메뉴 건너뛰기




Volumn 53, Issue 11, 2015, Pages 6114-6133

Simultaneous sparse graph embedding for hyperspectral image classification

Author keywords

Classification; hyperspectral image (HSI); linear graph embedding (LGE); multimanifold learning; simultaneous sparse representation (SSR); sparse graph embedding (SGE)

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA STRUCTURES; FEATURE EXTRACTION; GRAPH THEORY; INDEPENDENT COMPONENT ANALYSIS; MATRIX ALGEBRA; SPECTROSCOPY;

EID: 85027931104     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2015.2432059     Document Type: Article
Times cited : (58)

References (46)
  • 1
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • Sep.
    • A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, pp. S110-S122, Sep. 2009.
    • (2009) Remote Sens. Environ. , vol.113 , pp. S110-S122
    • Plaza, A.1
  • 2
    • 84888349041 scopus 로고    scopus 로고
    • Hyperspectral remote sensing data analysis and future challenges
    • Jun.
    • J. Bioucas-Dias et al., "Hyperspectral remote sensing data analysis and future challenges," IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2, pp. 6-36, Jun. 2013.
    • (2013) IEEE Geosci. Remote Sens. Mag. , vol.1 , Issue.2 , pp. 6-36
    • Bioucas-Dias, J.1
  • 3
    • 84891742004 scopus 로고    scopus 로고
    • Progress in hyperspectral remote sensing science and technology in China over the past three decades
    • Jan.
    • Q. X. Tong, Y. Q. Xue, and L. F. Zhang, "Progress in hyperspectral remote sensing science and technology in china over the past three decades," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 1, pp. 70-91, Jan. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.1 , pp. 70-91
    • Tong, Q.X.1    Xue, Y.Q.2    Zhang, L.F.3
  • 6
    • 0036564114 scopus 로고    scopus 로고
    • An adaptive method for combined covariance estimation and classification
    • May
    • Q. Jackson and D. A. Landgrebe, "An adaptive method for combined covariance estimation and classification," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 5, pp. 1082-1087, May 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.5 , pp. 1082-1087
    • Jackson, Q.1    Landgrebe, D.A.2
  • 7
    • 84874545698 scopus 로고    scopus 로고
    • Feature mining for hyper-spectral image classification
    • Mar.
    • X. P. Jia, B. C. Kuo, and M. M. Crawford, "Feature mining for hyper-spectral image classification," Proc. IEEE, vol. 101, no. 3, pp. 676-697, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 676-697
    • Jia, X.P.1    Kuo, B.C.2    Crawford, M.M.3
  • 8
    • 85032751123 scopus 로고    scopus 로고
    • Manifold-learning-based feature extraction for classification of hyperspectral data
    • Jan.
    • D. Lunga, S. Prasad, M. M. Crawford, and O. Ersoy, "Manifold-learning-based feature extraction for classification of hyperspectral data," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 55-66, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 55-66
    • Lunga, D.1    Prasad, S.2    Crawford, M.M.3    Ersoy, O.4
  • 9
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Dec. 22
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 22, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 10
    • 8644228268 scopus 로고    scopus 로고
    • Locality preserving projections
    • Vancouver, BC, Canada
    • X. He and P. Niyogi, "Locality preserving projections," in Proc. Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2003, vol. 16, pp. 234-241.
    • (2003) Proc. Adv. Neural Inf. Process. Syst , vol.16 , pp. 234-241
    • He, X.1    Niyogi, P.2
  • 11
    • 61349199062 scopus 로고    scopus 로고
    • Classification of hy-perspectral images with regularized linear discriminant analysis
    • Mar.
    • T. V. Bandos, L. Bruzzone, and G. Camps-Valls, "Classification of hy-perspectral images with regularized linear discriminant analysis," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862-873, Mar. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 862-873
    • Bandos, T.V.1    Bruzzone, L.2    Camps-Valls, G.3
  • 12
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • May
    • M. Sugiyama, "Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis," J. Mach. Learn. Res., vol. 8, pp. 1027-1061, May 2007.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 13
    • 84890426252 scopus 로고    scopus 로고
    • Hyperspectral image classification using nearest feature line embedding approach
    • Jan.
    • Y. L. Chang, J. N. Liu, C. C. Han, and Y. N. Chen, "Hyperspectral image classification using nearest feature line embedding approach," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 278-287, Jan. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.1 , pp. 278-287
    • Chang, Y.L.1    Liu, J.N.2    Han, C.C.3    Chen, Y.N.4
  • 14
    • 84871736244 scopus 로고    scopus 로고
    • Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction
    • Jan.
    • L. P. Zhang, L. F. Zhang, D. C. Tao, and X. Huang, "Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 242-256, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 242-256
