메뉴 건너뛰기




Volumn 5, Issue 2, 2012, Pages 354-379

Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches

Author keywords

Hyperspectral imaging; hyperspectral remote sensing; image analysis; image processing; imaging spectroscopy; inverse problems; linear mixture; machine learning algorithms; nonlinear mixtures; pattern recognition; remote sensing; sparsity; spectroscopy; unmixing

Indexed keywords

HYPERSPECTRAL IMAGING; HYPERSPECTRAL REMOTE SENSING; IMAGING SPECTROSCOPY; LINEAR MIXTURES; NONLINEAR MIXTURES; SPARSITY; UNMIXING;

EID: 84861772901     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2012.2194696     Document Type: Review
Times cited : (2569)

References (223)
  • 1
  • 2
    • 0001070130 scopus 로고
    • Quantitative determination of mineral types and abundances from reflectance spectra using principal component analysis
    • M. O. Smith, P. E. Johnson, and J. B. Adams, "Quantitative determination of mineral types and abundances from reflectance spectra using principal component analysis," in Proc. Lunar and Planetary Science Conf., 1985, vol. 90, pp. 797-904.
    • (1985) Proc. Lunar and Planetary Science Conf. , vol.90 , pp. 797-904
    • Smith, M.O.1    Johnson, P.E.2    Adams, J.B.3
  • 3
    • 0001395470 scopus 로고
    • Spectralmixture modeling: A new analysis of rock and soil types at the viking lander 1 site
    • J. B. Adams, M. O. Smith, and P. E. Johnson, "Spectralmixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site," J. Geophys. Res., vol. 91, pp. 8098-8112, 1986.
    • (1986) J. Geophys. Res. , vol.91 , pp. 8098-8112
    • Adams, J.B.1    Smith, M.O.2    Johnson, P.E.3
  • 8
    • 85032751238 scopus 로고    scopus 로고
    • Signal processing for hyperspectral image exploitation
    • DOI 10.1109/79.974715
    • G. Shaw and D. Manolakis, "Signal processing for hyperspectral image exploitation," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 12-16, 2002. (Pubitemid 34237204)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 12-16
    • Shaw, G.1    Manolakis, D.2
  • 9
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • DOI 10.1109/79.974718
    • D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, 2002. (Pubitemid 34237205)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 10
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • DOI 10.1109/79.974724
    • D. Manolakis and G. Shaw, "Detection algorithms for hyperspectral imaging applications," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 29-43, 2002. (Pubitemid 34237206)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.G.1    Shaw, G.2
  • 14
    • 38749103903 scopus 로고    scopus 로고
    • Classification of sound and stained wheat grains using visible and near infrared hyperspectral image analysis
    • M. Berman, P. Conner, L. Whitbourn, D. Coward, B. Osborne, and M. Southan, "Classification of sound and stained wheat grains using visible and near infrared hyperspectral image analysis," J. Near Infrared Spectroscopy, vol. 15, no. 6, pp. 351-358, 2007.
    • (2007) J. Near Infrared Spectroscopy , vol.15 , Issue.6 , pp. 351-358
    • Berman, M.1    Conner, P.2    Whitbourn, L.3    Coward, D.4    Osborne, B.5    Southan, M.6
  • 15
    • 35548953824 scopus 로고    scopus 로고
    • Hyperspectral imaging - an emerging process analytical tool for food quality and safety control
    • DOI 10.1016/j.tifs.2007.06.001, PII S0924224407002026
    • A. Gowen, C. O'Donnell, P. Cullen, G. Downey, and J. Frias, "Hyperspectral imaging-an emerging process analytical tool for food quality and safety control," Trends in Food Science & Technology, vol. 18, no. 12, pp. 590-598, 2007. (Pubitemid 350017801)
    • (2007) Trends in Food Science and Technology , vol.18 , Issue.12 , pp. 590-598
    • Gowen, A.A.1    O'Donnell, C.P.2    Cullen, P.J.3    Downey, G.4    Frias, J.M.5
  • 16
    • 50349103029 scopus 로고    scopus 로고
    • Feasibiliy of near-infrared hyperspeectral imaging to differentiate canadian wheat classes
    • S. Mahest, A. Manichavsagan, D. Jayas, J. Paliwall, and N. White, "Feasibiliy of near-infrared hyperspeectral imaging to differentiate Canadian wheat classes," Biosystems Eng., vol. 101, no. 1, pp. 50-57, 2008.
    • (2008) Biosystems Eng. , vol.101 , Issue.1 , pp. 50-57
    • Mahest, S.1    Manichavsagan, A.2    Jayas, D.3    Paliwall, J.4    White, N.5
  • 17
    • 70350680347 scopus 로고    scopus 로고
    • Kernel based subspace projection of near infrared hyperspectral images of maize kernels
    • R. Larsen, M. Arngren, P. Hansen, and A. Nielsen, "Kernel based subspace projection of near infrared hyperspectral images of maize kernels," Image Analysis, pp. 560-569, 2009.
    • (2009) Image Analysis , pp. 560-569
    • Larsen, R.1    Arngren, M.2    Hansen, P.3    Nielsen, A.4
  • 18
    • 0035175852 scopus 로고    scopus 로고
    • Hyperspectral reflectance and fluorescence imaging system for food quality and safety
    • M. Kim, Y. Chen, and P. Mehl, "Hyperspectral reflectance and fluorescence imaging system for food quality and safety," Trans. the Am. Soc. Agricultural Eng., vol. 44, no. 3, pp. 721-730, 2001.
    • (2001) Trans. The Am. Soc. Agricultural Eng. , vol.44 , Issue.3 , pp. 721-730
    • Kim, M.1    Chen, Y.2    Mehl, P.3
  • 20
    • 53049097130 scopus 로고    scopus 로고
    • Pharmaceutical applications of vibrational chemical imaging and chemometrics: A review
    • C. Gendrin, Y. Roggo, and C. Collet, "Pharmaceutical applications of vibrational chemical imaging and chemometrics: A review," J. Pharmaceutical Biomed. Anal., vol. 48, no. 3, pp. 533-553, 2008.
    • (2008) J. Pharmaceutical Biomed. Anal. , vol.48 , Issue.3 , pp. 533-553
    • Gendrin, C.1    Roggo, Y.2    Collet, C.3
  • 22
    • 76849107932 scopus 로고    scopus 로고
    • Nir hyperspectral unmixing based on a minimum volume criterion for fast and accurate chemical characterization of counterfeit tablets
    • M. B. Lopes, J.-C. Wolff, J. Bioucas-Dias, and M. Figueiredo, "NIR hyperspectral unmixing based on a minimum volume criterion for fast and accurate chemical characterization of counterfeit tablets," Analytical Chemistry, vol. 82, no. 4, pp. 1462-1469, 2010.
    • (2010) Analytical Chemistry , vol.82 , Issue.4 , pp. 1462-1469
    • Lopes, M.B.1    Wolff, J.-C.2    Bioucas-Dias, J.3    Figueiredo, M.4
  • 23
    • 68249091043 scopus 로고    scopus 로고
    • Blind decomposition of transmission light microscopic hyperspectral cube using sparse representation
    • G. Begelman, M. Zibulevsky, E. Rivlin, and T. Kolatt, "Blind decomposition of transmission light microscopic hyperspectral cube using sparse representation," IEEE Trans. Med. Imag., vol. 28, no. 8, pp. 1317-1324, 2009.
    • (2009) IEEE Trans. Med. Imag. , vol.28 , Issue.8 , pp. 1317-1324
    • Begelman, G.1    Zibulevsky, M.2    Rivlin, E.3    Kolatt, T.4
  • 24
    • 77954647676 scopus 로고    scopus 로고
    • Detection and analysis of the intestinal ischemia using visible and invisible hyperspectral imaging
    • H. Akbari, Y. Kosugi, K. Kojima, and N. Tanaka, "Detection and analysis of the intestinal ischemia using visible and invisible hyperspectral imaging," IEEE Trans. Biomed. Eng., vol. 57, no. 8, pp. 2011-2017, 2010.
