); change visualization; hyperspectral images; multiple changes; multitemporal images; remote sensing

Indexed keywords

HYDRAULIC STRUCTURES; ITERATIVE METHODS; REMOTE SENSING; SIGNAL DETECTION; SPECTROSCOPY; VECTORS;

EID: 85027926154     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2015.2396686     Document Type: Article
Times cited : (163)

References (31)
  • 1
    • 84874545870 scopus 로고    scopus 로고
    • A novel framework for the design of changedetection systems for very-high-resolution remote sensing images
    • Mar.
    • L. Bruzzone and F. Bovolo, "A novel framework for the design of changedetection systems for very-high-resolution remote sensing images," Proc. IEEE, vol. 101, no. 3, pp. 609-630, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 609-630
    • Bruzzone, L.1    Bovolo, F.2
  • 2
    • 0024855524 scopus 로고
    • Digital change detection techniques using remotely-sensed data
    • A. Singh, "Digital change detection techniques using remotely-sensed data," Int. J. Remote Sens., vol. 10, no. 6, pp. 989-1003, 1989.
    • (1989) Int. J. Remote Sens. , vol.10 , Issue.6 , pp. 989-1003
    • Singh, A.1
  • 3
    • 1942536045 scopus 로고    scopus 로고
    • Digital change detection methods in ecosystem monitoring: A review
    • P. Coppin, I. Jonckheere, K. Nackaerts, B. Muys, and E. Lambin, "Digital change detection methods in ecosystem monitoring: A review," Int. J. Remote Sens., vol. 25, no. 9, pp. 1565-1596, 2004.
    • (2004) Int. J. Remote Sens. , vol.25 , Issue.9 , pp. 1565-1596
    • Coppin, P.1    Jonckheere, I.2    Nackaerts, K.3    Muys, B.4    Lambin, E.5
  • 5
    • 0030472333 scopus 로고    scopus 로고
    • Digital change detection in forest ecosystems with remote sensing imagery
    • P. R. Coppin and M. E. Bauer, "Digital change detection in forest ecosystems with remote sensing imagery," Remote Sens. Rev., vol. 13, no. 3/4, pp. 207-304, 1996.
    • (1996) Remote Sens. Rev. , vol.13 , Issue.3-4 , pp. 207-304
    • Coppin, P.R.1    Bauer, M.E.2
  • 6
    • 0031988679 scopus 로고    scopus 로고
    • A comparison of four algorithms for change detection in an Urban environment
    • M. K. Ridd and J. Liu, "A comparison of four algorithms for change detection in an urban environment," Remote Sens. Environ., vol. 63, no. 2, pp. 95-100, 1998.
    • (1998) Remote Sens. Environ. , vol.63 , Issue.2 , pp. 95-100
    • Ridd, M.K.1    Liu, J.2
  • 7
    • 0034521616 scopus 로고    scopus 로고
    • A minimum-cost thresholding technique for unsupervised change detection
    • L. Bruzzone and D. F. Prieto, "A minimum-cost thresholding technique for unsupervised change detection," Int. J. Remote Sens., vol. 21, no. 18, pp. 3539-3544, 2000.
    • (2000) Int. J. Remote Sens. , vol.21 , Issue.18 , pp. 3539-3544
    • Bruzzone, L.1    Prieto, D.F.2
  • 8
    • 0033707763 scopus 로고    scopus 로고
    • Automatic analysis of the difference image for unsupervised change detection
    • May
    • L. Bruzzone and D. Prieto, "Automatic analysis of the difference image for unsupervised change detection," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 3, pp. 1170-1182, May 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.3 , pp. 1170-1182
    • Bruzzone, L.1    Prieto, D.2
  • 9
    • 70350347100 scopus 로고    scopus 로고
    • Unsupervised change detection in satellite images using principal component analysis and k-means clustering
    • Oct.
    • T. Celik, "Unsupervised change detection in satellite images using principal component analysis and k-means clustering," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 4, pp. 772-776, Oct. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.4 , pp. 772-776
    • Celik, T.1
