메뉴 건너뛰기




Volumn 22, Issue 9, 2010, Pages 1138-1159

Parallel heterogeneous CBIR system for efficient hyperspectral image retrieval using spectral mixture analysis

Author keywords

Heterogeneous parallel computing; Hyperspectral imaging; Image processing

Indexed keywords

COMPLEX NETWORKS; COMPUTER ARCHITECTURE; CONTENT BASED RETRIEVAL; DATABASE SYSTEMS; HETEROGENEOUS NETWORKS; HYPERSPECTRAL IMAGING; IMAGE ANALYSIS; IMAGE PROCESSING; MIXTURES; NASA; QUERY PROCESSING; REMOTE SENSING; SPACE FLIGHT; SPACE OPTICS; SPECTROSCOPY;

EID: 77953397770     PISSN: 15320626     EISSN: 15320634     Source Type: Journal    
DOI: 10.1002/cpe.1555     Document Type: Article
Times cited : (23)

References (34)
  • 2
    • 33244491685 scopus 로고    scopus 로고
    • Performance evaluation and optimization for content-based image retrieval
    • Vogel J, Schiele B. Performance evaluation and optimization for content-based image retrieval. Pattern Recognition 2006; 39:897-909.
    • (2006) Pattern Recognition , vol.39 , pp. 897-909
    • Vogel, J.1    Schiele, B.2
  • 7
    • 0041831174 scopus 로고    scopus 로고
    • Characterizing land surface anisotropy from AVHRR data at a global scale using high performance computing
    • Kalluri S, Zhang Z, JaJa J, Liang S, Townshend J. Characterizing land surface anisotropy from AVHRR data at a global scale using high performance computing. International Journal of Remote Sensing 2001; 22:2171-2191.
    • (2001) International Journal of Remote Sensing , vol.22 , pp. 2171-2191
    • Kalluri, S.1    Zhang, Z.2    Jaja, J.3    Liang, S.4    Townshend, J.5
  • 8
    • 0013100691 scopus 로고    scopus 로고
    • D-ISODATA: A distributed algorithm for unsupervised classification of remotely sensed data on network of workstations
    • Dhodhi MK, Saghri JA, Ahmad I, Ul-Mustafa R. D-ISODATA: A distributed algorithm for unsupervised classification of remotely sensed data on network of workstations. Journal of Parallel and Distributed Computing 1999; 59:280-301.
    • (1999) Journal of Parallel and Distributed Computing , vol.59 , pp. 280-301
    • Dhodhi, M.K.1    Saghri, J.A.2    Ahmad, I.3    Ul-Mustafa, R.4
  • 10
    • 32444436826 scopus 로고    scopus 로고
    • Commodity cluster-based parallel processing of hyperspectral imagery
    • DOI 10.1016/j.jpdc.2005.10.001, PII S0743731505002224
    • Plaza A, Valencia D, Plaza J, Martinez P. Commodity cluster-based parallel processing of hyperspectral imagery. Journal of Parallel and Distributed Computing 2006; 66:345-358. (Pubitemid 43227360)
    • (2006) Journal of Parallel and Distributed Computing , vol.66 , Issue.3 , pp. 345-358
    • Plaza, A.1    Valencia, D.2    Plaza, J.3    Martinez, P.4
  • 13
    • 33845881404 scopus 로고    scopus 로고
    • On the distribution of sequential jobs in random brokering for heterogeneous computational grids
    • Berten V, Goosens J, Jeannot E. On the distribution of sequential jobs in random brokering for heterogeneous computational grids. IEEE Transactions on Parallel and Distributed Systems 2006; 17:113-124.
    • (2006) IEEE Transactions on Parallel and Distributed Systems , vol.17 , pp. 113-124
    • Berten, V.1    Goosens, J.2    Jeannot, E.3
  • 20
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery
    • Heinz D, Chang C-I. Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing 2001; 39:529-545.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , pp. 529-545
    • Heinz, D.1    Chang, C.-I.2
  • 23
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Chang C-I, Du Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing 2004; 42:608-619.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 24
    • 40049105739 scopus 로고    scopus 로고
    • An experimental comparison of parallel algorithms for hyperspectral analysis using homogeneous and heterogeneous networks of workstations
    • Plaza A, Valencia D, Plaza J. An experimental comparison of parallel algorithms for hyperspectral analysis using homogeneous and heterogeneous networks of workstations. Parallel Computing 2008; 34:92-114.
    • (2008) Parallel Computing , vol.34 , pp. 92-114
    • Plaza, A.1    Valencia, D.2    Plaza, J.3
  • 25
    • 0036590722 scopus 로고    scopus 로고
    • Diffusion schemes for load balancing on heterogeneous networks
    • Elsasser R, Monien B, Preis R. Diffusion schemes for load balancing on heterogeneous networks. Theory of Computing Systems 2002; 35:305-320.
    • (2002) Theory of Computing Systems , vol.35 , pp. 305-320
    • Elsasser, R.1    Monien, B.2    Preis, R.3
  • 29
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • Reed I, Yu X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Transactions on Acoustics 1990; 10:1760-1770.
    • (1990) IEEE Transactions on Acoustics , vol.10 , pp. 1760-1770
    • Reed, I.1    Yu, X.2
  • 31
    • 50249187587 scopus 로고    scopus 로고
    • Parallel processing of remotely sensed hyperspectral imagery: Full-pixel versus mixed-pixel classification
    • Plaza A. Parallel processing of remotely sensed hyperspectral imagery: Full-pixel versus mixed-pixel classification. Concurrency and Computation: Practice and Experience 2008; 20:1539-1572.
    • (2008) Concurrency and Computation: Practice and Experience , vol.20 , pp. 1539-1572
    • Plaza, A.1
  • 34
    • 10644297469 scopus 로고    scopus 로고
    • On performance analysis of heterogeneous parallel algorithms
    • Lastovetsky A, Reddy R. On performance analysis of heterogeneous parallel algorithms. Parallel Computing 2004; 30:1195-1216.
    • (2004) Parallel Computing , vol.30 , pp. 1195-1216
    • Lastovetsky, A.1    Reddy, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.