    • (2010) IEEE Trans. Biomed. Eng. , vol.57 , Issue.8 , pp. 2011-2017
    • Akbari, H.1    Kosugi, Y.2    Kojima, K.3    Tanaka, N.4
  • 25
    • 70449531508 scopus 로고    scopus 로고
    • Fuzzy spectral and spatial feature integration for classification of nonferrous materials in hyperspectral data
    • A. Picon, O. Ghita, P. F. Whelan, and P. M. Iriondo, "Fuzzy spectral and spatial feature integration for classification of nonferrous materials in hyperspectral data," IEEE Trans. Ind. Informat., vol. 5, no. 4, pp. 483-494, 2009.
    • (2009) IEEE Trans. Ind. Informat. , vol.5 , Issue.4 , pp. 483-494
    • Picon, A.1    Ghita, O.2    Whelan, P.F.3    Iriondo, P.M.4
  • 26
    • 77649099036 scopus 로고    scopus 로고
    • Multiparameter receiver operating characteristic analysis for signal detection and classification
    • C.-I Chang, "Multiparameter receiver operating characteristic analysis for signal detection and classification," IEEE Sensors J., vol. 10, no. 3, pp. 423-442, 2010.
    • (2010) IEEE Sensors J. , vol.10 , Issue.3 , pp. 423-442
    • Chang, C.-I.1
  • 27
    • 47749118329 scopus 로고    scopus 로고
    • Forensic analysis of bioagents by x-ray and tof-sims hyperspectral imaging
    • L. N. Brewer, J. A. Ohlhausen, P. G. Kotula, and J. R. Michael, "Forensic analysis of bioagents by X-ray and TOF-SIMS hyperspectral imaging," Forensic Sci. Int., vol. 179, no. 2-3, pp. 98-106, 2008.
    • (2008) Forensic Sci. Int. , vol.179 , Issue.2-3 , pp. 98-106
    • Brewer, L.N.1    Ohlhausen, J.A.2    Kotula, P.G.3    Michael, J.R.4
  • 30
    • 0000186045 scopus 로고
    • Mars: Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance
    • R. B. Singer and T. B. McCord, "Mars: Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance," in Proc. Lunar and Planetary Science Conf., 1979, pp. 1835-1848.
    • (1979) Proc. Lunar and Planetary Science Conf. , pp. 1835-1848
    • Singer, R.B.1    McCord, T.B.2
  • 31
    • 0001473286 scopus 로고
    • Bidirection reflectance spectroscopy. I. Theory
    • B. Hapke, "Bidirection reflectance spectroscopy. I. theory," J. Geophys. Res., vol. 86, pp. 3039-3054, 1981.
    • (1981) J. Geophys. Res. , vol.86 , pp. 3039-3054
    • Hapke, B.1
  • 32
    • 0021644332 scopus 로고
    • Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications
    • R. N. Clark and T. L. Roush, "Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications," J. Geophys. Res., vol. 89, no. 7, pp. 6329-6340, 1984.
    • (1984) J. Geophys. Res. , vol.89 , Issue.7 , pp. 6329-6340
    • Clark, R.N.1    Roush, T.L.2
  • 33
    • 0028389048 scopus 로고
    • Nonlinear spectral mixing model for vegetative and soil surfaces
    • C. C. Borel and S. A. W. Gerstl, "Nonlinear spectral mixing model for vegetative and soil surfaces," Remote Sens. Environ., vol. 47, no. 3, pp. 403-416, 1994.
    • (1994) Remote Sens. Environ. , vol.47 , Issue.3 , pp. 403-416
    • Borel, C.C.1    Gerstl, S.A.W.2
  • 35
    • 84872100099 scopus 로고    scopus 로고
    • Recent developments in spectral unmixing and endmember extraction
    • S. Prasad, L. M. Bruce, and J. Chanussot, Eds. Berlin, Germany: Springer-Verlag, ch. 12
    • A. Plaza, G. Martin, J. Plaza, M. Zortea, and S. Sanchez, "Recent developments in spectral unmixing and endmember extraction," in Optical Remote Sensing, S. Prasad, L. M. Bruce, and J. Chanussot, Eds. Berlin, Germany: Springer-Verlag, 2011, ch. 12, pp. 235-267.
    • (2011) Optical Remote Sensing , pp. 235-267
    • Plaza, A.1    Martin, G.2    Plaza, J.3    Zortea, M.4    Sanchez, S.5
  • 37
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650-663, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 38
    • 12844252952 scopus 로고    scopus 로고
    • Spectral imaging for remote sensing
    • G. Shaw and H. Burke, "Spectral imaging for remote sensing," Lincoln Lab. J., vol. 14, no. 1, pp. 3-28, 2003.
    • (2003) Lincoln Lab. J. , vol.14 , Issue.1 , pp. 3-28
    • Shaw, G.1    Burke, H.2
  • 41
    • 0032710687 scopus 로고    scopus 로고
    • Confidence in linear spectral unmixing of single pixels
    • M. Petrou and P. G. Foschi, "Confidence in linear spectral unmixing of single pixels," IEEE Trans. Geosci. Remote Sens., vol. 37, pp. 624-626, 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , pp. 624-626
    • Petrou, M.1    Foschi, P.G.2
  • 42
    • 0030189048 scopus 로고    scopus 로고
    • On the relationship between spectral unmixing and subspace projection
    • PII S0196289296028471
    • J. J. Settle, "On the relationship between spectral unmixing and subspace projection," IEEE Trans. Geosci. Remote Sens., vol. 34, pp. 1045-1046, 1996. (Pubitemid 126780952)
    • (1996) IEEE Transactions on Geoscience and Remote Sensing , vol.34 , Issue.4 , pp. 1045-1046
    • Settle, J.J.1
  • 43
    • 0023823045 scopus 로고
    • Image processing software for imaging spectrometry data analysis
    • A. S. Mazer and M. Martin, "Image processing software for imaging spectrometry data analysis," Remote Sens. Environ., vol. 24, no. 1, pp. 201-210, 1988.
    • (1988) Remote Sens. Environ. , vol.24 , Issue.1 , pp. 201-210
    • Mazer, A.S.1    Mart, M.2
  • 44
    • 0001256711 scopus 로고
    • Discrimination among semi-arid landscape endmembers using the spectral angle mapper (sam) algorithm
    • R. O. Green, Ed., Publ. 92-14
    • R. H. Yuhas, A. F. H. Goetz, and J. W. Boardman, "Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm," in Proc. Ann. JPL Airborne Geosci. Workshop, R. O. Green, Ed., 1992, vol. 1, pp. 147-149, Publ. 92-14.
    • (1992) Proc. Ann. JPL Airborne Geosci. Workshop , vol.1 , pp. 147-149
    • Yuhas, R.H.1    Goetz, A.F.H.2    Boardman, J.W.3
  • 45
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • J. C. Harsanyi and C.-I Chang, "Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785, 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.-I.2
  • 46
    • 0006606953 scopus 로고    scopus 로고
    • Least squares subspace projection approach to mixed pixel classification for hyperspectral images
    • PII S0196289298028629
    • C. Chang, X. Zhao, M. L. G. Althouse, and J. J. Pan, "Least squares subspace projection approach to mixed pixel classification for hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 898-912, 1998. (Pubitemid 128748499)
    • (1998) IEEE Transactions on Geoscience and Remote Sensing , vol.36 , Issue.3 , pp. 898-912
    • Chang, C.-I.1    Zhao, X.-L.2    Althouse, M.L.G.3    Pan, J.J.4
  • 50
    • 0002330095 scopus 로고    scopus 로고
    • A model of spectral albedo of particulate surfaces: Implications for optical properties of the moon
    • Y. Shkuratov, L. Starukhina, H. Hoffmann, and G. Arnold, "A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon," Icarus, vol. 137, p. 235246, 1999.
