메뉴 건너뛰기




Volumn 54, Issue 10, 2016, Pages 6076-6090

Robust Collaborative Nonnegative Matrix Factorization for Hyperspectral Unmixing

Author keywords

Endmember extraction; hyperspectral imaging; robust collaborative nonnegative matrix factorization (R CoNMF); Spectral unmixing

Indexed keywords

ALGORITHMS; CHAINS; FACTORIZATION; PIXELS; SPECTROSCOPY;

EID: 84978953872     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2016.2580702     Document Type: Article
Times cited : (200)

References (44)
  • 1
    • 80455176882 scopus 로고    scopus 로고
    • Foreword to the special issue on spectral unmixing of remotely sensed data
    • Nov.
    • A. Plaza, Q. Du, J. Bioucas-Dias, X. Jia, F. Kruse, "Foreword to the special issue on spectral unmixing of remotely sensed data, " IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4103-4110, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4103-4110
    • Plaza, A.1    Du, Q.2    Bioucas-Dias, J.3    Jia, X.4    Kruse, F.5
  • 3
    • 84861772901 scopus 로고    scopus 로고
    • Hyperspectral unmixing overview: Geometrical, statistical, sparse regression-based approaches
    • Apr.
    • J. Bioucas-Dias et al., "Hyperspectral unmixing overview: Geometrical, statistical, sparse regression-based approaches, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 354-379
    • Bioucas-Dias, J.1
  • 4
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • May
    • M. D. Craig, "Minimum-volume transforms for remotely sensed data, " IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542-552, May 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.3 , pp. 542-552
    • Craig, M.D.1
  • 5
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. Winter, "N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data, " in Proc. SPIE, 1999, vol. 3753, pp. 266-270.
    • (1999) Proc. SPIE , vol.3753 , pp. 266-270
    • Winter, M.1
  • 6
    • 85032751209 scopus 로고    scopus 로고
    • A signal processing perspective on hyperspectral unmixing: Insights from remote sensing
    • Jan.
    • W.-K. Ma et al., "A signal processing perspective on hyperspectral unmixing: Insights from remote sensing, " IEEE Signal Process. Mag., vol. 31, no. 1, pp. 67-81, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 67-81
    • Ma, W.-K.1
  • 7
    • 80052775340 scopus 로고    scopus 로고
    • Hyperspectral unmixing based on mixtures of Dirichlet components
    • Mar. in press
    • J. M. Bioucas-Dias and J. Nascimento, "Hyperspectral unmixing based on mixtures of Dirichlet components, " IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, 863-878, Mar. 2011, in press.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 863-878
    • Bioucas-Dias, J.M.1    Nascimento, J.2
  • 8
    • 77952616442 scopus 로고    scopus 로고
    • Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery
    • Jun.
    • O. Eches, N. Dobigeon, C. Mailhes, J.-Y. Tourneret, "Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery, " IEEE Trans. Image Process., vol. 19, no. 6, pp. 1-11, Jun. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.6 , pp. 1-11
    • Eches, O.1    Dobigeon, N.2    Mailhes, C.3    Tourneret, J.-Y.4
  • 10
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatial regularization for sparse hyperspectral unmixing
    • Nov.
    • M.-D. Iordache, J. Bioucas-Dias, A. Plaza, "Total variation spatial regularization for sparse hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4484-4502, Nov. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.11 , pp. 4484-4502
    • Iordache, M.-D.1    Bioucas-Dias, J.2    Plaza, A.3
  • 11
    • 84890430996 scopus 로고    scopus 로고
    • Collaborative sparse regression for hyperspectral unmixing
    • Jan.
    • M.-D. Iordache, J. Bioucas-Dias, A. Plaza, "Collaborative sparse regression for hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 341-354, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.1 , pp. 341-354
    • Iordache, M.-D.1    Bioucas-Dias, J.2    Plaza, A.3
  • 12
    • 84898600161 scopus 로고    scopus 로고
    • MUSIC-CSR: Multiple signal classification collaborative sparse regression for hyperspectral unmixing
    • Jul.
    • M.-D. Iordache, J. Bioucas-Dias, A. Plaza, "MUSIC-CSR: Multiple signal classification collaborative sparse regression for hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 4364-4382, Jul. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.7 , pp. 4364-4382
    • Iordache, M.-D.1    Bioucas-Dias, J.2    Plaza, A.3
  • 13
    • 78649261132 scopus 로고    scopus 로고
    • Survey of geometric and statistical unmixing algorithms for hyperspectral images
    • Jun. 14-16
    • M. Parente and A. Plaza, "Survey of geometric and statistical unmixing algorithms for hyperspectral images, " in Proc. IEEE 2nd WHISPERS, Reykjavik, Iceland, Jun. 14-16, 2010, pp. 1-4.
    • (2010) Proc IEEE 2nd WHISPERS, Reykjavik, Iceland , pp. 1-4
    • Parente, M.1    Plaza, A.2
  • 16
    • 8144231500 scopus 로고    scopus 로고
    • A survey of spectral unmixing algorithms
