메뉴 건너뛰기




Volumn 45, Issue 10, 2007, Pages 3044-3054

Semi-supervised graph-based hyperspectral image classification

Author keywords

Composite kernel; Graph laplacian; Hyperspectral image classification; Ill posed problem; Nystr m method; Semi supervised learning (ssl); Undirected graph

Indexed keywords

COMPOSITE KERNELS; GRAPH LAPLACIAN; HYPERSPECTRAL IMAGE CLASSIFICATION; ILL POSED PROBLEM; M METHOD; SEMI-SUPERVISED LEARNING; UNDIRECTED GRAPH;

EID: 39049145967     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2007.895416     Document Type: Article
Times cited : (615)

References (52)
  • 1
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan.
    • G. F. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 2
    • 0018203420 scopus 로고
    • Fundamentals of pattern recognition in remote sensing
    • P. H. Swain and S. M. Davis, Eds. New York: McGraw-Hill
    • P. H. Swain, "Fundamentals of pattern recognition in remote sensing," in Remote Sensing: The Quantitative Approach, P. H. Swain and S. M. Davis, Eds. New York: McGraw-Hill, 1978, pp. 136-188.
    • (1978) Remote Sensing: The Quantitative Approach , pp. 136-188
    • Swain, P.H.1
  • 4
    • 0027525734 scopus 로고
    • Artificial neural networks for land-cover classification and mapping
    • D. L. Civco, "Artificial neural networks for land-cover classification and mapping," Int. J. Geophys. Inf. Syst., vol. 7, no. 2, pp. 173-186, 1993.
    • (1993) Int. J. Geophys. Inf. Syst. , vol.7 , Issue.2 , pp. 173-186
    • Civco, D.L.1
  • 6
    • 0033540293 scopus 로고    scopus 로고
    • A back-propagation neural network for mineralogical mapping from AVIRIS data
    • Jan.
    • H. Yang, F. van der Meer, W. Bakker, and Z. J. Tan, "A back-propagation neural network for mineralogical mapping from AVIRIS data," Int. J. Remote Sens., vol. 20, no. 1, pp. 97-110, Jan. 1999.
    • (1999) Int. J. Remote Sens. , vol.20 , Issue.1 , pp. 97-110
    • Yang, H.1    Van Der Meer, F.2    Bakker, W.3    Tan, Z.J.4
  • 7
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • D. Haussler, Ed., Pittsburgh, PA
    • B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," in Proc. 5th Annu. ACM Workshop COLT, D. Haussler, Ed., Pittsburgh, PA, 1992, pp. 144-152.
    • (1992) Proc. 5th Annu. ACM Workshop COLT , pp. 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 10
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Feb.
    • C. Huang, L. S. Davis, and J. R. G. Townshend, "An assessment of support vector machines for land cover classification," Int. J. Remote Sens., vol. 23, no. 4, pp. 725-749, Feb. 2002.
    • (2002) Int. J. Remote Sens. , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 12
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun.
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 14
    • 0027629346 scopus 로고
    • Fuzzy random fields and unsupervised image segmentation
    • Jul.
    • H. Caillol, A. Hillion, and W. Pieczynski, "Fuzzy random fields and unsupervised image segmentation," IEEE Trans. Geosci. Remote Sens., vol. 31, no. 4, pp. 801-810, Jul. 1993.
    • (1993) IEEE Trans. Geosci. Remote Sens. , vol.31 , Issue.4 , pp. 801-810
    • Caillol, H.1    Hillion, A.2    Pieczynski, W.3
  • 15
    • 0027591549 scopus 로고
    • SEM. algorithm and unsupervised statistical segmentation of satellite images
    • May
    • P. Masson and W. Pieczynski, "SEM. algorithm and unsupervised statistical segmentation of satellite images," IEEE Trans. Geosci. Remote Sens., vol. 31, no. 3, pp. 618-633, May 1993.
    • (1993) IEEE Trans. Geosci. Remote Sens. , vol.31 , Issue.3 , pp. 618-633
    • Masson, P.1    Pieczynski, W.2
  • 16
    • 0031190038 scopus 로고    scopus 로고
    • Application of Dempster-Shafer evidence theory to unsupervised classification in multisource remote sensing
    • Jul.
    • S. Le Hegarat-Mascle, I. Bloch, and D. Vidal-Madjar, "Application of Dempster-Shafer evidence theory to unsupervised classification in multisource remote sensing," IEEE Trans. Geosci. Remote Sens., vol. 35, no. 4, pp. 1018-1031. Jul. 1997.
    • (1997) IEEE Trans. Geosci. Remote Sens. , vol.35 , Issue.4 , pp. 1018-1031
    • Le Hegarat-Mascle, S.1    Bloch, I.2    Vidal-Madjar, D.3
  • 17
    • 0033188923 scopus 로고    scopus 로고
    • Unsupervised segmentation of multitemporal interferometric SAR images