    • (1999) Icarus , vol.137 , pp. 235246
    • Shkuratov, Y.1    Starukhina, L.2    Hoffmann, H.3    Arnold, G.4
  • 58
    • 77957976782 scopus 로고    scopus 로고
    • Nonlinear spectral mixture analysis for hyperspectral imagery in an unknown environment
    • N. Raksuntorn and Q. Du, "Nonlinear spectral mixture analysis for hyperspectral imagery in an unknown environment," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 836-840, 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 836-840
    • Raksuntorn, N.1    Du, Q.2
  • 60
    • 70449447668 scopus 로고    scopus 로고
    • Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data
    • W. Fan, B. Hu, J.Miller, andM. Li, "Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data," Int. J. Remote Sens., vol. 30, no. 11, pp. 2951-2962, 2009.
    • (2009) Int. J. Remote Sens. , vol.30 , Issue.11 , pp. 2951-2962
    • Fan, W.1    Hu, B.2    Miller, J.3    Li, M.4
  • 62
    • 80455158223 scopus 로고    scopus 로고
    • Nonlinear unmixing of hyperspectral images using a generalized bilinear model
    • Nov.
    • A. Halimi, Y. Altmann, N. Dobigeon, and J.-Y. Tourneret, "Nonlinear unmixing of hyperspectral images using a generalized bilinear model," IEEE Trans. Geosci. Remote Sens., no. 11, pp. 4153-4162, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , Issue.11 , pp. 4153-4162
    • Halimi, A.1    Altmann, Y.2    Dobigeon, N.3    Tourneret, J.-Y.4
  • 64
    • 0035481565 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks
    • DOI 10.1109/36.957296, PII S0196289201054833
    • K. J. Guilfoyle, M. L. Althouse, and C.-I Chang, "A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 8, pp. 2314-2318, Aug. 2001. (Pubitemid 33048403)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.10 , pp. 2314-2318
    • Guilfoyle, K.J.1    Althouse, M.L.2    Chang, C.-I.3
  • 65
    • 39049103365 scopus 로고    scopus 로고
    • Comparison of non-linear mixture models
    • W. Liu and E. Y. Wu, "Comparison of non-linear mixture models," Remote Sens. Environ., vol. 18, pp. 1976-2003, 2004.
    • (2004) Remote Sens. Environ. , vol.18 , pp. 1976-2003
    • Liu, W.1    Wu, E.Y.2
  • 66
    • 67649398795 scopus 로고    scopus 로고
    • On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images
    • J. Plaza, A. Plaza, R. Perez, and P. Martinez, "On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images," Pattern Recognit., vol. 42, pp. 3032-3045, 2009.
    • (2009) Pattern Recognit. , vol.42 , pp. 3032-3045
    • Plaza, J.1    Plaza, A.2    Perez, R.3    Martinez, P.4
  • 67
    • 77951207013 scopus 로고    scopus 로고
    • Spectral mixture analysis of hyperspectral scenes using intelligently selected training samples
    • J. Plaza and A. Plaza, "Spectral mixture analysis of hyperspectral scenes using intelligently selected training samples," IEEE Geosci. Remote Sens. Lett., vol. 7, pp. 371-375, 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , pp. 371-375
    • Plaza, J.1    Plaza, A.2
  • 68
    • 80955128682 scopus 로고    scopus 로고
    • Nonlinear unmixing of hyperspectral images using radial basis functions and orthogonal least squares
    • Vancouver, Canada, Jul.
    • Y. Altmann, N. Dobigeon, S. McLaughlin, and J.-Y. Tourneret, "Nonlinear unmixing of hyperspectral images using radial basis functions and orthogonal least squares," in Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS), Vancouver, Canada, Jul. 2011, pp. 1151-1154.
    • (2011) Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS) , pp. 1151-1154
    • Altmann, Y.1    Dobigeon, N.2    McLaughlin, S.3    Tourneret, J.-Y.4
  • 69
    • 80455173952 scopus 로고    scopus 로고
    • Pixel unmixing in hyperspectral data by means of neural networks
    • nov.
    • G. Licciardi and F. Del Frate, "Pixel unmixing in hyperspectral data by means of neural networks," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4163-4172, nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4163-4172
    • Licciardi, G.1    Del Frate, F.2
  • 70
    • 84858078312 scopus 로고    scopus 로고
    • Linear versus nonlinear pca for the classification of hyperspectral data based on the extended morphological profiles
    • G. Licciardi, P. R. Marpu, J. Chanussot, and J. A. Benediktsson, "Linear versus nonlinear pca for the classification of hyperspectral data based on the extended morphological profiles," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 447-451, 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.3 , pp. 447-451
    • Licciardi, G.1    Marpu, P.R.2    Chanussot, J.3    Benediktsson, J.A.4
  • 71
    • 84861144324 scopus 로고    scopus 로고
    • Supervised nonlinear spectral unmixing using a post-nonlinear mixing model for hyperspectral imagery
    • to appear
    • Y. Altmann, A. Halimi, N. Dobigeon, and J.-Y. Tourneret, "Supervised nonlinear spectral unmixing using a post-nonlinear mixing model for hyperspectral imagery," IEEE Trans. Image Process., 2012, to appear.
    • (2012) IEEE Trans. Image Process.
    • Altmann, Y.1    Halimi, A.2    Dobigeon, N.3    Tourneret, J.-Y.4
  • 72
    • 79957443437 scopus 로고    scopus 로고
    • Non-linear spectral unmixing by geodesic simplex volume maximization
    • Jun.
    • R. Heylen, D. Burazerovic, and P. Scheunders, "Non-linear spectral unmixing by geodesic simplex volume maximization," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 534-542, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 534-542
    • Heylen, R.1    Burazerovic, D.2    Scheunders, P.3
  • 73
    • 0033310314 scopus 로고    scopus 로고
    • N-findr: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. SPIE Image Spectrometry V,1999, vol. 3753, pp. 266-277.
    • (1999) Proc. SPIE Image Spectrometry V , vol.3753 , pp. 266-277
    • Winter, M.E.1
  • 74
    • 84861197539 scopus 로고    scopus 로고
    • Calculation of geodesic distances in nonlinear mixing models: Application to the generalized bilinear model
    • to appear
    • R. Heylen and P. Scheunders, "Calculation of geodesic distances in nonlinear mixing models: Application to the generalized bilinear model," IEEE Geosci. Remote Sens. Lett., 2012, to appear.
    • (2012) IEEE Geosci. Remote Sens. Lett.
    • Heylen, R.1    Scheunders, P.2
  • 75
    • 84861773119 scopus 로고    scopus 로고
    • Hyperspectral endmember and proportion estimation using macroscopic and microscopic mixture models
    • in preparation
    • R. Close, P. Gader, and J. Wilson, "Hyperspectral endmember and proportion estimation using macroscopic and microscopic mixture models," IEEE Trans. Geosci. Remote Sens., 2012, in preparation.
    • (2012) IEEE Trans. Geosci. Remote Sens.
    • Close, R.1    Gader, P.2    Wilson, J.3
  • 77
    • 0000187025 scopus 로고
    • Quantitative abundance estimates from bidirectional reflectance measurements
    • March
    • J. F. Mustard and C. M. Pieters, "Quantitative abundance estimates from bidirectional reflectance measurements," J. Geophys. Res., vol. 92, pp. E617-E626, March 1987.
    • (1987) J. Geophys. Res. , vol.92
    • Mustard, J.F.1    Pieters, C.M.2
  • 78
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • DOI 10.1109/TIT.2005.862083
    • E. Candès, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, 2006. (Pubitemid 43174093)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.2 , pp. 489-509
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 79
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • D. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, 2006.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.1
  • 80
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • DOI 10.1038/381607a0
    • B. Olshausen and D. Field, "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature, vol. 381, pp. 607-609, 1996. (Pubitemid 26177476)
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 81
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • M. D. Craig, "Minimum-volume transforms for remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 32, pp. 542-552, 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , pp. 542-552
    • Craig, M.D.1
  • 82
    • 62949185285 scopus 로고
    • Convex constraint decomposition of circular dichroism curves of proteins
    • A. Perczel, M. Hollósi, G. Tusnady, and D. Fasman, "Convex constraint decomposition of circular dichroism curves of proteins," Croatica Chim. Acta, vol. 62, pp. 189-200, 1989.
