메뉴 건너뛰기




Volumn 101, Issue 3, 2013, Pages 593-608

Active learning: Any value for classification of remotely sensed data?

Author keywords

Active learning; adaptation; classification; high resolution multispectral; hyperspectral; multiview; spatial learning; support vector machines (SVMs)

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA HANDLING; PIXELS; REMOTE SENSING; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 84874518998     PISSN: 00189219     EISSN: None     Source Type: Journal    
DOI: 10.1109/JPROC.2012.2231951     Document Type: Article
Times cited : (163)

References (76)
  • 1
    • 33748331356 scopus 로고    scopus 로고
    • A multilevel context-based system for classification of very high spatial resolution images
    • DOI 10.1109/TGRS.2006.875360, 1677767
    • L. Bruzzone and L. Carlin, "A multilevel context-based system for classification of very high resolution images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 9, pp. 2587-2600, Sep. 2006. (Pubitemid 44321552)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.9 , pp. 2587-2600
    • Bruzzone, L.1    Carlin, L.2
  • 2
    • 64549105242 scopus 로고    scopus 로고
    • A neural network approach using multi-scale textural metrics from very high resolution panchromatic imagery for urban land-use classification
    • F. Pacifici, M. Chini, and W. J. Emery, "A neural network approach using multi-scale textural metrics from very high resolution panchromatic imagery for urban land-use classification," Remote Sens. Environ., vol. 113, no. 1, pp. 1276-1292, 2009.
    • (2009) Remote Sens. Environ , vol.113 , Issue.1 , pp. 1276-1292
    • Pacifici, F.1    Chini, M.2    Emery, W.J.3
  • 3
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis as a high dimensional signal processing problem
    • Jan
    • D. Landgrebe, "Hyperspectral image data analysis as a high dimensional signal processing problem," IEEE Signal Process., vol. 19, no. 1, pp. 17-28, Jan. 2002.
    • (2002) IEEE Signal Process , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 5
    • 33747610735 scopus 로고    scopus 로고
    • Training set size requirements for the classification of a specific class
    • DOI 10.1016/j.rse.2006.03.004, PII S0034425706001234
    • G. M. Foody, A. Mathur, C. Sanchez-Hernandez, and D. S. Boyd, "Training set size requirements for the classification of a specific class," Remote Sens. Environ., vol. 104, no. 1, pp. 1-14, 2006. (Pubitemid 44262339)
    • (2006) Remote Sensing of Environment , vol.104 , Issue.1 , pp. 1-14
    • Foody, G.M.1    Mathur, A.2    Sanchez-Hernandez, C.3    Boyd, D.S.4
  • 6
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan
    • G. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 8
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vector machines
    • Stanford, CA, Jun. 20-Jul
    • G. Schohn and D. Cohn, "Less is more: Active learning with support vector machines," in Proc. 17th Int. Conf. Mach. Learn., Stanford, CA, Jun. 20-Jul. 2 2000, pp. 839-846.
    • (2000) Proc. 17th Int. Conf. Mach. Learn. , vol.2 , pp. 839-846
    • Schohn, G.1    Cohn, D.2
  • 9
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller, "Support vector machine active learning with applications to text classification," J. Mach. Learn. Res., vol. 2, pp. 45-66, 2002.
    • (2002) J. Mach. Learn. Res , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 10
    • 78650869390 scopus 로고    scopus 로고
    • A literature survey of active machine learning in the context of natural language processing
    • Kista, Sweden, SICS Tech. Rep T2009
    • F. Olsson, "A literature survey of active machine learning in the context of natural language processing," Swedish Inst. Comput. Sci. (SICS), Kista, Sweden, SICS Tech. Rep. T2009:06, 2009.
    • (2009) Swedish Inst. Comput. Sci. (SICS) , pp. 06
    • Olsson, F.1
  • 11
    • 68949137209 scopus 로고    scopus 로고
    • Univ. WisconsinVMadison, Madison, WI, Comput. Sci. Tech. Rep
    • B. Settles, "Active learning literature survey," Univ. WisconsinVMadison, Madison, WI, Comput. Sci. Tech. Rep. 1648, 2010.
