메뉴 건너뛰기




Volumn 50, Issue 7 PART 2, 2012, Pages 2744-2757

A new minimum-volume enclosing algorithm for endmember identification and abundance estimation in hyperspectral data

Author keywords

Endmember extraction; fractional abundance estimation; hyperspectral imaging; maximum volume simplex; minimum volume enclosing simplex (MVES); spectral unmixing

Indexed keywords

ABUNDANCE ESTIMATION; ENDMEMBER EXTRACTION; HYPERSPECTRAL IMAGING; MAXIMUM-VOLUME SIMPLEX; MINIMUM-VOLUME ENCLOSING SIMPLEX (MVES); SPECTRAL UNMIXING;

EID: 84862998205     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2011.2174443     Document Type: Article
Times cited : (56)

References (55)
  • 3
    • 0001395470 scopus 로고
    • Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site
    • Jul.
    • J. B. Adams,M. O. Smith, and P. E. Johnson, "Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site," J. Geophys. Res., vol. 91, pp. 8098-8112, Jul. 1986.
    • (1986) J. Geophys. Res. , vol.91 , pp. 8098-8112
    • AdamsM.O. Smith, J.B.1    Johnson, P.E.2
  • 4
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," in Proc. SPIE Image Spectrom. V,2003, vol. 3753, pp. 266-277.
    • (2003) Proc. SPIE Image Spectrom. V , vol.3753 , pp. 266-277
    • Winter, M.E.1
  • 5
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. Heinz and C.-I. Chang, "Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 6
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar.
    • C.-I. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 9
    • 0023854011 scopus 로고
    • Transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • DOI 10.1109/36.3001
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, Jan. 1988. (Pubitemid 18596008)
    • (1988) IEEE Transactions on Geoscience and Remote Sensing , vol.26 , Issue.1 , pp. 65-74
    • Green Andrew, A.1    Berman Mark2    Switzer Paul3    Craig Maurice, D.4
  • 10
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • Mar.
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650-663, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 11
    • 60749110419 scopus 로고    scopus 로고
    • End-member extraction for hyperspectral image analysis
    • Oct.
    • Q. Du, N. Raksuntorn, N. H. Younan, and R. L. King, "End-member extraction for hyperspectral image analysis," Appl. Opt., vol. 47, no. 28, pp. 77-84, Oct. 2008.
    • (2008) Appl. Opt. , vol.47 , Issue.28 , pp. 77-84
    • Du, Q.1    Raksuntorn, N.2    Younan, N.H.3    King, R.L.4
  • 12
    • 77958603422 scopus 로고    scopus 로고
    • Foreword to the special issue on hyperspectral image and signal processing
    • Nov.
    • J. Chanussot, M. M. Crawford, and B.-C. Kuo, "Foreword to the special issue on hyperspectral image and signal processing," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 3871-3876, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 3871-3876
    • Chanussot, J.1    Crawford, M.M.2    Kuo, B.-C.3
  • 13
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection
    • Jul.
    • J. C. Harsanyi and C.-I. Chang, "Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785, Jul. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.-I.2
  • 14
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. M. P. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 15
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/spectral endmember extraction by multidimensional morphological operations
    • DOI 10.1109/TGRS.2002.802494
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "Spatial/spectral endmember extraction by multidimensional morphological operations," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 2025-2041, Sep. 2002. (Pubitemid 35458399)
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 16
    • 67949098957 scopus 로고    scopus 로고
    • Spatial preprocessing for endmember extraction
    • Aug.
    • M. Zortea and A. Plaza, "Spatial preprocessing for endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679-2693, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2
  • 17
    • 79959766442 scopus 로고    scopus 로고
    • Region-based spatial preprocessing for endmember extraction and spectral unmixing
    • Jul.
    • G. Martin and A. Plaza, "Region-based spatial preprocessing for endmember extraction and spectral unmixing," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 745-749, Jul. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.4 , pp. 745-749