    • (1989) Croatica Chim. Acta , vol.62 , pp. 189-200
    • Perczel, A.1    Hollósi, M.2    Tusnady, G.3    Fasman, D.4
  • 85
    • 33744726231 scopus 로고    scopus 로고
    • Constrained band selection for hyperspectral imagery
    • DOI 10.1109/TGRS.2006.864389
    • C. Chang and S. Wang, "Constrained band selection for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1575-1585, 2006. (Pubitemid 43824504)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.6 , pp. 1575-1585
    • Chang, C.-I.1    Wang, S.2
  • 89
    • 0023854011 scopus 로고
    • Transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • DOI 10.1109/36.3001
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, pp. 65-74, 1988. (Pubitemid 18596008)
    • (1988) IEEE Transactions on Geoscience and Remote Sensing , vol.26 , Issue.1 , pp. 65-74
    • Green Andrew, A.1    Berman Mark2    Switzer Paul3    Craig Maurice, D.4
  • 90
    • 0025430387 scopus 로고
    • Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform
    • DOI 10.1109/36.54356
    • J. B. Lee, S. Woodyatt, and M. Berman, "Enhancement of high spectral resolution remote-sensing data by noise-adjusted principal components transform," IEEE Trans. Geosci. Remote Sens., vol. 28, no. 3, pp. 295-304, 1990. (Pubitemid 20702839)
    • (1990) IEEE Transactions on Geoscience and Remote Sensing , vol.28 , Issue.3 , pp. 295-304
    • Lee James, B.1    Woodyatt A.Stephen2    Berman Mark3
  • 92
    • 8144231500 scopus 로고    scopus 로고
    • A survey of spectral unmixing algorithms
    • N. Keshava, "A survey of spectral unmixing algorithms," Lincoln Lab. J., vol. 14, no. 1, pp. 55-78, 2003.
    • (2003) Lincoln Lab. J. , vol.14 , Issue.1 , pp. 55-78
    • Keshava, N.1
  • 93
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, "Estimating the dimension of a model," Ann. Stat., vol. 6, pp. 461-464, 1978.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 94
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen, "Modeling by shortest data description," Automatica, vol. 14, pp. 465-471, 1978.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 95
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike, "A new look at the statistical model identification, " IEEE Trans. Automat. Contr., vol. 19, no. 6, pp. 716-723, 1974.
    • (1974) IEEE Trans. Automat. Contr. , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 96
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • C.-I Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 97
    • 0021892197 scopus 로고
    • Detection of signals by information theoretic criteria
    • M. Wax and T. Kailath, "Detection of signals by information theoretic criteria," IEEE Trans. Acoust. Speech Signal Process., vol. 33, no. 2, pp. 387-392, 1985.
    • (1985) IEEE Trans. Acoust. Speech Signal Process. , vol.33 , Issue.2 , pp. 387-392
    • Wax, M.1    Kailath, T.2
  • 98
    • 0009055256 scopus 로고
    • Determining the number and identity of spectral endmembers: An integrated approach using neyman-pearson eigenthresholding and iterative constrained rms error minimization
    • J. Harsanyi, W. Farrand, and C.-I Chang, "Determining the number and identity of spectral endmembers: An integrated approach using Neyman-Pearson eigenthresholding and iterative constrained RMS error minimization," in Proc. Thematic Conf. Geologic Remote Sens., 1993, vol. 1, pp. 1-10.
    • (1993) Proc. Thematic Conf. Geologic Remote Sens. , vol.1 , pp. 1-10
    • Harsanyi, J.1    Farrand, W.2    Chang, C.-I.3
  • 100
    • 0030736375 scopus 로고    scopus 로고
    • Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets
    • PII S1045922797002300
    • P. Demartines and J. Hérault, "Curvilinear component analysis: A selforganizing neural network for nonlinear mapping of data sets," IEEE Trans. Neural Netw., vol. 8, no. 1, pp. 148-154, 1997. (Pubitemid 127767788)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.1 , pp. 148-154
    • Demartines, P.1    Herault, J.2
  • 102
    • 84942613317 scopus 로고    scopus 로고
    • Hyperspectral image processing using locally linear embedding
    • D. Kim and L. Finkel, "Hyperspectral image processing using locally linear embedding," in 1st InterIEEE EMBS Conf. Neural Engineering, 2003, pp. 316-319.
    • (2003) 1st InterIEEE EMBS Conf. Neural Engineering , pp. 316-319
    • Kim, D.1    Finkel, L.2
  • 103
    • 39049167499 scopus 로고    scopus 로고
    • Improved manifold coordinate representations of large-scale hyperspectral scenes
    • C. Bachmann, T. Ainsworth, and R. Fusina, "Improved manifold coordinate representations of large-scale hyperspectral scenes," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2786-2803, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2786-2803
    • Bachmann, C.1    Ainsworth, T.2    Fusina, R.3
  • 105
    • 33745698239 scopus 로고    scopus 로고
    • Applying nonlinear manifold learning to hyperspectral data for land cover classification
    • C. Yangchi, M. Crawford, and J. Ghosh, "Applying nonlinear manifold learning to hyperspectral data for land cover classification," in Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS), 2005, vol. 6, pp. 4311-4314.
    • (2005) Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS) , vol.6 , pp. 4311-4314
    • Yangchi, C.1    Crawford, M.2    Ghosh, J.3
  • 106
    • 27544509579 scopus 로고    scopus 로고
    • Manifold learning techniques for the analysis of hyperspectral ocean data
    • DOI 10.1117/12.601834, 35, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI
    • D. Gillis, J. Bowles, G. M. Lamela, W. J. Rhea, C. M. Bachmann, M. Montes, and T. Ainsworth, S. S. Shen and P. E. Lewis, Eds., "Manifold learning techniques for the analysis of hyperspectral ocean data," in Proc. SPIE Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, 2005, vol. 5806, pp. 342-351. (Pubitemid 41545085)
    • (2005) Proceedings of SPIE - The International Society for Optical Engineering , vol.5806 , Issue.PART I , pp. 342-351
    • Gillis, D.1    Bowles, J.2    Lamela, G.M.3    Rhea, W.J.4    Bachmann, C.M.5    Montes, M.6    Ainsworth, T.7
  • 107
    • 34247356156 scopus 로고    scopus 로고
    • Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images
    • DOI 10.1109/LGRS.2006.888105
    • A. Mohan, G. Sapiro, and E. Bosch, "Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 2, pp. 206-210, 2007. (Pubitemid 46645133)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.2 , pp. 206-210
    • Mohan, A.1    Sapiro, G.2    Bosch, E.3
  • 108
    • 33744719449 scopus 로고    scopus 로고
    • Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis
    • DOI 10.1109/TGRS.2005.863297
    • J. Wang and C.-I Chang, "Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1586-1600, 2006. (Pubitemid 43824505)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.6 , pp. 1586-1600
    • Wang, J.1    Chang, C.-I.2
  • 109
    • 50149087099 scopus 로고    scopus 로고
    • Independent component analysis as a tool for the dimensionality reduction and the representation of hyperspectral images
    • M. Lennon, M. Mouchot, G. Mercier, and L. Hubert-Moy, "Independent component analysis as a tool for the dimensionality reduction and the representation of hyperspectral images," in Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS), 2001, vol. 3, pp. 1-4.
    • (2001) Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS) , vol.3 , pp. 1-4
    • Lennon, M.1    Mouchot, M.2    Mercier, G.3    Hubert-Moy, L.4
  • 110
    • 0034314457 scopus 로고    scopus 로고
    • Unsupervised hyperspectral image analysis with projection pursuit
    • A. Ifarraguerri and C.-I Chang, "Unsupervised hyperspectral image analysis with projection pursuit," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 6, pp. 127-143, 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.6 , pp. 127-143
    • Ifarraguerri, A.1    Chang, C.-I.2
  • 111
    • 0033821083 scopus 로고    scopus 로고
    • An information theoretic comparison of projection pursuit and principal component features for classification of landsat tm imagery of central colorado
    • C. Bachmann and T. Donato, "An information theoretic comparison of projection pursuit and principal component features for classification of Landsat TM imagery of central colorado," Int. J. Remote Sens., vol. 21, no. 15, pp. 2927-2935, 2000.