    • Sep.
    • P. B. G. Dammert, J. I. H. Askne, and S. Kuhlmann, "Unsupervised segmentation of multitemporal interferometric SAR images," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 5, pp. 2259-2271, Sep. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.5 , pp. 2259-2271
    • Dammert, P.B.G.1    Askne, J.I.H.2    Kuhlmann, S.3
  • 18
    • 0033097917 scopus 로고    scopus 로고
    • Unsupervised multispectral image classification using MRF models and VQ method
    • Mar.
    • T. Yamazaki and D. Gingras, "Unsupervised multispectral image classification using MRF models and VQ method," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2, pp. 1173-1176, Mar. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.2 , pp. 1173-1176
    • Yamazaki, T.1    Gingras, D.2
  • 19
    • 31444446724 scopus 로고    scopus 로고
    • An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery
    • Feb.
    • Y. Zhong, L. Zhang, B. Huang, and L. Pingxiang, "An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 2, pp. 420-431, Feb. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.2 , pp. 420-431
    • Zhong, Y.1    Zhang, L.2    Huang, B.3    Pingxiang, L.4
  • 20
    • 0005977840 scopus 로고    scopus 로고
    • Inst. Adaptive and Neural Computation, Univ. Edinburgh, Edinburgh, U.K., Tech. Rep. TR. 2001
    • M. Seeger, "Learning with labeled and unlabeled data," Inst. Adaptive and Neural Computation, Univ. Edinburgh, Edinburgh, U.K., Tech. Rep. TR.2001, 2001. [Online]. Available: http://www.dai.ed.ac.uk/seeger/papers.html
    • (2001) Learning with Labeled and Unlabeled Data
    • Seeger, M.1
  • 21
    • 33745456231 scopus 로고    scopus 로고
    • Comput. Sciences, Univ. Wisconsin-Madison, Madison, WI, Tech. Rep. 1530, Online document: Last modified on September 7, 2006
    • X. Zhu, "Semi-supervised learning literature survey," Comput. Sciences, Univ. Wisconsin-Madison, Madison, WI, Tech. Rep. 1530, 2005. Online document: Last modified on September 7, 2006. [Online]. Available: http://www.cs.wisc.edu/∼jerryzhu/pub/ssl-survey.pdf
    • (2005) Semi-supervised Learning Literature Survey
    • Zhu, X.1
  • 23
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Jan.
    • N. M. Dempster, A. P. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. R. Stat. Soc., Ser. B, vol. 39, no. 1, pp. 1-38, Jan. 1977.
    • (1977) J. R. Stat. Soc., Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, N.M.1    Laird, A.P.2    Rubin, D.B.3
  • 24
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • Dec.
    • Q. Jackson and D. A. Landgrebe, "An adaptive classifier design for high-dimensional data analysis with a limited training data set," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 12, pp. 2664-2679, Dec. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.12 , pp. 2664-2679
    • Jackson, Q.1    Landgrebe, D.A.2
  • 26
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVMs for semi-supervised classification of remote-sensing images
    • pt. 2, Nov.
    • L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVMs for semi-supervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pt. 2, pp. 3363-3373, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 27
    • 0003365565 scopus 로고    scopus 로고
    • Spectral graph theory
    • Providence, RI: American Mathematical Society
    • F. Chung, "Spectral graph theory," in CBMS Regional Conference Series in Mathematics. Providence, RI: American Mathematical Society, 1997. Number 92.
    • (1997) CBMS Regional Conference Series in Mathematics , Issue.92
    • Chung, F.1
  • 29
    • 77957549669 scopus 로고    scopus 로고
    • Graph kernels for molecular classification and prediction of mutagenicity, toxicity, and anti-cancer activity
    • Whistler, BC, Canada, Dec.
    • P. Baldi and L. Ralaivola, "Graph kernels for molecular classification and prediction of mutagenicity, toxicity, and anti-cancer activity," in Proc. Comput. Biology Workshop NIPS, Whistler, BC, Canada, Dec. 2004.
    • (2004) Proc. Comput. Biology Workshop NIPS
    • Baldi, P.1    Ralaivola, L.2
  • 30
    • 35048874758 scopus 로고    scopus 로고
    • A graph-based framework for web document mining
    • Jan.
    • A. Schenker, H. Bunke, M. Last, and A. Kandel, "A graph-based framework for web document mining," in Proc. DAS, Jan. 2004, vol. LNCS 3163, pp. 401-412.