    • (2010) Active Learning Literature Survey , vol.1648
    • Settles, B.1
  • 12
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Jun.
    • D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Muñoz-Maŕ, "A survey of active learning algorithms for supervised remote sensing image classification," IEEE J. Sel. Top. Signal Process., vol. 5, no. 3, pp. 606-617, Jun. 2011.
    • (2011) IEEE J. Sel. Top. Signal Process , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Muñoz-Maŕ, J.5
  • 13
    • 84867060971 scopus 로고    scopus 로고
    • Semisupervised segmentation of remote sensing images with active queries
    • Oct.
    • J. Muñoz-Maŕ, D. Tuia, and G. Camps-Valls, "Semisupervised segmentation of remote sensing images with active queries," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3751-3763, Oct. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.10 , pp. 3751-3763
    • Muñoz-Maŕ, J.1    Tuia, D.2    Camps-Valls, G.3
  • 14
    • 27844451490 scopus 로고    scopus 로고
    • Active learning for detection of mine-like objects in side-scan sonar imagery
    • DOI 10.1109/JOE.2005.850931
    • E. Dura, Y. Zhang, X. Liao, G. J. Dobeck, and L. Carin, "Active learning for detection of mine-like objects in side-scan sonar imagery," IEEE J. Ocean. Eng., vol. 30, no. 2, pp. 360-371, Apr. 2005. (Pubitemid 41656213)
    • (2005) IEEE Journal of Oceanic Engineering , vol.30 , Issue.2 , pp. 360-371
    • Dura, E.1    Zhang, Y.2    Liao, X.3    Dobeck, G.J.4    Carin, L.5
  • 15
    • 84867073344 scopus 로고    scopus 로고
    • Active learning methods for biophysical parameter estimation
    • Oct.
    • E. Pasolli, F. Melgani, N. Alajlan, and Y. Bazi, "Active learning methods for biophysical parameter estimation," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 4071-4084, Oct. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.10 , pp. 4071-4084
    • Pasolli, E.1    Melgani, F.2    Alajlan, N.3    Bazi, Y.4
  • 19
    • 0037047588 scopus 로고    scopus 로고
    • Determination of deforestation rates of the world's humid tropical forests
    • DOI 10.1126/science.1070656
    • F. Achard, H. D. Eva, H.-J. Stibig, P. Mayaux, J. Gallego, T. Richards, and J.-P. Malingreau, "Determination of deforestation rates of the world's humid tropical forests," Science, vol. 5583, pp. 999-1002, 2002. (Pubitemid 34856031)
    • (2002) Science , vol.297 , Issue.5583 , pp. 999-1002
    • Achard, F.1    Eva, H.D.2    Stibig, H.-J.3    Mayaux, P.4    Gallego, J.5    Richards, T.6    Malingreau, J.-P.7
  • 20
    • 28444461469 scopus 로고    scopus 로고
    • Stratified sampling of satellite images with a systematic grid of points
    • F. Javier Gallego, "Stratified sampling of satellite images with a systematic grid of points," ISPRS J. Photogramm. Remote Sens., vol. 59, no. 6, pp. 369-376, 2005.
    • (2005) ISPRS J. Photogramm. Remote Sens , vol.59 , Issue.6 , pp. 369-376
    • Javier Gallego, F.1
  • 21
    • 77649342722 scopus 로고    scopus 로고
    • Monitoring forest areas from continental to territorial levels using a sample of medium spatial resolution satellite imagery
    • H. Eva, S. Carboni, F. Achard, N. Stach, L. Durieux, J.-F. Faure, and D. Mollicone, "Monitoring forest areas from continental to territorial levels using a sample of medium spatial resolution satellite imagery," ISPRS J. Photogramm. Remote Sens., vol. 65, no. 2, pp. 191-197, 2010.
