메뉴 건너뛰기




Volumn 52, Issue 7, 2014, Pages 3872-3884

Sparse graph-based discriminant analysis for hyperspectral imagery

Author keywords

Classification; dimensionality reduction (DR); hyperspectral imagery (HSI); Sparse representation

Indexed keywords

CLASSIFICATION (OF INFORMATION); DISCRIMINANT ANALYSIS; GRAPHIC METHODS; IMAGE RETRIEVAL; SPECTROSCOPY;

EID: 84896390467     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2013.2277251     Document Type: Article
Times cited : (139)

References (30)
  • 2
    • 0023854011 scopus 로고
    • Transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • DOI 10.1109/36.3001
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformationfor ordering multispectral data in terms of image quality with implicationsfor noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1,pp. 65-74, Jan. 1988. (Pubitemid 18596008)
    • (1988) IEEE Transactions on Geoscience and Remote Sensing , vol.26 , Issue.1 , pp. 65-74
    • Green Andrew, A.1    Berman Mark2    Switzer Paul3    Craig Maurice, D.4
  • 4
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • M. Sugiyama, "Dimensionaltity reduction of multimodal labeled data bylocal Fisher discriminant analysis," J. Mach. Learn. Res., vol. 8, no. 5,pp. 1027-1061, May 2007. (Pubitemid 46798409)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 6
    • 55649124564 scopus 로고    scopus 로고
    • Similarity-based unsupervised band selection forhyperspectral image analysis
    • Oct.
    • Q. Du and H. Yang, "Similarity-based unsupervised band selection forhyperspectral image analysis," IEEE Geosci. Remote Sens. Lett., vol. 5,no. 4, pp. 564-568, Oct. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 7
    • 78650930212 scopus 로고    scopus 로고
    • An efficient method for supervisedhyperspectral band selection
    • Jan.
    • H. Yang, Q. Du, H. Su, and Y. Sheng, "An efficient method for supervisedhyperspectral band selection," IEEE Geosci. Remote Sens. Lett., vol. 8,no. 1, pp. 138-142, Jan. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.1 , pp. 138-142
    • Yang, H.1    Du, Q.2    Su, H.3    Sheng, Y.4
  • 10
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classificationusing dictionary-based sparse representation
    • Oct.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classificationusing dictionary-based sparse representation," IEEE Trans. Geosci.Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci.Remote Sens. , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 11
    • 80052897165 scopus 로고    scopus 로고
    • Robust classification using structured sparserepresentation
    • Colorado Springs, CO, USA, Jun.
    • E. Elhamifar and R. Vidal, "Robust classification using structured sparserepresentation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,Colorado Springs, CO, USA, Jun. 2011, pp. 1873-1879.
    • (2011) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 1873-1879
    • Elhamifar, E.1    Vidal, R.2
  • 12
    • 66549117642 scopus 로고    scopus 로고
    • Sparse representationsfor hyperspectral data classification
    • Boston, MA, USA Jul.
    • S. Siddiqui, S. Robila, J. Peng, and D. Wang, "Sparse representationsfor hyperspectral data classification," in Proc. Int. Geosci. Remote Sens.Symp., Boston, MA, USA, Jul. 2008, vol. 2, pp. II-577-II-580.
    • (2008) Proc. Int. Geosci. Remote Sens.Symp. , vol.2 , pp. 577-580
    • Siddiqui, S.1    Robila, S.2    Peng, J.3    Wang, D.4
  • 13
    • 83655191931 scopus 로고    scopus 로고
    • Supervised neighborhood graph constructionfor semi-supervised classification
    • Apr.
    • M. H. Rohban and H. R. Rabiee, "Supervised neighborhood graph constructionfor semi-supervised classification," Pattern Recognit., vol. 45,no. 4, pp. 1363-1372, Apr. 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.4 , pp. 1363-1372
    • Rohban, M.H.1    Rabiee, H.R.2
  • 15
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensingimages with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensingimages with support vector machines," IEEE Trans. Geosci. RemoteSens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. RemoteSens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 17
    • 75449105203 scopus 로고    scopus 로고
    • Sparsity preserving discriminant analysisfor single training image face recognition
    • Apr.
    • L. Qiao, S. Chen, and X. Tan, "Sparsity preserving discriminant analysisfor single training image face recognition," Pattern Recognit. Lett.,vol. 31, no. 5, pp. 422-429, Apr. 2010.