    • N. Keshava, "A survey of spectral unmixing algorithms, " Lincoln Lab. J., vol. 14, no. 1, pp. 55-78, 2003.
    • (2003) Lincoln Lab. J. , vol.14 , Issue.1 , pp. 55-78
    • Keshava, N.1
  • 17
    • 34547229626 scopus 로고    scopus 로고
    • Sparsity promoting iterated constrained endmember detection for hyperspectral imagery
    • Jul.
    • A. Zare and P. Gader, "Sparsity promoting iterated constrained endmember detection for hyperspectral imagery, " IEEE Geosci. Remote Sens. Lett., vol. 4, no. 3, pp. 446-450, Jul. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.3 , pp. 446-450
    • Zare, A.1    Gader, P.2
  • 18
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar.
    • C.-I. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 19
    • 0009055256 scopus 로고
    • Determining the number and identity of spectral endmembers: An integrated approach using Neyman-Pearson eigenthresholding and iterative constrained RMS error minimization
    • J. Harsanyi, W. Farrand, C.-I. Chang, "Determining the number and identity of spectral endmembers: An integrated approach using Neyman-Pearson eigenthresholding and iterative constrained RMS error minimization, " in Proc. Thematic Conf. Geol. Remote Sens., 1993, vol. 1, pp. 1-10.
    • (1993) Proc. Thematic Conf. Geol. Remote Sens. , vol.1 , pp. 1-10
    • Harsanyi, J.1    Farrand, W.2    Chang, C.-I.3
  • 21
    • 84866234414 scopus 로고    scopus 로고
    • Empirical automatic estimation of the number of endmembers in hyperspectral images
    • Jan.
    • B. Luo, J. Chanussot, S. Doute, L. Zhang, "Empirical automatic estimation of the number of endmembers in hyperspectral images, " IEEE Geosci. Remote Sens. Lett., vol. 10, no. 1, pp. 24-28, Jan. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.1 , pp. 24-28
    • Luo, B.1    Chanussot, J.2    Doute, S.3    Zhang, L.4
  • 22
    • 84891836126 scopus 로고    scopus 로고
    • Estimation of the number of endmembers using robust outlier detection method
    • Jan.
    • C. Andreou and V. Karathanassi, "Estimation of the number of endmembers using robust outlier detection method, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 1, pp. 247-256, Jan. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.1 , pp. 247-256
    • Andreou, C.1    Karathanassi, V.2
  • 23
    • 84880258085 scopus 로고    scopus 로고
    • Hyperspectral data geometry-based estimation of number of endmembers using p-normbased pure pixel identification algorithm
    • May
    • A. Ambikapathi, T.-H. Chan, C.-Y. Chi, K. Keizer, "Hyperspectral data geometry-based estimation of number of endmembers using p-normbased pure pixel identification algorithm, " IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2753-2769, May 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2753-2769
    • Ambikapathi, A.1    Chan, T.-H.2    Chi, C.-Y.3    Keizer, K.4
  • 25
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Mar.
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization, " IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 26
    • 85027942490 scopus 로고    scopus 로고
    • Minimum volume simplex analysis: A fast algorithm for hyperspectral unmixing
    • Sep.
    • J. Li, A. Agathos, D. Zaharie, J. M. B. Dias, A. Plaza, X. Li, "Minimum volume simplex analysis: A fast algorithm for hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 53, no. 9, pp. 5067-5082, Sep. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.9 , pp. 5067-5082
    • Li, J.1    Agathos, A.2    Zaharie, D.3    Dias, J.M.B.4    Plaza, A.5    Li, X.6
  • 27
    • 72049109460 scopus 로고    scopus 로고
    • A variable splitting augmented Lagrangian approach to linear spectral unmixing
    • Grenoble, France, Aug. 26-28
    • J. Bioucas-Dias, "A variable splitting augmented Lagrangian approach to linear spectral unmixing, " in Proc. 1st IEEE WHISPERS, Grenoble, France, Aug. 26-28, 2009, pp. 1-4.
    • (2009) Proc. 1st IEEE WHISPERS , pp. 1-4
    • Bioucas-Dias, J.1
  • 28
    • 70350488509 scopus 로고    scopus 로고
    • Convex analysis based minimumvolume enclosing simplex algorithm for hyperspectral unmixing
    • Nov.
    • T. Chan, C. Chi, Y. Huang, W. Ma, "Convex analysis based minimumvolume enclosing simplex algorithm for hyperspectral unmixing, " IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.1    Chi, C.2    Huang, Y.3    Ma, W.4
  • 29
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Nov.
    • T.-H. Chan, C.-Y. Chi, Y.-M. Huang, W.-K. Ma, "A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing, " IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.-H.1    Chi, C.-Y.2    Huang, Y.-M.3    Ma, W.-K.4
  • 30
    • 77952582975 scopus 로고    scopus 로고
    • Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data
    • Jun.
    • A. Huck, M. Guillaume, J. Blanc-Talon, "Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data, " IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2590-2602, Jun. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.6 , pp. 2590-2602
    • Huck, A.1    Guillaume, M.2    Blanc-Talon, J.3