    • (2010) ISPRS J. Photogramm. Remote Sens , vol.65 , Issue.2 , pp. 191-197
    • Eva, H.1    Carboni, S.2    Achard, F.3    Stach, N.4    Durieux, L.5    Faure, J.-F.6    Mollicone, D.7
  • 22
    • 33747348155 scopus 로고    scopus 로고
    • Directed sampling using remote sensing with a response surface sampling design for site-specific agriculture
    • DOI 10.1016/j.compag.2006.04.003, PII S0168169906000512
    • G. J. Fitzgerald, S. M. Lesch, E. M. Barnes, and W. E. Luckett, "Directed sampling using remote sensing with a response surface sampling design for site-specific agriculture," Comput. Electron. Agr., vol. 53, no. 2, pp. 98-112, 2006. (Pubitemid 44247200)
    • (2006) Computers and Electronics in Agriculture , vol.53 , Issue.2 , pp. 98-112
    • Fitzgerald, G.J.1    Lesch, S.M.2    Barnes, E.M.3    Luckett, W.E.4
  • 25
    • 2942558578 scopus 로고    scopus 로고
    • Segmentation of multispectral remote sensing images using active support vector machines
    • DOI 10.1016/j.patrec.2004.03.004, PII S0167865504000704
    • P. Mitra, B. Uma Shankar, and S. K. Pal, "Segmentation of multispectral remote sensing images using active support vector machines," Pattern Recognit. Lett., vol. 25, no. 9, pp. 1067-1074, 2004. (Pubitemid 38763570)
    • (2004) Pattern Recognition Letters , vol.25 , Issue.9 , pp. 1067-1074
    • Mitra, P.1    Uma Shankar, B.2    Pal, S.K.3
  • 26
    • 79957460116 scopus 로고    scopus 로고
    • Using active learning to adapt remote sensing image classifiers
    • D. Tuia, E. Pasolli, and W. J. Emery, "Using active learning to adapt remote sensing image classifiers," Remote Sens. Environ., vol. 115, no. 9, pp. 2232-2242, 2011.
    • (2011) Remote Sens. Environ , vol.115 , Issue.9 , pp. 2232-2242
    • Tuia, D.1    Pasolli, E.2    Emery, W.J.3
  • 27
    • 79952041537 scopus 로고    scopus 로고
    • Batch mode active learning methods for the interactive classification of remote sensing images
    • Mar.
    • B. Demir, C. Persello, and L. Bruzzone, "Batch mode active learning methods for the interactive classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 1014-1032, Mar. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.3 , pp. 1014-1032
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 28
    • 79955632976 scopus 로고    scopus 로고
    • A fast cluster-assumption based active-learning technique for classification of remote sensing images
    • May
    • S. Patra and L. Bruzzone, "A fast cluster-assumption based active-learning technique for classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1617-1626, May 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.5 , pp. 1617-1626
    • Patra, S.1    Bruzzone, L.2
  • 29
    • 79955522957 scopus 로고    scopus 로고
    • Support vector machine active learning through significance space construction
    • May
    • E. Pasolli, F. Melgani, and Y. Bazi, "Support vector machine active learning through significance space construction," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 431-435, May 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett , vol.8 , Issue.3 , pp. 431-435
    • Pasolli, E.1    Melgani, F.2    Bazi, Y.3
  • 30
  • 31
    • 79957458331 scopus 로고    scopus 로고
    • Active learning via multi-view and local proximity co-regularization for hyperspectral image classification
    • Jun.
    • W. Di and M. M. Crawford, "Active learning via multi-view and local proximity co-regularization for hyperspectral image classification," IEEE J. Sel. Top. Signal Process., vol. 5, no. 3, pp. 618-628, Jun. 2011.