    • (2010) Pattern Recognit. Lett. , vol.31 , Issue.5 , pp. 422-429
    • Qiao, L.1    Chen, S.2    Tan, X.3
  • 18
    • 69049112203 scopus 로고    scopus 로고
    • Sparsity preserving projections with applicationsto face recognition
    • Jan.
    • L. Qiao, S. Chen, and X. Tan, "Sparsity preserving projections with applicationsto face recognition," Pattern Recognit., vol. 43, no. 1, pp. 331-341,Jan. 2010.
    • (2010) Pattern Recognit. , vol.43 , Issue.1 , pp. 331-341
    • Qiao, L.1    Chen, S.2    Tan, X.3
  • 19
    • 80055001739 scopus 로고    scopus 로고
    • Graph optimization for dimensionalityreduction with sparsity constraints
    • Mar.
    • L. Zhang, S. Chen, and L. Qiao, "Graph optimization for dimensionalityreduction with sparsity constraints," Pattern Recognit., vol. 45, no. 3,pp. 1205-1210, Mar. 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.3 , pp. 1205-1210
    • Zhang, L.1    Chen, S.2    Qiao, L.3
  • 20
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction bylocally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326,Dec. 2000. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 21
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • DOI 10.1162/089976603321780317
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reductionand data representation," Neural Comput., vol. 15, no. 6, pp. 1373-1396, Jun. 2003. (Pubitemid 37049796)
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 22
    • 79957470922 scopus 로고    scopus 로고
    • Sparse representation fortarget detection in hyperspectral imagery
    • Jun.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Sparse representation fortarget detection in hyperspectral imagery," IEEE J. Sel. Topics SignalProcess., vol. 5, no. 3, pp. 629-640, Jun. 2011.
    • (2011) IEEE J. Sel. Topics SignalProcess. , vol.5 , Issue.3 , pp. 629-640
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 23
    • 84863021199 scopus 로고    scopus 로고
    • Hyperspectral image classificationvia kernel sparse representation
    • Brussels, Belgium, Sep.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classificationvia kernel sparse representation," in Proc. Int. Conf. ImageProcess., Brussels, Belgium, Sep. 2011, pp. 1233-1236.
    • (2011) Proc. Int. Conf. ImageProcess. , pp. 1233-1236
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 26
    • 65649137930 scopus 로고    scopus 로고
    • Probing the Pareto frontierfor basis pursuit solutions
    • E. Van den Berg and M. P. Friedlander, "Probing the Pareto frontierfor basis pursuit solutions," SIAM J. Scientific Comput., vol. 31, no. 2,pp. 890-912, 2008.
    • (2008) SIAM J. Scientific Comput. , vol.31 , Issue.2 , pp. 890-912
    • Berg Den E.Van1    Friedlander, M.P.2
  • 27
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectralimage segmentation using subspace multinomial logistic regression andMarkov random fields
    • Mar.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectralimage segmentation using subspace multinomial logistic regression andMarkov random fields," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3,pp. 809-823, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 28
    • 2642530204 scopus 로고    scopus 로고
    • Nonparametric weighted feature extractionfor classification
    • May
    • B.-C. Kuo and D. A. Landgrebe, "Nonparametric weighted feature extractionfor classification," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 5,pp. 1096-1105, May 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.5 , pp. 1096-1105
    • Kuo, B.-C.1    Landgrebe, D.A.2
  • 29
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectralimage classification
    • Jun.
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectralimage classification," IEEE Trans. Geosci. Remote Sens., vol. 43,no. 6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 30
    • 15944411032 scopus 로고    scopus 로고
    • A collection of data for urban area characterization
    • 2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings: Science for Society: Exploring and Managing a Changing Planet. IGARSS 2004
    • P. Gamba, "A collection of data for urban area characterization, " in Proc.Int. Geosci. Remote Sens. Symp., Anchorage, AK, USA, Sep. 2004, vol. 1,pp. 69-72. (Pubitemid 40438445)
    • (2004) International Geoscience and Remote Sensing Symposium (IGARSS) , vol.1 , pp. 69-72
    • Gamba, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.