    • Zhang, L.P.1    Zhang, L.F.2    Tao, D.C.3    Huang, X.4
  • 17
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Dec.
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 5500, pp. 2319-2323, Dec. 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 18
    • 84883748507 scopus 로고    scopus 로고
    • Semisupervised discriminative locally enhanced alignment for hyperspectral image classification
    • Sep.
    • Q. Shi, L. P. Zhang, and B. Du, "Semisupervised discriminative locally enhanced alignment for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 9, pp. 4800-4815, Sep. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.9 , pp. 4800-4815
    • Shi, Q.1    Zhang, L.P.2    Du, B.3
  • 20
    • 33947194180 scopus 로고    scopus 로고
    • Graph embedding and extensions: A general framework for dimensionality reduction
    • Jan.
    • S. C. Yan et al., "Graph embedding and extensions: A general framework for dimensionality reduction," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 40-51, Jan. 2007.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.1 , pp. 40-51
    • Yan, S.C.1
  • 21
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspec-tral image classification
    • Jun.
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspec-tral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 24
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • Jun.
    • J. Wright et al., "Sparse representation for computer vision and pattern recognition," Proc. IEEE, vol. 98, no. 6, pp. 1031-1044, Jun. 2010.
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 1031-1044
    • Wright, J.1
  • 25
    • 69049112203 scopus 로고    scopus 로고
    • Sparsity preserving projections with applications to face recognition
    • Jan.
    • L. S. Qiao, S. C. Chen, and X. Y Tan, "Sparsity preserving projections with applications to face recognition," Pattern Recog., vol. 43, no. 1, pp. 331-341, Jan. 2010.
    • (2010) Pattern Recog. , vol.43 , Issue.1 , pp. 331-341
    • Qiao, L.S.1    Chen, S.C.2    Tan, X.Y.3
  • 26
    • 84890731484 scopus 로고    scopus 로고
    • Classification of hyperspectral remote-sensing images based on sparse manifold learning
    • Nov.
    • H. Huang, "Classification of hyperspectral remote-sensing images based on sparse manifold learning," J. Appl. Remote Sens., vol. 7, no. 1, pp. 073464-073464, Nov. 2013.
    • (2013) J. Appl. Remote Sens. , vol.7 , Issue.1 , pp. 073464-073464
    • Huang, H.1
  • 27
    • 84938397275 scopus 로고    scopus 로고
    • 1-graph for hyperspectral remote-sensing image classification
    • Mar.
    • 1-graph for hyperspectral remote-sensing image classification," Int. J. Remote Sens., vol. 36, no. 5, pp. 1307-1328, Mar. 2015.
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.5 , pp. 1307-1328
    • Huang, H.1    Luo, F.2    Ma, Z.3    Liu, Z.4
  • 28
    • 84896390467 scopus 로고    scopus 로고
    • Sparse graph-based discriminant analysis for hyperspectral imagery
    • Jul.
    • N. H. Ly, Q. Du, and J. E. Fowler, "Sparse graph-based discriminant analysis for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 3872-3884, Jul. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.7 , pp. 3872-3884
    • Ly, N.H.1    Du, Q.2    Fowler, J.E.3
  • 29
    • 61849137245 scopus 로고    scopus 로고
    • Quality assessment of dimensionality reduction: Rank-based criteria
    • Mar.
    • J. A. Lee and M. Verleysen, "Quality assessment of dimensionality reduction: Rank-based criteria," Neurocomputing, vol. 72, no. 7-9, pp. 1431-1443, Mar. 2009.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1431-1443
    • Lee, J.A.1    Verleysen, M.2
  • 30
    • 30844445842 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
    • Mar.
    • J. A. Tropp, A. C. Gilbert, and M. J. Strauss, "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit," Signal Process., vol. 86, no. 3, pp. 572-588, Mar. 2006.
    • (2006) Signal Process. , vol.86 , Issue.3 , pp. 572-588
    • Tropp, J.A.1    Gilbert, A.C.2    Strauss, M.J.3
  • 31
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Oct.
    • Y Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classification using dictionary-based sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 32
    • 84905922593 scopus 로고    scopus 로고
    • A nonlocal weighted joint sparse representation classification method for hyperspectral imagery
    • Jun.
    • H. Y Zhang, J. Y Li, Y C. Huang, and L. P. Zhang, "A nonlocal weighted joint sparse representation classification method for hyperspectral imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2056-2065, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.6 , pp. 2056-2065
    • Zhang, H.Y.1    Li, J.Y.2    Huang, Y.C.3    Zhang, L.P.4
  • 33
    • 84872911794 scopus 로고    scopus 로고
    • Spherical stochastic neighbor embedding of hyperspectral data
    • Feb.
    • D. Lunga and O. Ersoy, "Spherical stochastic neighbor embedding of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 857-871, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 857-871