  • 31
    • 80455174036 scopus 로고    scopus 로고
    • Chanceconstrained robust minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Nov.
    • A. Ambikapathi, T.-H. Chan, W.-K. Ma, C.-Y. Chi, "Chanceconstrained robust minimum-volume enclosing simplex algorithm for hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4194-4209, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4194-4209
    • Ambikapathi, A.1    Chan, T.-H.2    Ma, W.-K.3    Chi, C.-Y.4
  • 32
    • 30844461481 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part II:Convex relaxation
    • Mar.
    • J. Tropp, "Algorithms for simultaneous sparse approximation. Part II:Convex relaxation, " Signal Process., vol. 86, no. 3, pp. 589-602, Mar. 2006.
    • (2006) Signal Process. , vol.86 , Issue.3 , pp. 589-602
    • Tropp, J.1
  • 33
    • 73849109362 scopus 로고    scopus 로고
    • Average case analysis of multichannel sparse recovery using convex relaxation
    • Jan.
    • Y. Eldar and H. Rauhut, "Average case analysis of multichannel sparse recovery using convex relaxation, " IEEE Trans. Image Process., vol. 56, no. 1, pp. 505-519, Jan. 2010.
    • (2010) IEEE Trans. Image Process. , vol.56 , Issue.1 , pp. 505-519
    • Eldar, Y.1    Rauhut, H.2
  • 34
    • 36749019495 scopus 로고    scopus 로고
    • Recovery algorithms for vector-valued data with joint sparsity constraints
    • M. Fornasier and H. Rauhut, "Recovery algorithms for vector-valued data with joint sparsity constraints, " SIAM J. Numerical Anal., vol. 46, no. 2, pp. 577-613, 2008.
    • (2008) SIAM. J. Numerical Anal. , vol.46 , Issue.2 , pp. 577-613
    • Fornasier, M.1    Rauhut, H.2
  • 35
    • 77953092582 scopus 로고    scopus 로고
    • Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality
    • May
    • H. Attouch, J. Bolte, P. Redont, A. Soubeyran, "Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality, " Math. Oper. Res., vol. 35, no. 2, pp. 438-457, May 2010.
    • (2010) Math. Oper. Res. , vol.35 , Issue.2 , pp. 438-457
    • Attouch, H.1    Bolte, J.2    Redont, P.3    Soubeyran, A.4
  • 36
    • 0032665409 scopus 로고    scopus 로고
    • Globally convergent block-coordinate techniques for unconstrained optimization
    • L. Grippof and M. Sciandrone, "Globally convergent block-coordinate techniques for unconstrained optimization, " Optim. Methods Softw., vol. 10, no. 4, pp. 587-637, 1999.
    • (1999) Optim. Methods Softw. , vol.10 , Issue.4 , pp. 587-637
    • Grippof, L.1    Sciandrone, M.2
  • 37
    • 78649271874 scopus 로고    scopus 로고
    • Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing
    • Jun.
    • J. Bioucas-Dias and M. Figueiredo, "Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing, " in Proc. 2nd WHISPERS, Jun. 2010, pp. 1-4.
    • (2010) Proc. 2nd WHISPERS , pp. 1-4
    • Bioucas-Dias, J.1    Figueiredo, M.2
  • 38
    • 0023854011 scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • Jan.
    • A. Green, M. Berman, P. Switzer, M. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal, " IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, Jan. 1988.
    • (1988) IEEE Trans. Geosci. Remote Sens. , vol.26 , Issue.1 , pp. 65-74
    • Green, A.1    Berman, M.2    Switzer, P.3    Craig, M.4
  • 39
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr.
    • J. Nascimento and J. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data, " IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.1    Bioucas-Dias, J.2
  • 40
    • 84885030988 scopus 로고    scopus 로고
    • A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion
    • Y. Xu and W. Yin, "A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion, " SIAM J. Imaging Sci., vol. 6, no. 3, pp. 1758-1789, 2013.
    • (2013) SIAM. J. Imaging Sci. , vol.6 , Issue.3 , pp. 1758-1789
    • Xu, Y.1    Yin, W.2
  • 41
    • 0032737410 scopus 로고    scopus 로고
    • Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification
    • Jan.
    • X. Jia and J. A. Richards, "Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification, " IEEE Trans. Geosci. Remote Sens., vol. 37, no. 1, pp. 538-542, Jan. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.1 , pp. 538-542
    • Jia, X.1    Richards, J.A.2
  • 43
    • 58149520173 scopus 로고    scopus 로고
    • Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing
    • Jan.
    • S. Robila and L. Maciak, "Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing, " IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp. 57-61, Jan. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.1 , pp. 57-61
    • Robila, S.1    MacIak, L.2
  • 44
    • 84897584251 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: A comprehensive review
    • Jun.
    • Y.-X. Wang and Y.-J. Zhang, "Nonnegative matrix factorization: A comprehensive review, " IEEE Trans. Knowl. Data Eng., vol. 25, no. 6, pp. 1336-1353, Jun. 2013.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.6 , pp. 1336-1353
    • Wang, Y.-X.1    Zhang, Y.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.