메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 95-98

HYPERSPECTRAL IMAGE DENOISING with CUBIC TOTAL VARIATION MODEL

Author keywords

Augmented Lagrangian Method; Cubic Total Variation; Denoising; Hyperspectral Image

Indexed keywords


EID: 85037540482     PISSN: 21949042     EISSN: 21949050     Source Type: Conference Proceeding    
DOI: 10.5194/isprsannals-I-7-95-2012     Document Type: Conference Paper
Times cited : (76)

References (10)
  • 1
    • 31344444452 scopus 로고    scopus 로고
    • Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage
    • Othman H. and Qian S., 2006. Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage. IEEE Trans. Geosci. Remote Sens., 44(2), pp. 397-408.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.2 , pp. 397-408
    • Othman, H.1    Qian, S.2
  • 2
    • 57749171600 scopus 로고    scopus 로고
    • Simultaneous dimensionality reduction and denoising of hyperspectral imagery using bivariate wavelet shrinking and principal component analysis
    • Chen G. and Qian S., 2008. Simultaneous dimensionality reduction and denoising of hyperspectral imagery using bivariate wavelet shrinking and principal component analysis. Can. J. Remote Sens., 34(5), pp. 447-454.
    • (2008) Can. J. Remote Sens. , vol.34 , Issue.5 , pp. 447-454
    • Chen, G.1    Qian, S.2
  • 3
    • 70449395534 scopus 로고    scopus 로고
    • Denoising and Dimensionality Reduction of Hyperspectral Imagery using Wavelet Packets, Neighbour Shrinking and Principal Component Analysis
    • Chen G. and Qian S., 2009. Denoising and Dimensionality Reduction of Hyperspectral Imagery using Wavelet Packets, Neighbour Shrinking and Principal Component Analysis. Int. J. Remote Sens., 30(18), pp. 4889-4895.
    • (2009) Int. J. Remote Sens. , vol.30 , Issue.18 , pp. 4889-4895
    • Chen, G.1    Qian, S.2
  • 4
    • 45849101292 scopus 로고    scopus 로고
    • Noise removal from hyperspectral images by multidimensional filtering
    • Letexier D. and Bourennane S., 2008. Noise Removal from Hyperspectral Images by Multidimensional Filtering. IEEE Trans. Geosci. Remote Sens., 46(7), pp. 2061-2069.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.7 , pp. 2061-2069
    • Letexier, D.1    Bourennane, S.2
  • 5
    • 85008020231 scopus 로고    scopus 로고
    • Anisotropic diffusion for hyperspectral imagery enhancement
    • Wang Y., Niu R., and Yu X., 2010. Anisotropic Diffusion for Hyperspectral Imagery Enhancement. IEEE Sensors J., 10(3), pp. 469-477.
    • (2010) IEEE Sensors J. , vol.10 , Issue.3 , pp. 469-477
    • Wang, Y.1    Niu, R.2    Yu, X.3
  • 6
    • 79952041437 scopus 로고    scopus 로고
    • Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage
    • Chen G., Qian S., and Xie W., 2011. Denoising of Hyperspectral Imagery Using Principal Component Analysis and Wavelet Shrinkage. IEEE Trans. Geosci. Remote Sens., 49(3), pp. 973-980.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.3 , pp. 973-980
    • Chen, G.1    Qian, S.2    Xie, W.3
  • 7
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • Rudin L., Osher S., and Fatemi E., 1992. Nonlinear total variation based noise removal algorithms. Physica D, 60(4), pp. 259-268.
    • (1992) Physica D , vol.60 , Issue.4 , pp. 259-268
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 8
    • 80054082634 scopus 로고    scopus 로고
    • A signal processing approach to generalized 1-D total variation
    • Karahanoglu F. I., Bayram I. and De Ville D. V., 2011. A Signal Processing Approach to Generalized 1-D Total Variation. IEEE Trans. Signal Processing, 59(11), pp. 5265-5274.
    • (2011) IEEE Trans. Signal Processing , vol.59 , Issue.11 , pp. 5265-5274
    • Karahanoglu, F.I.1    Bayram, I.2    De Ville, D.V.3
  • 9
    • 70350716279 scopus 로고    scopus 로고
    • A super-resolution reconstruction algorithm for surveillance images
    • Zhang L., Zhang H., Shen H., and Li P., 2010. A super-resolution reconstruction algorithm for surveillance images. Signal Process., 90(3), pp. 848-859.
    • (2010) Signal Process. , vol.90 , Issue.3 , pp. 848-859
    • Zhang, L.1    Zhang, H.2    Shen, H.3    Li, P.4
  • 10
    • 80054811300 scopus 로고    scopus 로고
    • An augmented lagrangian method for total variation video restoration
    • Chan S., Khoshabeh R., Gibson K., Gill P., and Nguyen T., 2011. An Augmented Lagrangian Method for Total Variation Video Restoration. IEEE Trans. Image Process., 20(11), pp. 3097-3111.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.11 , pp. 3097-3111
    • Chan, S.1    Khoshabeh, R.2    Gibson, K.3    Gill, P.4    Nguyen, T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.