    • (2000) Int. J. Remote Sens. , vol.21 , Issue.15 , pp. 2927-2935
    • Bachmann, C.1    Donato, T.2
  • 112
    • 31344444452 scopus 로고    scopus 로고
    • Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage
    • DOI 10.1109/TGRS.2005.860982
    • H. Othman and S.-E. Qian, "Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 2, pp. 397-408, 2002. (Pubitemid 43146059)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.2 , pp. 397-408
    • Othman, H.1    Qian, S.-E.2
  • 113
    • 0037934716 scopus 로고    scopus 로고
    • Automatic reduction of hyperspectral imagery using wavelet spectral analysis
    • S. Kaewpijit, J. L. Moigne, and T. El-Ghazawi, "Automatic reduction of hyperspectral imagery using wavelet spectral analysis," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 4, pp. 863-871, 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.4 , pp. 863-871
    • Kaewpijit, S.1    Moigne, J.L.2    El-Ghazawi, T.3
  • 114
    • 34547760736 scopus 로고    scopus 로고
    • Image denoising by sparse 3-D transform-domain collaborative filtering
    • DOI 10.1109/TIP.2007.901238
    • K. Dabov, A. Foi, V. Katkovnik, and K. O. Egiazarian, "Image denoising by sparse 3-D transform-domain collaborative filtering," IEEE Trans. Signal Process., vol. 16, no. 8, pp. 2080-2095, 2007. (Pubitemid 47225460)
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.8 , pp. 2080-2095
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 115
    • 0033890553 scopus 로고    scopus 로고
    • Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis
    • DOI 10.1109/36.841987
    • C. A. Bateson, G. P. Asner, and C. A.Wessman, "Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 2, pp. 1083-1094, 2000. (Pubitemid 30594771)
    • (2000) IEEE Transactions on Geoscience and Remote Sensing , vol.38 , Issue.2 , pp. 1083-1094
    • Ann Bateson, C.1    Asner, G.P.2    Wessman, C.A.3
  • 116
    • 84861765367 scopus 로고    scopus 로고
    • Spectral identification of image endmembers determined from aviris data
    • F. Kruse, "Spectral identification of image endmembers determined from AVIRIS data," in Proc. JPL Airborne Earth Sci. Workshop, 1998, vol. 1, pp. 1-10.
    • (1998) Proc. JPL Airborne Earth Sci. Workshop , vol.1 , pp. 1-10
    • Kruse, F.1
  • 117
    • 0001290987 scopus 로고
    • Automated spectral analysis: A geological example using aviris data, northern grapevine mountains, nevada
    • J. Boardman and F. Kruse, "Automated spectral analysis: A geological example using AVIRIS data, northern grapevine mountains, Nevada," in Proc. Thematic Conf. Geologic Remote Sens., 1994, vol. 1, pp. 1-10.
    • (1994) Proc. Thematic Conf. Geologic Remote Sens. , vol.1 , pp. 1-10
    • Boardman, J.1    Kruse, F.2
  • 118
    • 14744289023 scopus 로고    scopus 로고
    • Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability?
    • DOI 10.1016/j.rse.2005.01.002, PII S0034425705000271
    • C. Song, "Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability," Remote Sens. Environ., vol. 95, pp. 248-263, 2005. (Pubitemid 40328616)
    • (2005) Remote Sensing of Environment , vol.95 , Issue.2 , pp. 248-263
    • Song, C.1
  • 119
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, "A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, pp. 4418-4432, 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , pp. 4418-4432
    • Chan, T.-H.1    Chi, C.-Y.2    Huang, Y.-M.3    Ma, W.-K.4
  • 120
    • 0002081183 scopus 로고
    • Automating spectral unmixing of aviris data using convex geometry concepts
    • J. Boardman, "Automating spectral unmixing of AVIRIS data using convex geometry concepts," in Proc. Ann. JPL Airborne Geosci.Workshop, 1993, vol. 1, pp. 11-14.
    • (1993) Proc. Ann. JPL Airborne Geosci.Workshop , vol.1 , pp. 11-14
    • Boardman, J.1
  • 123
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. M. P. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 124
    • 84887415911 scopus 로고    scopus 로고
    • A new growing method for simplex-based endmember extraction algorithm
    • C.-I Chang, C.-C. Wu, W. Liu, and Y.-C. Ouyang, "A new growing method for simplex-based endmember extraction algorithm," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2804-2819, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.-I.1    Wu, C.-C.2    Liu, W.3    Ouyang, Y.-C.4
  • 125
    • 10444268147 scopus 로고    scopus 로고
    • The sequential maximum angle convex cone (smacc) endmember model
    • J. Gruninger, A. Ratkowski, and M. Hoke, "The sequential maximum angle convex cone (SMACC) endmember model," in Proc. SPIE, 2004, vol. 5425, pp. 1-14.
    • (2004) Proc. SPIE , vol.5425 , pp. 1-14
    • Gruninger, J.1    Ratkowski, A.2    Hoke, M.3
  • 126
    • 80455174042 scopus 로고    scopus 로고
    • A simplex volume maximization framework for hyperspectral endmember extraction
    • T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, "A simplex volume maximization framework for hyperspectral endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, 2011.
    • IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 2011
    • Chan, T.-H.1    Ma, W.-K.2    Ambikapathi, A.3    Chi, C.-Y.4
  • 127
    • 52349105056 scopus 로고    scopus 로고
    • Sequential n-findr algorithms
    • C.Wu, S. Chu, and C. Chang, "Sequential n-findr algorithms," in Proc. SPIE, 2008, vol. 7086.
    • (2008) Proc. SPIE , vol.7086
    • Wu, C.1    Chu, S.2    Chang, C.3
  • 128
    • 84856717474 scopus 로고    scopus 로고
    • A convex model for matrix factorization and dimensionality reduction on physical space and its application to blind hyperspectral unmixing
    • CAM Report 02-07
    • M. Moller, E. Esser, S. Osher, G. Sapiro, and J. Xin, "A Convex Model for Matrix Factorization and Dimensionality Reduction on Physical Space and its Application to Blind Hyperspectral Unmixing," UCLA, CAM Report 02-07, 2010.
    • (2010) UCLA
    • Moller, M.1    Esser, E.2    Osher, S.3    Sapiro, G.4    Xin, J.5
  • 129
    • 67349107077 scopus 로고    scopus 로고
    • Autonomous single-pass endmember approximation using lattice auto-associative memories
    • G. X. Ritter, G. Urcid, and M. S. Schmalz, "Autonomous single-pass endmember approximation using lattice auto-associative memories," Neurocomputing, vol. 72, no. 10-12, pp. 2101-2110, 2009.
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2101-2110
    • Ritter, G.X.1    Urcid, G.2    Schmalz, M.S.3
  • 130
    • 79952185736 scopus 로고    scopus 로고
    • A lattice matrix method for hyperspectral image unmixing
    • G. X. Ritter and G. Urcid, "A lattice matrix method for hyperspectral image unmixing," Inf. Sci., vol. 181, no. 10, pp. 1787-1803, 2011.
    • (2011) Inf. Sci. , vol.181 , Issue.10 , pp. 1787-1803
    • Ritter, G.X.1    Urcid, G.2
  • 131
    • 65449136419 scopus 로고    scopus 로고
    • Two lattice computing approaches for the unsupervised segmentation of hyperspectral images
    • [Online]. Available
    • M. Grana, I. Villaverde, J. O. Maldonado, and C. Hernandez, "Two lattice computing approaches for the unsupervised segmentation of hyperspectral images," Neurocomputing, vol. 72, no. 10-12, pp. 2111-2120, 2009 [Online]. Available: http://www.sciencedirect. com/science/article/pii/S0925231208005468
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2111-2120
    • Grana, M.1    Villaverde, I.2    Maldonado, J.O.3    Hernandez, C.4
  • 132
    • 67649830104 scopus 로고    scopus 로고
    • Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data
    • J. Li and J. Bioucas-Dias, "Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data," in Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS), 2008, vol. 3, pp. 250-253.