  • 10
    • 2942709974 scopus 로고    scopus 로고
    • Automatic change detection by evidential fusion of change indices
    • Jun.
    • S. L. Hégarat-Mascle and R. Seltz, "Automatic change detection by evidential fusion of change indices," Remote Sens. Environ., vol. 91, no. 3/4, pp. 390-404, Jun. 2004.
    • (2004) Remote Sens. Environ. , vol.91 , Issue.3-4 , pp. 390-404
    • Hégarat-Mascle, S.L.1    Seltz, R.2
  • 12
    • 84867335433 scopus 로고    scopus 로고
    • Information fusion techniques for change detection from multi-temporal remote sensing images
    • Jan.
    • P. Du, S. Liu, J. Xia, and Y. Zhao, "Information fusion techniques for change detection from multi-temporal remote sensing images," Inf. Fusion, vol. 14, no. 1, pp. 19-27, Jan. 2013.
    • (2013) Inf. Fusion , vol.14 , Issue.1 , pp. 19-27
    • Du, P.1    Liu, S.2    Xia, J.3    Zhao, Y.4
  • 13
    • 3242793776 scopus 로고
    • Eucalyptus forest change classification using multi-data landsat TM data
    • V. Soares and R. Hoffer, "Eucalyptus forest change classification using multi-data Landsat TM data," in Proc. SPIE, 1994, pp. 281-291.
    • (1994) Proc. SPIE , pp. 281-291
    • Soares, V.1    Hoffer, R.2
  • 14
    • 0031186955 scopus 로고    scopus 로고
    • An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images
    • Jul.
    • L. Bruzzone and S. Serpico, "An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 35, no. 4, pp. 858-867, Jul. 1997.
    • (1997) IEEE Trans. Geosci. Remote Sens. , vol.35 , Issue.4 , pp. 858-867
    • Bruzzone, L.1    Serpico, S.2
  • 15
    • 84860338492 scopus 로고    scopus 로고
    • Detection of land-cover transitions in multitemporal remote sensing images with active-learning-based compound classification
    • May
    • B. Demir, F. Bovolo, and L. Bruzzone, "Detection of land-cover transitions in multitemporal remote sensing images with active-learning-based compound classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1930-1941, May 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.5 , pp. 1930-1941
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 16
    • 33847751877 scopus 로고    scopus 로고
    • The regularized iteratively reweighted MAD method for change detection in multi-and hyperspectral data
    • Feb.
    • A. Nielsen, "The regularized iteratively reweighted MAD method for change detection in multi-and hyperspectral data," IEEE Trans. Image Process., vol. 16, no. 2, pp. 463-478, Feb. 2007.
    • (2007) IEEE Trans. Image Process , vol.16 , Issue.2 , pp. 463-478
    • Nielsen, A.1
  • 18
    • 84861340870 scopus 로고    scopus 로고
    • A framework for automatic and unsupervised detection of multiple changes in multitemporal images
    • Jun.
    • F. Bovolo, S. Marchesi, and L. Bruzzone, "A framework for automatic and unsupervised detection of multiple changes in multitemporal images," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 6, pp. 2196-2212, Jun. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.6 , pp. 2196-2212
    • Bovolo, F.1    Marchesi, S.2    Bruzzone, L.3
  • 19
    • 0018922936 scopus 로고
    • Change vector analysis: An approach for detecting forest changes with landsat
    • West Lafayette, IN, USA
    • W. A. Malila, "Change vector analysis: An approach for. detecting forest changes with Landsat," in 6th Annu. Symp. Mach. Process. Remotely Sensed Data, West Lafayette, IN, USA, 1980, pp. 326-336.
    • (1980) 6th Annu. Symp. Mach. Process. Remotely Sensed Data , pp. 326-336
    • Malila, W.A.1
  • 20
    • 33846223394 scopus 로고    scopus 로고
    • A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain
    • Jan.