    • Martin, G.1    Plaza, A.2
  • 18
    • 79957668159 scopus 로고    scopus 로고
    • Robust endmember extraction in the presence of anomalies
    • Jun.
    • O. Duran and M. Petrou, "Robust endmember extraction in the presence of anomalies," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 1986-1996, Jun. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.6 , pp. 1986-1996
    • Duran, O.1    Petrou, M.2
  • 19
    • 79959713509 scopus 로고    scopus 로고
    • Endmember extraction of hyperspectral remote sensing images based on the ant colony optimization (ACO) algorithm
    • Jul.
    • B. Zhang, X. Sun, L. Gao, and L. Yang, "Endmember extraction of hyperspectral remote sensing images based on the ant colony optimization (ACO) algorithm," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 7, pp. 2635-2646, Jul. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.7 , pp. 2635-2646
    • Zhang, B.1    Sun, X.2    Gao, L.3    Yang, L.4
  • 21
    • 78049320782 scopus 로고    scopus 로고
    • Fully constrained linear spectral unmixing: Analytic solution using fuzzy sets
    • Nov.
    • J. Silvan-Cardenas and L. Wang, "Fully constrained linear spectral unmixing: Analytic solution using fuzzy sets," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 3992-4002, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 3992-4002
    • Silvan-Cardenas, J.1    Wang, L.2
  • 24
    • 77952555368 scopus 로고    scopus 로고
    • PCE: Piecewise convex endmember detection
    • Jun.
    • A. Zare and P. Gader, "PCE: Piecewise convex endmember detection," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2620-2632, Jun. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.6 , pp. 2620-2632
    • Zare, A.1    Gader, P.2
  • 25
    • 77956057087 scopus 로고    scopus 로고
    • Spatial purity based endmember extraction for spectral mixture analysis
    • Sep.
    • S. Mei, M. He, Z. Wang, and D. Feng, "Spatial purity based endmember extraction for spectral mixture analysis," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 9, pp. 3434-3445, Sep. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.9 , pp. 3434-3445
    • Mei, S.1    He, M.2    Wang, Z.3    Feng, D.4
  • 27
    • 77958527190 scopus 로고    scopus 로고
    • Real-time simplex growing algorithms for hyperspectral endmember extraction
    • Apr.
    • C.-I. Chang, C.-C. Wu, C.-S. Lo, and M.-L. Chang, "Real-time simplex growing algorithms for hyperspectral endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 4, pp. 1834-1850, Apr. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.4 , pp. 1834-1850
    • Chang, C.-I.1    Wu, C.-C.2    Lo, C.-S.3    Chang, M.-L.4
  • 28
    • 70350335345 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of different implementations of N-FINDR: A fast endmember extraction algorithm
    • Oct.
    • M. Zortea and A. Plaza, "A quantitative and comparative analysis of different implementations of N-FINDR: A fast endmember extraction algorithm," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 4, pp. 787-791, Oct. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.4 , pp. 787-791
    • Zortea, M.1    Plaza, A.2
  • 29
    • 78650950771 scopus 로고    scopus 로고
    • On the convergence of N-FINDR and related algorithms: To iterate or not to iterate?
    • Jan.
    • S. Dowler andM. Andrews, "On the convergence of N-FINDR and related algorithms: To iterate or not to iterate?," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 1, pp. 4-8, Jan. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.1 , pp. 4-8
    • Dowler, S.1    Andrews, M.2
  • 30
    • 79960926086 scopus 로고    scopus 로고
    • A quantitative analysis of virtual endmembers' increased impact on the collinearity effect in spectral unmixing
    • Aug.
    • X. Chen, J. Chen, X. Jia, B. Somers, J. Wu, and P. Coppin, "A quantitative analysis of virtual endmembers' increased impact on the collinearity effect in spectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 8, pp. 2945-2956, Aug. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.8 , pp. 2945-2956
    • Chen, X.1    Chen, J.2    Jia, X.3    Somers, B.4    Wu, J.5    Coppin, P.6
  • 31
    • 0033099904 scopus 로고    scopus 로고
    • Multispectral and hyperspectral image analysis with convex cones
    • Mar.
    • A. Ifarraguerri and C.-I. Chang, "Multispectral and hyperspectral image analysis with convex cones," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2, pp. 756-770, Mar. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.2 , pp. 756-770