    • (2011) IEEE J. Sel. Top. Signal Process , vol.5 , Issue.3 , pp. 618-628
    • Di, W.1    Crawford, M.M.2
  • 32
    • 84860318734 scopus 로고    scopus 로고
    • View generation for multiview maximum disagreement based active learning for hyperspectral image classification
    • May
    • W. Di and M. M. Crawford, "View generation for multiview maximum disagreement based active learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1942-1954, May 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.5 , pp. 1942-1954
    • Di, W.1    Crawford, M.M.2
  • 33
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new Bayesian approach with active learning
    • Oct.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Hyperspectral image segmentation using a new Bayesian approach with active learning," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3947-3960, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 34
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • DOI 10.1109/TGRS.2007.910220, 4469868
    • S. Rajan, J. Ghosh, and M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008. (Pubitemid 351459470)
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 35
    • 1942517333 scopus 로고    scopus 로고
    • Incorporating diversity in active learning with support vector machines
    • Washington DC
    • K. Brinker, "Incorporating diversity in active learning with support vector machines," in Proc. Int. Conf. Mach. Learn., Washington, DC, 2003, pp. 59-66.
    • (2003) Proc. Int. Conf. Mach. Learn. , pp. 59-66
    • Brinker, K.1
  • 36
    • 33947617297 scopus 로고    scopus 로고
    • Interactive remote-sensing image retrieval using active relevance feedback
    • DOI 10.1109/TGRS.2007.892007
    • M. Ferecatu and N. Boujemaa, "Interactive remote sensing image retrieval using active relevance feedback," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 818-826, Apr. 2007. (Pubitemid 46495617)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.4 , pp. 818-826
    • Ferecatu, M.1    Boujemaa, N.2
  • 37
    • 84864278874 scopus 로고    scopus 로고
    • Memory-based cluster sampling for remote sensing image classification
    • Aug.
    • M. Volpi, D. Tuia, and M. Kanevski, "Memory-based cluster sampling for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 8, pp. 3096-3106, Aug. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.8 , pp. 3096-3106
    • Volpi, M.1    Tuia, D.2    Kanevski, M.3
  • 38
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell, vol. 20, no. 8, pp. 832-844, Aug. 1998. (Pubitemid 128741345)
    • (1998) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 40
    • 42649132098 scopus 로고    scopus 로고
    • The value of agreement a new boosting algorithm
    • DOI 10.1016/j.jcss.2007.06.005, PII S0022000007000712
    • B. Leskes and L. Torenvliet, "The value of agreement: A new boosting algorithm," J. Comput. Syst. Sci., vol. 74, no. 4, pp. 557-586, 2008. (Pubitemid 351601546)
    • (2008) Journal of Computer and System Sciences , vol.74 , Issue.4 , pp. 557-586
    • Leskes, B.1    Torenvliet, L.2
  • 41
    • 77956708689 scopus 로고    scopus 로고
    • Semi-supervised learning by disagreement
    • Z. Zhou and M. Li, "Semi-supervised learning by disagreement," Knowl. Inf. Syst., vol. 24, no. 24, pp. 415-439, 2009.
    • (2009) Knowl. Inf. Syst , vol.24 , Issue.24 , pp. 415-439
    • Zhou, Z.1    Li, M.2
  • 42
    • 0005986550 scopus 로고
    • Learning classification with unlabeled data
    • V. R. de Sa, "Learning classification with unlabeled data," in Proc. Adv. Neural Inf. Process. Syst., 1994, vol. 6, pp. 112-119.
    • (1994) Proc. Adv. Neural Inf. Process. Syst , vol.6 , pp. 112-119
    • De Sa, V.R.1
  • 43
    • 0346061723 scopus 로고    scopus 로고
    • High-dimensional data analysis: The curses and blessings of dimensionality
    • presented at the Los Angeles, CA Aug Aide-Memoire Invited Lecture
    • D. L. Donoho, "High-dimensional data analysis: The curses and blessings of dimensionality," presented at the Conf. "Mathematical Challenges of the 21st Century", Los Angeles, CA, Aug. 2000, Aide-Memoire Invited Lecture.