    • (2008) Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS) , vol.3 , pp. 250-253
    • Li, J.1    Bioucas-Dias, J.2
  • 134
    • 70350488509 scopus 로고    scopus 로고
    • Convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • T. Chan, C. Chi, Y. Huang, and W. Ma, "Convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.1    Chi, C.2    Huang, Y.3    Ma, W.4
  • 135
    • 80455174036 scopus 로고    scopus 로고
    • Chance-constrained robust minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • A. Ambikapathi, T.-H. Chan, W.-K. Ma, and C.-Y. Chi, "Chance- constrained robust minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4194-4209, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4194-4209
    • Ambikapathi, A.1    Chan, T.-H.2    Ma, W.-K.3    Chi, C.-Y.4
  • 136
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data usingminimumvolume constrained nonnegativematrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, 2007. (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 138
    • 77950919715 scopus 로고    scopus 로고
    • Bayesian nonnegative matrix factorization with volume prior for unmixing of hyperspectral images
    • M. Arngren,M. Schmidt, and J. Larsen, "Bayesian nonnegative matrix factorization with volume prior for unmixing of hyperspectral images," in Proc. IEEE Workshop Mach. Learning for Signal Process., 2009, vol. 10, pp. 1-6.
    • (2009) Proc. IEEE Workshop Mach. Learning for Signal Process. , vol.10 , pp. 1-6
    • Arngren, M.1    Schmidt, M.2    Larsen, J.3
  • 139
  • 140
    • 81855194806 scopus 로고    scopus 로고
    • Unmixing of hyperspectral images using bayesian non-negative matrix factorization with volume prior
    • M. Arngren, M. Schmidt, and J. Larsen, "Unmixing of hyperspectral images using Bayesian non-negative matrix factorization with volume prior," J. Signal Process. Syst., vol. 65, no. 3, pp. 479-496, 2011.
    • (2011) J. Signal Process. Syst. , vol.65 , Issue.3 , pp. 479-496
    • Arngren, M.1    Schmidt, M.2    Larsen, J.3
  • 141
    • 84873125367 scopus 로고    scopus 로고
    • Collaborative nonnegative matrix factorization for remotely sensed hyperspectral unmixing
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Collaborative nonnegative matrix factorization for remotely sensed hyperspectral unmixing," in Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS), 2012, vol. 1, pp. 1-4.
    • (2012) Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS) , vol.1 , pp. 1-4
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 142
    • 34547229626 scopus 로고    scopus 로고
    • Sparsity promoting iterated constrained endmember detection in hyperspeetral imagery
    • DOI 10.1109/LGRS.2007.895727
    • A. Zare and P. Gader, "Sparsity promoting iterated constrained endmember detection for hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 3, pp. 446-450, 2007. (Pubitemid 47117457)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.3 , pp. 446-450
    • Zare, A.1    Gader, P.2
  • 144
    • 80455174023 scopus 로고    scopus 로고
    • Fully constrained least squares spectral unmixing by simplex projection
    • nov.
    • R. Heylen, D. Burazerovic, and P. Scheunders, "Fully constrained least squares spectral unmixing by simplex projection," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4112-4122, nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4112-4122
    • Heylen, R.1    Burazerovic, D.2    Scheunders, P.3
  • 145
    • 78049320782 scopus 로고    scopus 로고
    • Fully constrained linear spectral unmixing: Analytic solution using fuzzy sets
    • nov.
    • J. L. Silván-Cárdenas and L. Wang, "Fully constrained linear spectral unmixing: Analytic solution using fuzzy sets," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 3992-4002, nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 3992-4002
    • Silván-Cárdenas, J.L.1    Wang, L.2
  • 146
    • 80455174031 scopus 로고    scopus 로고
    • Hyperspectral unmixing via sparsity-constrained nonnegative matrix factorization
    • Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, "Hyperspectral unmixing via sparsity-constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4282-4297, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4282-4297
    • Qian, Y.1    Jia, S.2    Zhou, J.3    Robles-Kelly, A.4
  • 148
    • 0033099904 scopus 로고    scopus 로고
    • Multispectral and hyperspectral image analysis with convex cones
    • A. Ifarraguerri and C.-I Chang, "Multispectral and hyperspectral image analysis with convex cones," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2, pp. 756-770, 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.2 , pp. 756-770
    • Ifarraguerri, A.1    Chang, C.-I.2
  • 149
    • 80053082734 scopus 로고    scopus 로고
    • Piece-wise convex spatial-spectral unmixing of hyperspectral imagery using possibilistic and fuzzy clustering
    • Jun.
    • A. Zare and P. Gader, "Piece-wise convex spatial-spectral unmixing of hyperspectral imagery using possibilistic and fuzzy clustering," in 2011 IEEE Int. Conf. Fuzzy Systems (FUZZ-IEEE), Jun. 2011, pp. 741-746.
    • (2011) 2011 IEEE Int. Conf. Fuzzy Systems (FUZZ-IEEE) , pp. 741-746
    • Zare, A.1    Gader, P.2
  • 152
    • 77952555368 scopus 로고    scopus 로고
    • Pce: Piecewise convex endmember detection
    • Jun.
    • A. Zare and P. Gader, "Pce: Piecewise convex endmember detection," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2620-2632, Jun. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.6 , pp. 2620-2632
    • Zare, A.1    Gader, P.2
  • 154
    • 0028416938 scopus 로고
    • Independent component analysis: A new concept
    • P. Common, "Independent component analysis: A new concept," Signal Process., vol. 36, pp. 287-314, 1994.
    • (1994) Signal Process. , vol.36 , pp. 287-314
    • Common, P.1
  • 155
    • 57649229726 scopus 로고    scopus 로고
    • Analysing hyperspectral data with independent component analysis
    • J. Bayliss, J.A.Gualtieri, and R. Cromp, "Analysing hyperspectral data with independent component analysis," in Proc. SPIE, 1997, vol. 3240, pp. 133-143.
    • (1997) Proc. SPIE , vol.3240 , pp. 133-143
    • Bayliss, J.1    Gualtieri, J.A.2    Cromp, R.3
  • 157
    • 0033752388 scopus 로고    scopus 로고
    • Unsupervised signature extraction and separation in hyperspectral images: A noise-adjusted fast independent component analysis approach
    • T. M. Tu, "Unsupervised signature extraction and separation in hyperspectral images: A noise-adjusted fast independent component analysis approach," Opt. Eng., vol. 39, no. 4, pp. 897-906, 2000.
    • (2000) Opt. Eng. , vol.39 , Issue.4 , pp. 897-906
    • Tu, T.M.1
  • 158
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data?
    • DOI 10.1109/TGRS.2004.839806
    • J. Nascimento and J. Bioucas-Dias, "Does independent component analysis play a role in unmixing hyperspectral data?," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 1, pp. 175-187, 2005. (Pubitemid 40162736)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 161
    • 33645278665 scopus 로고    scopus 로고
    • Bayesian analysis of spectral mixture data using markov chain monte carlo methods
    • S. Moussaoui, C. Carteret, D. Brie, and A. Mohammad-Djafari, "Bayesian analysis of spectral mixture data using Markov chain Monte Carlo methods," Chemometr. Intell. Lab. Syst., vol. 81, no. 2, pp. 137-148, 2006.
    • (2006) Chemometr. Intell. Lab. Syst. , vol.81 , Issue.2 , pp. 137-148
    • Moussaoui, S.1    Carteret, C.2    Brie, D.3    Mohammad-Djafari, A.4
  • 162
    • 67651111832 scopus 로고    scopus 로고
    • Bayesian separation of spectral sources under non-negativity and full additivity constraints
    • Dec.
    • N. Dobigeon, S. Moussaoui, J.-Y. Tourneret, and C. Carteret, "Bayesian separation of spectral sources under non-negativity and full additivity constraints," Signal Process., vol. 89, no. 12, pp. 2657-2669, Dec. 2009.