    • Ifarraguerri, A.1    Chang, C.-I.2
  • 33
    • 34547229626 scopus 로고    scopus 로고
    • Sparsity promoting iterated constrained endmember detection in hyperspeetral imagery
    • DOI 10.1109/LGRS.2007.895727
    • A. Zare and P. Gader, "Sparsity promoting iterated constrained endmember detection for hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 3, pp. 446-450, Jul. 2007. (Pubitemid 47117457)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.3 , pp. 446-450
    • Zare, A.1    Gader, P.2
  • 37
    • 77952616442 scopus 로고    scopus 로고
    • Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery
    • Jun.
    • O. Eches, N. Dobigeon, C. Mailhes, and J.-Y. Tourneret, "Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery," IEEE Trans. Image Process., vol. 19, no. 6, pp. 1403-1413, Jun. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.6 , pp. 1403-1413
    • Eches, O.1    Dobigeon, N.2    Mailhes, C.3    Tourneret, J.-Y.4
  • 38
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • May
    • M. D. Craig, "Minimum-volume transforms for remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542-552, May 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.3 , pp. 542-552
    • Craig, M.D.1
  • 39
    • 67649830104 scopus 로고    scopus 로고
    • Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data
    • J. Li and J. Bioucas-Dias, "Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2008, vol. 3, pp. 250-253.
    • (2008) Proc. IEEE Int. Geosci. Remote Sens. Symp. , vol.3 , pp. 250-253
    • Li, J.1    Bioucas-Dias, J.2
  • 40
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Nov.
    • T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, "A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.-H.1    Chi, C.-Y.2    Huang, Y.-M.3    Ma, W.-K.4
  • 41
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007. (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 42
    • 85027952549 scopus 로고    scopus 로고
    • An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
    • Feb.
    • X. Liu, W. Xia, B. Wang, and L. Zhang, "An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 757-772, Feb. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.2 , pp. 757-772
    • Liu, X.1    Xia, W.2    Wang, B.3    Zhang, L.4
  • 43
    • 77952582975 scopus 로고    scopus 로고
    • Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data
    • Jun.
    • A. Huck, M. Guillaume, and J. Blanc-Talon, "Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2590-2602, Jun. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.6 , pp. 2590-2602
    • Huck, A.1    Guillaume, M.2    Blanc-Talon, J.3
  • 45
    • 70350493345 scopus 로고    scopus 로고
    • Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery
    • Nov.
    • N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O. Hero, "Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4355-4368, Nov. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4355-4368
    • Dobigeon, N.1    Moussaoui, S.2    Coulon, M.3    Tourneret, J.-Y.4    Hero, A.O.5
  • 50
    • 0001138328 scopus 로고
    • Algorithm as 136: A k-means clustering algorithm
    • J. A. Hartigan and M. A.Wong, "Algorithm as 136: A k-means clustering algorithm," J. Roy. Stat. Soc. Ser. C (Appl. Stat.), vol. 28, no. 1, pp. 100-108, 1979.
    • (1979) J. Roy. Stat. Soc. Ser. C (Appl. Stat.) , vol.28 , Issue.1 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 51
    • 85032751930 scopus 로고    scopus 로고
    • Spectral unmixing
    • DOI 10.1109/79.974727
    • N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002. (Pubitemid 34237207)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 44-57
    • Keshava, N.1    Mustard, J.F.2
  • 52
    • 34548036670 scopus 로고    scopus 로고
    • Integration of spatial-spectral information for the improved extraction of endmembers
    • DOI 10.1016/j.rse.2007.02.019, PII S0034425707000934
    • D. M. Rogge, B. Rivard, J. Zhang, A. Sanchez, J. Harris, and J. Feng, "Integration of spatial-spectral information for the improved extraction of endmembers," Remote Sens. Environ., vol. 110, no. 3, pp. 287-303, 2007. (Pubitemid 47285207)
    • (2007) Remote Sensing of Environment , vol.110 , Issue.3 , pp. 287-303
    • Rogge, D.M.1    Rivard, B.2    Zhang, J.3    Sanchez, A.4    Harris, J.5    Feng, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.