    • (2000) Conf "mathematical Challenges of the 21st Century
    • Donoho, D.L.1
  • 44
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Mar
    • J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-490, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 480-490
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 45
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 46
    • 14844341319 scopus 로고    scopus 로고
    • Unsupervised multistage image classification using hierarchical clustering with a bayesian similarity measure
    • DOI 10.1109/TIP.2004.841195
    • S. Lee and M. M. Crawford, "Unsupervised multistage image classification using hierarchical clustering with a bayesian similarity measure," IEEE Trans. Image Process., vol. 14, no. 3, pp. 312-320, Mar. 2005. (Pubitemid 40351909)
    • (2005) IEEE Transactions on Image Processing , vol.14 , Issue.3 , pp. 312-320
    • Lee, S.1    Crawford, M.M.2
  • 47
    • 12844273639 scopus 로고    scopus 로고
    • Hierarchical clustering of multispectral images using combined spectral and spatial criteria
    • DOI 10.1109/LGRS.2004.839646
    • A. Marcal and L. Castro, "Hierarchical clustering of multispectral images using combined spectral and spatial criteria," IEEE Geosci. Remote Sens. Lett., vol. 2, no. 1, pp. 59-63, Jan. 2005. (Pubitemid 40162806)
    • (2005) IEEE Geoscience and Remote Sensing Letters , vol.2 , Issue.1 , pp. 59-63
    • Marcal, A.R.S.1    Castro, L.2
  • 48
    • 0031631377 scopus 로고    scopus 로고
    • Image segmentation by region growing and spectral clustering with a natural convergence criterion
    • Seattle, WA, Jul. 6-10
    • J. Tilton, "Image segmentation by region growing and spectral clustering with a natural convergence criterion," in Proc. IEEE Geosci. Remote Sens. Symp., Seattle, WA, Jul. 6-10, 1998, vol. 4, pp. 1766-1768.
    • (1998) Proc. IEEE Geosci. Remote Sens. Symp. , vol.4 , pp. 1766-1768
    • Tilton, J.1
  • 49
    • 33745728148 scopus 로고    scopus 로고
    • Automated selection of results in hierarchical segmentations of remotely sensed hyperspectral images
    • Seoul, Korea, Jul. 25-29
    • A. J. Plaza and J. C. Tilton, "Automated selection of results in hierarchical segmentations of remotely sensed hyperspectral images," in Proc. IEEE Geosci. Remote Sens. Symp., Seoul, Korea, Jul. 25-29, 2005, vol. 7, pp. 4946-4949.
    • (2005) Proc. IEEE Geosci. Remote Sens. Symp. , vol.7 , pp. 4946-4949
    • Plaza, A.J.1    Tilton, J.C.2
  • 51
    • 0015604699 scopus 로고
    • An effective heuristic algorithm for the traveling-salesman problem
    • S. Lin and B. W. Kernighan, "An effective heuristic algorithm for the traveling-salesman problem," Oper. Res., vol. 21, pp. 498-516, 1973.
    • (1973) Oper. Res , vol.21 , pp. 498-516
    • Lin, S.1    Kernighan, B.W.2
  • 53
    • 84873177815 scopus 로고    scopus 로고
    • A cost-sensitive active learning technique for the definition of effective training sets for supervised classifiers
    • Munich, Germany, Jul 22-27
    • B. Demir, L. Minello, and L. Bruzzone, "A cost-sensitive active learning technique for the definition of effective training sets for supervised classifiers," in Proc. IEEE Geosci. Remote Sens. Symp., Munich, Germany, Jul. 22-27, 2012, pp. 1781-1784.
    • (2012) Proc. IEEE Geosci. Remote Sens. Symp. , pp. 1781-1784
    • Demir, B.1    Minello, L.2    Bruzzone, L.3
  • 55
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • DOI 10.1109/4235.996017, PII S1089778X02041012
    • K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182-197, Apr. 2002. (Pubitemid 34555372)
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 57
    • 67649406022 scopus 로고    scopus 로고
    • Enhanced bisecting k-means clustering using intermediate cooperation
    • R. Kashef and M. S. Kamel, "Enhanced bisecting k-means clustering using intermediate cooperation," Pattern Recognit., vol. 42, no. 11, pp. 2257-2569, 2009.