    • F. Bovolo and L. Bruzzone, "A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 1, pp. 218-236, Jan. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.1 , pp. 218-236
    • Bovolo, F.1    Bruzzone, L.2
  • 21
    • 80955145072 scopus 로고    scopus 로고
    • An adaptive thresholding approach to multiple-change detection in multispectral images
    • Vancouver, BC, Canada
    • F. Bovolo and L. Bruzzone, "An adaptive thresholding approach to multiple-change detection in multispectral images," in Proc. IEEE IGARSS, Vancouver, BC, Canada, 2011, pp. 233-236.
    • (2011) Proc. IEEE IGARSS , pp. 233-236
    • Bovolo, F.1    Bruzzone, L.2
  • 23
    • 84906782734 scopus 로고    scopus 로고
    • Hierarchical change detection in multitemporal hyperspectral images
    • Jan.
    • S. Liu, L. Bruzzone, F. Bovolo, and P. Du, "Hierarchical change detection in multitemporal hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 244-260, Jan. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.1 , pp. 244-260
    • Liu, S.1    Bruzzone, L.2    Bovolo, F.3    Du, P.4
  • 24
    • 3843151477 scopus 로고    scopus 로고
    • Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries
    • Jul.
    • N. Keshava, "Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 7, pp. 1552-1565, Jul. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.7 , pp. 1552-1565
    • Keshava, N.1
  • 25
    • 0034248782 scopus 로고    scopus 로고
    • An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image
    • Aug.
    • C.-I. Chang, "An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image," IEEE Trans. Inf. Theory, vol. 46, no. 5, pp. 1927-1932, Aug. 2000.
    • (2000) IEEE Trans. Inf. Theory , vol.46 , Issue.5 , pp. 1927-1932
    • Chang, C.-I.1
  • 26
    • 0036899011 scopus 로고    scopus 로고
    • Supervised and unsupervised spectral angle classifiers
    • Y. Sohn and N. S. Rebello, "Supervised and unsupervised spectral angle classifiers," Photogramm. Eng. Remote Sens., vol. 68, no. 12, pp. 1271-1280, 2002.
    • (2002) Photogramm. Eng. Remote Sens. , vol.68 , Issue.12 , pp. 1271-1280
    • Sohn, Y.1    Rebello, N.S.2
  • 27
    • 84873113068 scopus 로고    scopus 로고
    • Target-driven change detection based on data transformation and similarity measures
    • Munich, Germany
    • P. Du, S. Liu, L. Bruzzone, and F. Bovolo, "Target-driven change detection based on data transformation and similarity measures," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Munich, Germany, 2012, pp. 2016-2019.
    • (2012) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 2016-2019
    • Du, P.1    Liu, S.2    Bruzzone, L.3    Bovolo, F.4
  • 28
    • 78649892044 scopus 로고    scopus 로고
    • Fuzzy clustering algorithms for unsupervised change detection in remote sensing images
    • Feb.
    • A. Ghosh, N. S. Mishra, and S. Ghosh, "Fuzzy clustering algorithms for unsupervised change detection in remote sensing images," Inf. Sci., vol. 181, no. 4, pp. 699-715, Feb. 2011.
    • (2011) Inf. Sci. , vol.181 , Issue.4 , pp. 699-715
    • Ghosh, A.1    Mishra, N.S.2    Ghosh, S.3
  • 29
    • 85028173950 scopus 로고    scopus 로고
    • [Online]
    • [Online]. Available: http://www.ehu.es/ccwintco/index.php/Hyperspectral-Remote-Sensing-Scenes
  • 30
    • 80052912463 scopus 로고    scopus 로고
    • Statistics of real-World hyperspectral images
    • A. Chakrabarti and T. Zickler, "Statistics of real-world hyperspectral images," in Proc. IEEE Conf. CVPR, 2011, pp. 193-200.
    • (2011) Proc. IEEE Conf. CVPR , pp. 193-200
    • Chakrabarti, A.1    Zickler, T.2
  • 31
    • 85028136509 scopus 로고    scopus 로고
    • [Online]
    • [Online]. Available: http://earthexplorer.usgs.gov/


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.