    • (2009) Signal Process. , vol.89 , Issue.12 , pp. 2657-2669
    • Dobigeon, N.1    Moussaoui, S.2    Tourneret, J.-Y.3    Carteret, C.4
  • 163
    • 70350493345 scopus 로고    scopus 로고
    • Joint bayesian endmember extraction and linear unmixing for hyperspectral imagery
    • Nov.
    • N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O. Hero, "Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4355-4368, Nov. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4355-4368
    • Dobigeon, N.1    Moussaoui, S.2    Coulon, M.3    Tourneret, J.-Y.4    Hero, A.O.5
  • 164
    • 81855194806 scopus 로고    scopus 로고
    • Unmixing of hyperspectral images using bayesian nonnegative matrix factorization with volume prior
    • Nov.
    • M. Arngren,M. N. Schmidt, and J. Larsen, "Unmixing of hyperspectral images using Bayesian nonnegative matrix factorization with volume prior," J. Signal Process. Syst., vol. 65, no. 3, pp. 479-496, Nov. 2011.
    • (2011) J. Signal Process. Syst. , vol.65 , Issue.3 , pp. 479-496
    • Arngren, M.1    Schmidt, M.N.2    Larsen, J.3
  • 165
    • 33750402597 scopus 로고    scopus 로고
    • Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling
    • DOI 10.1109/TSP.2006.880310
    • S. Moussaoui, D. Brie, A. Mohammad-Djafari, and C. Carteret, "Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling," IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4133-4145, Nov. 2006. (Pubitemid 44637747)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4133-4145
    • Moussaoui, S.1    Brie, D.2    Mohammad-Djafari, A.3    Carteret, C.4
  • 168
    • 51449083209 scopus 로고    scopus 로고
    • Bayesian linear unmixing of hyperspectral images corrupted by colored gaussian noise with unknown covariance matrix
    • Las Vegas, USA, March
    • N. Dobigeon, J.-Y. Tourneret, and A. O. Hero, III, "Bayesian linear unmixing of hyperspectral images corrupted by colored gaussian noise with unknown covariance matrix," in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Las Vegas, USA, March 2008, pp. 3433-3436.
    • (2008) Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP) , pp. 3433-3436
    • Dobigeon, N.1    Tourneret, J.-Y.2    Hero III, A.O.3
  • 170
    • 80052775340 scopus 로고    scopus 로고
    • Hyperspectral unmixing based on mixtures of dirichlet components
    • J.M. Bioucas-Dias and J. Nascimento, "Hyperspectral unmixing based on mixtures of Dirichlet components," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 863-878, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 863-878
    • Bioucas-Dias, J.M.1    Nascimento, J.2
  • 174
    • 33845599430 scopus 로고    scopus 로고
    • Iterative spectral unmixing for optimizing per-pixel endmember sets
    • D. M. Rogge, B. Rivard, J. Zhang, and J. Feng, "Iterative spectral unmixing for optimizing per-pixel endmember sets," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 12, pp. 3725-3736, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.12 , pp. 3725-3736
    • Rogge, D.M.1    Rivard, B.2    Zhang, J.3    Feng, J.4
  • 176
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • DOI 10.1002/cpa.20124
    • E. Candès, J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Comm. Pure Appl.Math, vol. 59, no. 8, pp. 1207-1223, 2006. (Pubitemid 43988295)
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , Issue.8 , pp. 1207-1223
    • Candes, E.J.1    Romberg, J.K.2    Tao, T.3
  • 177
    • 85032751965 scopus 로고    scopus 로고
    • Compressive sensing
    • R. Baraniuk, "Compressive sensing," IEEE Signal Process. Mag., vol. 24, no. 4, pp. 118-126, 2007.
    • (2007) IEEE Signal Process. Mag. , vol.24 , Issue.4 , pp. 118-126
    • Baraniuk, R.1
  • 179
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • DOI 10.1137/S003614450037906X, PII S003614450037906X
    • S. Chen, D. Donoho, and M. Saunders, "Atomic decomposition by basis pursuit," SIAM Rev., vol. 43, no. 1, pp. 129-159, 2001. (Pubitemid 32406896)
    • (2001) SIAM Review , vol.43 , Issue.1 , pp. 129-159
    • Chen, S.S.1    Donoho, D.L.2    Saunders, M.A.3
  • 180
    • 0027842081 scopus 로고
    • Matching pursuitswith time-frequency dictionaries
    • S.Mallat and Z. Zhang, "Matching pursuitswith time-frequency dictionaries," IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397-3415, 1993.
    • (1993) IEEE Trans. Signal Process. , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 182
    • 0037418225 scopus 로고    scopus 로고
    • Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization
    • L. Donoho and M. Elad, "Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization," Proc. Nat. Acad. Sci. USA, vol. 100, no. 5, p. 2197, 2003.
    • (2003) Proc. Nat. Acad. Sci. USA , vol.100 , Issue.5 , pp. 2197
    • Donoho, L.1    Elad, M.2
  • 183
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • B. Natarajan, "Sparse approximate solutions to linear systems," SIAM J. Comput., vol. 24, no. 2, pp. 227-234, 1995.
    • (1995) SIAM J. Comput. , vol.24 , Issue.2 , pp. 227-234
    • Natarajan, B.1
  • 186
    • 34249687049 scopus 로고    scopus 로고
    • Sparsity and incoherence in compressive sampling
    • DOI 10.1088/0266-5611/23/3/008, PII S0266561107398742, 008
    • E. Candès and J. J. Romberg, "Sparsity and incoherence in compressive sampling," Inv. Prob., vol. 23, pp. 969-985, 2007. (Pubitemid 46838836)
    • (2007) Inverse Problems , vol.23 , Issue.3 , pp. 969-985
    • Candes, E.1    Romberg, J.2
  • 187
    • 55349132734 scopus 로고    scopus 로고
    • On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations
    • A. Bruckstein,M. Elad, andM. Zibulevsky, "On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations," IEEE Trans. Inf. Theory, vol. 54, no. 11, pp. 4813-4820, 2008.
    • (2008) IEEE Trans. Inf. Theory , vol.54 , Issue.11 , pp. 4813-4820
    • Bruckstein, A.1    Elad, M.2    Zibulevsky, M.3
  • 188
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • DOI 10.1109/TIP.2006.881969
    • M. Elad and M. Aharon, "Image denoising via sparse and redundant representations over learned dictionaries," IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736-3745, 2006. (Pubitemid 44811686)
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 189
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • DOI 10.1109/TSP.2006.881199
    • M. Aharon, M. Elad, and A. Bruckstein, "K-svd: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Signal Process., vol. 54, no. 11, pp. 4311-4322, 2006. (Pubitemid 44637761)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 191
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using svms and morphological profiles
    • Nov.
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 192
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Aug.
    • Y. Tarabalka, J. Benediktsson, and J. Chanussot, "Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973-2987, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.2    Chanussot, J.3
  • 193
    • 77958017904 scopus 로고    scopus 로고
    • Svm andmrf-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVM andMRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 194
    • 78049241977 scopus 로고    scopus 로고
    • Multiple spectral-spatial classification approach for hyperspectral data
    • Nov.
    • Y. Tarabalka, J. Benediktsson, J. Chanussot, and J. Tilton, "Multiple spectral-spatial classification approach for hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4122-4132, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4122-4132
    • Tarabalka, Y.1    Benediktsson, J.2    Chanussot, J.3    Tilton, J.4
  • 195
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields," IEEE Trans. Geosci. Remote Sens., no. 99, pp. 1-15, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , Issue.99 , pp. 1-15
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 196
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new bayesian approach with active learning
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Hyperspectral image segmentation using a new Bayesian approach with active learning," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3947-3960, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 197
    • 78049282844 scopus 로고    scopus 로고
    • Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085-4098, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 198
    • 79957639950 scopus 로고    scopus 로고
    • Bayesian hyperspectral image segmentation with discriminative class learning
    • J. Borges, Bioucas-Dias, and A. Marçal, "Bayesian hyperspectral image segmentation with discriminative class learning," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2151-2164, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.6 , pp. 2151-2164
    • Borges, J.1    Bioucas-Dias2    Marçal, A.3
  • 199
    • 0024072154 scopus 로고
    • Spatial classification using fuzzy membership models
    • Sept.