    • (2009) Pattern Recognit , vol.42 , Issue.11 , pp. 2257-2569
    • Kashef, R.1    Kamel, M.S.2
  • 58
    • 0003540109 scopus 로고
    • Computer-aided analysis of LANDSAT-I MSS data: A comparison of three approaches, including a 'modified clustering' approach
    • M. D. Fleming, J. S. Berkebile, and R. M. Hoffer, "Computer-aided analysis of LANDSAT-I MSS data: A comparison of three approaches, including a 'modified clustering' approach," Purdue Univ., West Lafayette, IN, LARS Inf. Note 072475, 1975.
    • (1975) Purdue Univ., West Lafayette, IN, LARS Inf. Note
    • Fleming, M.D.1    Berkebile, J.S.2    Hoffer, R.M.3
  • 59
    • 70349332954 scopus 로고    scopus 로고
    • A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability
    • Sep
    • L. Bruzzone and C. Persello, "A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 9, pp. 3180-3191, Sep. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.9 , pp. 3180-3191
    • Bruzzone, L.1    Persello, C.2
  • 60
    • 79959705257 scopus 로고    scopus 로고
    • Spatially adaptive classification of land cover with remote sensing data
    • Jul.
    • G. Jun and J. Ghosh, "Spatially adaptive classification of land cover with remote sensing data," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 7, pp. 2662-2673, Jul. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.7 , pp. 2662-2673
    • Jun, G.1    Ghosh, J.2
  • 62
    • 0035248272 scopus 로고    scopus 로고
    • Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images
    • DOI 10.1109/36.905255, PII S0196289201011585
    • L. Bruzzone and D. Fernandez-Prieto, "Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 456-460, Feb. 2001. (Pubitemid 32271010)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.2 , pp. 456-460
    • Bruzzone, L.1    Prieto, D.F.2
  • 63
    • 63149099144 scopus 로고    scopus 로고
    • Toward the automatic updating of land-cover maps by a domain-adaptation SVM classifier and a circular validation strategy
    • Apr
    • L. Bruzzone and M. Marconcini, "Toward the automatic updating of land-cover maps by a domain-adaptation SVM classifier and a circular validation strategy," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 4, pp. 1108-1122, Apr. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.4 , pp. 1108-1122
    • Bruzzone, L.1    Marconcini, M.2
  • 64
    • 33750840727 scopus 로고    scopus 로고
    • Exploiting class hierarchies for knowledge transfer in hyperspectral data
    • DOI 10.1109/TGRS.2006.878442, 1717735
    • S. Rajan, J. Ghosh, and M. Crawford, "Exploiting class hierarchy for knowledge transfer in hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3408-3417, Nov. 2006. (Pubitemid 44711682)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3408-3417
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 65
    • 78049256476 scopus 로고    scopus 로고
    • Adaptive classification for hyperspectral image data using manifold regularization kernel machines
    • Nov.
    • W. Kim and M. M. Crawford, "Adaptive classification for hyperspectral image data using manifold regularization kernel machines," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4110-4121, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.11 , pp. 4110-4121
    • Kim, W.1    Crawford, M.M.2
  • 66
    • 67649763976 scopus 로고    scopus 로고
    • An efficient active learning algorithm with knowledge transfer for hyperspectral remote sensing data
    • Boston, MA, Jul. 6-11
    • G. Jun and J. Ghosh, "An efficient active learning algorithm with knowledge transfer for hyperspectral remote sensing data," in Proc. IEEE Geosci. Remote Sens. Symp., Boston, MA, Jul. 6-11, 2008, pp. I-52-I-55.