    • Lunga, D.1    Ersoy, O.2
  • 34
    • 84890403382 scopus 로고    scopus 로고
    • Multidimensional artificial field embedding with spatial sensitivity
    • Feb.
    • D. Lunga and O. Ersoy, "Multidimensional artificial field embedding with spatial sensitivity," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 1518-1532, Feb. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.2 , pp. 1518-1532
    • Lunga, D.1    Ersoy, O.2
  • 35
    • 14644422171 scopus 로고    scopus 로고
    • Exploiting manifold geometry in hyperspectral imagery
    • Mar.
    • C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina, "Exploiting manifold geometry in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 441-454, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 441-454
    • Bachmann, C.M.1    Ainsworth, T.L.2    Fusina, R.A.3
  • 36
    • 84893509497 scopus 로고    scopus 로고
    • Clustering on multi-layer graphs via subspace analysis on Grassmann manifolds
    • Feb.
    • X. W. Dong, P. Frossard, P. Vandergheynst, and N. Nefedov, "Clustering on multi-layer graphs via subspace analysis on Grassmann manifolds," IEEE Trans. Signal Process., vol. 62, no. 4, pp. 905-918, Feb. 2014.
    • (2014) IEEE Trans. Signal Process. , vol.62 , Issue.4 , pp. 905-918
    • Dong, X.W.1    Frossard, P.2    Vandergheynst, P.3    Nefedov, N.4
  • 37
    • 84891560778 scopus 로고    scopus 로고
    • Hierarchical manifold learning with applications to supervised classification for high-resolution remotely sensed images
    • Mar.
    • H. Hong-Bing, H. Hong, and F. Tao, "Hierarchical manifold learning with applications to supervised classification for high-resolution remotely sensed images," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 3, pp. 1677-1692, Mar. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.3 , pp. 1677-1692
    • Hong-Bing, H.1    Hong, H.2    Tao, F.3
  • 39
    • 34247470408 scopus 로고    scopus 로고
    • Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images
    • May
    • A. Foi, V. Katkovnik, and K. Egiazarian, "Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images," IEEE Trans. Image Process., vol. 16, no. 5, pp. 1395-1411, May 2007.
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.5 , pp. 1395-1411
    • Foi, A.1    Katkovnik, V.2    Egiazarian, K.3
  • 40
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new Bayesian approach with active learning
    • Oct.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Hyperspectral image segmentation using a new Bayesian approach with active learning," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3947-3960, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 41
    • 84903270810 scopus 로고    scopus 로고
    • Manifold-based sparse representation for hyperspectral image classification
    • Dec
    • Y Y Tang, H. Yuan, and L. Li, "Manifold-based sparse representation for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 12, pp. 7606-7618, Dec 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.12 , pp. 7606-7618
    • Tang, Y.Y.1    Yuan, H.2    Li, L.3
  • 42
    • 84865425579 scopus 로고    scopus 로고
    • Robust and scalable graph-based semisupervised learning
    • Sep.
    • W. Liu, J. Wang, and S. F Chang, "Robust and scalable graph-based semisupervised learning," Proc. IEEE, vol. 100, no. 9, pp. 2624-2638, Sep. 2012.
    • (2012) Proc. IEEE , vol.100 , Issue.9 , pp. 2624-2638
    • Liu, W.1    Wang, J.2    Chang, S.F.3
  • 43
    • 84860318734 scopus 로고    scopus 로고
    • View generation for multiview maximum disagreement based active learning for hyperspectral image classification
    • May
    • W Di and M. M. Crawford, "View generation for multiview maximum disagreement based active learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1942-1954, May 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.5 , pp. 1942-1954
    • Di, W.1    Crawford, M.M.2
  • 44
    • 56449127949 scopus 로고    scopus 로고
    • Grassmann discriminant analysis: A unifying view on subspace-based learning
    • New York, NY, USA
    • J. Hamm and D. D. Lee, "Grassmann discriminant analysis: A unifying view on subspace-based learning," in Proc. 25th ICML, New York, NY, USA, 2008, pp. 376-383.
    • (2008) Proc. 25th ICML , pp. 376-383
    • Hamm, J.1    Lee, D.D.2
  • 45
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • Dec.
    • J. A. Tropp and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655-4666, Dec. 2007.
    • (2007) IEEE Trans. Inf. Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.A.1    Gilbert, A.C.2
  • 46
    • 33745397832 scopus 로고    scopus 로고
    • From graph to manifold Laplacian: The convergence rate
    • Jul.
    • A. Singer, "From graph to manifold Laplacian: The convergence rate," Appl. Comput. Harmonic Anal., vol. 21, no. 1, pp. 128-134, Jul. 2006.
    • (2006) Appl. Comput. Harmonic Anal. , vol.21 , Issue.1 , pp. 128-134
    • Singer, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.