    • J. T. Kent and K. V. Mardia, "Spatial classification using fuzzy membership models," IEEE Trans. Patt. Anal. Mach. Intell., vol. 10, no. 5, pp. 659-671, Sept. 1988.
    • (1988) IEEE Trans. Patt. Anal. Mach. Intell. , vol.10 , Issue.5 , pp. 659-671
    • Kent, J.T.1    Mardia, K.V.2
  • 200
    • 80455155174 scopus 로고    scopus 로고
    • Enhancing hyperspectral image unmixing with spatial correlations
    • Nov.
    • O. Eches, N. Dobigeon, and J. Y. Tourneret, "Enhancing hyperspectral image unmixing with spatial correlations," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4239-4247, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4239-4247
    • Eches, O.1    Dobigeon, N.2    Tourneret, J.Y.3
  • 201
    • 46749145829 scopus 로고    scopus 로고
    • Semi-supervised linear spectral unmixing using a hierarchical bayesian model for hyperspectral imagery
    • Jul.
    • N. Dobigeon, J.-Y. Tourneret, and C.-I Chang, "Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery," IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2684-2695, Jul. 2008.
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.7 , pp. 2684-2695
    • Dobigeon, N.1    Tourneret, J.-Y.2    Chang, C.-I.3
  • 202
    • 84858327678 scopus 로고    scopus 로고
    • Hyperspectral image unmixing using a multiresolution sticky hdp
    • April
    • R.Mittelman, N. Dobigeon, and A. O. Hero, III, "Hyperspectral image unmixing using a multiresolution sticky HDP," IEEE Trans. Signal Process., vol. 60, no. 4, pp. 1656-1671, April 2012.
    • (2012) IEEE Trans. Signal Process. , vol.60 , Issue.4 , pp. 1656-1671
    • Mittelman, R.1    Dobigeon, N.2    Hero III, A.O.3
  • 203
    • 36348990884 scopus 로고    scopus 로고
    • Spectral and spatial complexity-based hyperspectral unmixing
    • DOI 10.1109/TGRS.2007.898443
    • S. Jia and Y. Qian, "Spectral and spatial complexity-based hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3867-3879, Dec. 2007. (Pubitemid 350157825)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.12 , pp. 3867-3879
    • Jia, S.1    Qian, Y.2
  • 204
    • 80955150938 scopus 로고    scopus 로고
    • Spatial-spectral unmixing using fuzzy local information
    • Oct.
    • A. Zare, "Spatial-spectral unmixing using fuzzy local information," in Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS), Oct. 2011, pp. 1139-1142.
    • (2011) Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS) , pp. 1139-1142
    • Zare, A.1
  • 206
    • 80053082734 scopus 로고    scopus 로고
    • Piece-wise convex spatial-spectral unmixing of hyperspectral imagery using possibilistic and fuzzy clustering
    • A. Zare and P. Gader, "Piece-wise convex spatial-spectral unmixing of hyperspectral imagery using possibilistic and fuzzy clustering," in Proc. IEEE Int. Conf. Fuzzy Systems, 2011, pp. 741-746.
    • (2011) Proc. IEEE Int. Conf. Fuzzy Systems , pp. 741-746
    • Zare, A.1    Gader, P.2
  • 208
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/spectral endmember extraction by multidimensional morphological operations
    • DOI 10.1109/TGRS.2002.802494
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "Spatial/spectral endmember extraction by multidimensional morphological operations," IEEE Trans.Geosci. Remote Sens., vol. 40, no. 9, pp. 2025-2041, 2002. (Pubitemid 35458399)
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 209
    • 34548036670 scopus 로고    scopus 로고
    • Integration of spatial-spectral information for the improved extraction of endmembers
    • DOI 10.1016/j.rse.2007.02.019, PII S0034425707000934
    • D. M. Rogge, B. Rivard, J. Zhang, A. Sanchez, J. Harris, and J. Feng, "Integration of spatial-spectral information for the improved extraction of endmembers," Remote Sens. Environ., vol. 110, no. 3, pp. 287-303, 2007. (Pubitemid 47285207)
    • (2007) Remote Sensing of Environment , vol.110 , Issue.3 , pp. 287-303
    • Rogge, D.M.1    Rivard, B.2    Zhang, J.3    Sanchez, A.4    Harris, J.5    Feng, J.6
  • 210
    • 67949098957 scopus 로고    scopus 로고
    • Spatial preprocessing for endmember extraction
    • M. Zortea and A. Plaza, "Spatial preprocessing for endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 47, pp. 2679-2693, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2
  • 211
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D: Nonlinear Phenomena, vol. 60, no. 1-4, pp. 259-268, 1992.
    • (1992) Physica D: Nonlinear Phenomena , vol.60 , Issue.1-4 , pp. 259-268
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 216
    • 80051715215 scopus 로고    scopus 로고
    • C-hilasso: A collaborative hierarchical sparse modeling framework
    • P. Sprechmann, I. Ramírez, G. Sapiro, and Y. Eldar, "C-hilasso: A collaborative hierarchical sparse modeling framework," IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4183-4198, 2011.
    • (2011) IEEE Trans. Signal Process. , vol.59 , Issue.9 , pp. 4183-4198
    • Sprechmann, P.1    Ramírez, I.2    Sapiro, G.3    Eldar, Y.4
  • 217
    • 85032752191 scopus 로고    scopus 로고
    • Parallel hyperspectral image and signal processing
    • A. Plaza, J. Plaza, A. Paz, and S. Sanchez, "Parallel hyperspectral image and signal processing," IEEE Signal Process. Mag., vol. 28, no. 3, pp. 119-126, 2011.
    • (2011) IEEE Signal Process. Mag. , vol.28 , Issue.3 , pp. 119-126
    • Plaza, A.1    Plaza, J.2    Paz, A.3    Sanchez, S.4
  • 219
    • 77953397770 scopus 로고    scopus 로고
    • Parallel heterogeneous cbir system for efficient hyperspectral image retrieval using spectralmixture analysis
    • A. Plaza, J. Plaza, andA. Paz, "Parallel heterogeneous CBIR system for efficient hyperspectral image retrieval using spectralmixture analysis," Concurrency and Computation: Practice and Experience, vol. 22, no. 9, pp. 1138-1159, 2010.
    • (2010) Concurrency and Computation: Practice and Experience , vol.22 , Issue.9 , pp. 1138-1159
    • Plaza, A.1    Plaza, J.2    Paz, A.3
  • 220
    • 84856354560 scopus 로고    scopus 로고
    • Fpga implementation of the n-findr algorithm for remotely sensed hyperspectral image analysis
    • C. Gonzalez, D. Mozos, J. Resano, and A. Plaza, "FPGA implementation of the N-FINDR algorithm for remotely sensed hyperspectral image analysis," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, pp. 374-388, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.2 , pp. 374-388
    • Gonzalez, C.1    Mozos, D.2    Resano, J.3    Plaza, A.4
  • 221
    • 80051786396 scopus 로고    scopus 로고
    • Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units
    • S. Sanchez, A. Paz, G. Martin, and A. Plaza, "Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units," Concurrency and Computation: Practice and Experience, vol. 23, no. 13, pp. 1538-1557, 2011.
    • (2011) Concurrency and Computation: Practice and Experience , vol.23 , Issue.13 , pp. 1538-1557
    • Sanchez, S.1    Paz, A.2    Martin, G.3    Plaza, A.4
  • 222
    • 84857749759 scopus 로고    scopus 로고
    • Fpga implementation of abundance estimation for spectral unmixing of hyperspectral data using the image space reconstruction algorithm
    • Feb.
    • C. Gonzalez, J. Resano, A. Plaza, and D. Mozos, "FPGA implementation of abundance estimation for spectral unmixing of hyperspectral data using the image space reconstruction algorithm," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. (JSTARS), vol. 5, no. 1, pp. 248-261, Feb. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. (JSTARS) , vol.5 , Issue.1 , pp. 248-261
    • Gonzalez, C.1    Resano, J.2    Plaza, A.3    Mozos, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.