    • (2008) Proc. IEEE Geosci. Remote Sens. Symp.
    • Jun, G.1    Ghosh, J.2
  • 67
    • 84869490360 scopus 로고    scopus 로고
    • Active learning for domain adaptation in the supervised classification of remote sensing images
    • Nov.
    • C. Persello and L. Bruzzone, "Active learning for domain adaptation in the supervised classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4468-4483, Nov. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.11 , pp. 4468-4483
    • Persello, C.1    Bruzzone, L.2
  • 68
    • 84869491853 scopus 로고    scopus 로고
    • SVM-based boosting of active learning strategies for efficient domain adaptation
    • Oct.
    • G. Matasci, D. Tuia, and M. Kanevski, "SVM-based boosting of active learning strategies for efficient domain adaptation," IEEE J. Sel. Top. Appl. Earth Observ., vol. 5, no. 5, pp. 1335-1343, Oct. 2012.
    • (2012) IEEE J. Sel. Top. Appl. Earth Observ , vol.5 , Issue.5 , pp. 1335-1343
    • Matasci, G.1    Tuia, D.2    Kanevski, M.3
  • 69
    • 84872937450 scopus 로고    scopus 로고
    • Learning user's confidence for active learning
    • Feb. DOI: 10.1109/TGRS. 2012.2203605
    • D. Tuia and J. Muñoz-Maŕ, "Learning user's confidence for active learning," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 872-880, Feb. 2013, DOI: 10.1109/TGRS. 2012.2203605.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.2 , pp. 872-880
    • Tuia, D.1    Muñoz-Maŕ, J.2
  • 70
    • 80955170644 scopus 로고    scopus 로고
    • Critical class oriented active learning for hyperspectral image classification
    • Vancouver, BC, Canada, Jul 22-27
    • W. Di and M. Crawford, "Critical class oriented active learning for hyperspectral image classification," in Proc. IEEE Geosci. Remote Sens. Symp., Vancouver, BC, Canada, Jul. 22-27, 2011, pp. 3899-3902.
    • (2011) Proc. IEEE Geosci. Remote Sens. Symp. , pp. 3899-3902
    • Di, W.1    Crawford, M.2
  • 71
    • 84871725096 scopus 로고    scopus 로고
    • Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach
    • Jan.
    • B. Demir, F. Bovolo, and L. Bruzzone, "Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pt. 1, pp. 300-312, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.1 PART 1 , pp. 300-312
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 72
    • 84860338492 scopus 로고    scopus 로고
    • Detection of land-cover transitions in multitemporal remote sensing images with active learning based compound classification
    • May
    • B. Demir, F. Bovolo, and L. Bruzzone, "Detection of land-cover transitions in multitemporal remote sensing images with active learning based compound classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1930-1941, May 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.5 , pp. 1930-1941
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 74
    • 78649745769 scopus 로고    scopus 로고
    • Object based and geo-spatial image analysis: A semi-automatic pre-operational system
    • Toulouse, France, Sep. 20-22 DOI: 10.1117/12.864691
    • J. Michel, J. Inglada, and J. Malik, "Object based and geo-spatial image analysis: A semi-automatic pre-operational system," in Proc. SPIE Remote Sens. Eur., Toulouse, France, Sep. 20-22, 2010, vol. 7830, DOI: 10.1117/12.864691.
    • (2010) Proc. SPIE Remote Sens. Eur. , pp. 7830
    • Michel, J.1    Inglada, J.2    Malik, J.3
  • 75
    • 79951950272 scopus 로고    scopus 로고
    • Support vector machines in remote sensing: A review
    • G. Mountrakis, J. Ima, and C. Ogole, "Support vector machines in remote sensing: A review," ISPRS J. Photogramm. Remote Sens., vol. 66, no. 3, pp. 247-259, 2011.
    • (2011) ISPRS J. Photogramm. Remote Sens , vol.66 , Issue.3 , pp. 247-259
    • Mountrakis, G.1    Ima, J.2    Ogole, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.