    • (2004) Proc. DAS , vol.LNCS 3163 , pp. 401-412
    • Schenker, A.1    Bunke, H.2    Last, M.3    Kandel, A.4
  • 31
    • 84899006908 scopus 로고    scopus 로고
    • Learning with local and global consistency
    • Vancouver, BC, Canada: MIT Press, Dec.
    • D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, "Learning with local and global consistency," in Proc. NIPS. Vancouver, BC, Canada: MIT Press, Dec. 2004, vol. 16.
    • (2004) Proc. NIPS. , vol.16
    • Zhou, D.1    Bousquet, O.2    Lal, T.N.3    Weston, J.4    Schölkopf, B.5
  • 33
    • 34948821241 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image classification with graphs
    • Denver, CO, Jul.
    • T. Bandos, D. Zhou, and G. Camps-Valls, "Semi-supervised hyperspectral image classification with graphs," in Proc. IGARSS, Denver, CO, Jul. 2006, pp. 3883-3886.
    • (2006) Proc. IGARSS , pp. 3883-3886
    • Bandos, T.1    Zhou, D.2    Camps-Valls, G.3
  • 34
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Vancouver, BC, Canada: MIT Press, Dec.
    • C. K. I. Williams and M. Seeger, "Using the Nyström method to speed up kernel machines," in Proc. Advances NIPS, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Vancouver, BC, Canada: MIT Press, Dec. 2001, vol. 13, pp. 682-688.
    • (2001) Proc. Advances NIPS , vol.13 , pp. 682-688
    • Williams, C.K.I.1    Seeger, M.2
  • 35
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on Riemannian manifolds
    • Jul.
    • M. Belkin and P. Niyogi, "Semi-supervised learning on Riemannian manifolds," Machine Learning-Special Issue on Clustering, vol. 56, no. 1-3, pp. 209-239, Jul. 2004.
    • (2004) Machine Learning-Special Issue on Clustering , vol.56 , Issue.1-3 , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 36
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • Berkshires, MA
    • A. Blum and S. Chawla, "Learning from labeled and unlabeled data using graph mincuts," in Proc. ICML, Berkshires, MA, 2001, pp. 19-26.
    • (2001) Proc. ICML , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 37
    • 50649084677 scopus 로고    scopus 로고
    • Cluster kernels for semisupervised learning
    • Vancouver, BC, Canada: MIT Press
    • O. Chapelle, J. Weston, and B. Schölkopf, "Cluster kernels for semisupervised learning," in Proc. NIPS. Vancouver, BC, Canada: MIT Press, 2003, vol. 15.
    • (2003) Proc. NIPS. , vol.15
    • Chapelle, O.1    Weston, J.2    Schölkopf, B.3
  • 38
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • Washington
    • X. Zhu, Z. Ghahramani, and J. Lafferty, "Semi-supervised learning using Gaussian fields and harmonic functions," in Proc. ICML, Washington, DC, 2003, vol. 20.
    • (2003) Proc. ICML , vol.20
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 39
    • 1942484960 scopus 로고    scopus 로고
    • Transductive learning via spectral graph partitioning
    • T. Fawcett and N. Mishra, Eds., Washington, DC
    • T. Joachims, "Transductive learning via spectral graph partitioning," in Proc. ICML, T. Fawcett and N. Mishra, Eds., Washington, DC, 2003, pp. 290-297.
    • (2003) Proc. ICML , pp. 290-297
    • Joachims, T.1
  • 40
    • 0042878370 scopus 로고    scopus 로고
    • Partially labeled classification with Markov random walks
    • T. Dietterich et al., Eds., Vancouver, BC, Canada
    • M. Szummer and T. Jaakkola, "Partially labeled classification with Markov random walks," in Proc. NIPS, T. Dietterich et al., Eds., Vancouver, BC, Canada, 2001, vol. 13.
    • (2001) Proc. NIPS , vol.13
    • Szummer, M.1    Jaakkola, T.2
  • 42
    • 0023179570 scopus 로고
    • Observation of phase transitions in spreading activation networks
    • May
    • J. Shrager, T. Hogg, and B. A. Huberman, "Observation of phase transitions in spreading activation networks," Science, vol. 236, no. 4805, pp. 1092-1094, May 1987.
    • (1987) Science , vol.236 , Issue.4805 , pp. 1092-1094
    • Shrager, J.1    Hogg, T.2    Huberman, B.A.3
  • 43
    • 84898960990 scopus 로고    scopus 로고
    • Learning semantic similarity
    • Vancouver, BC, Canada: MIT Press
    • J. Kandola, N. Cristianini, and J. Shawe-Taylor, "Learning semantic similarity," in Proc. NIPS. Vancouver, BC, Canada: MIT Press, 2003, vol. 15.
    • (2003) Proc. NIPS. , vol.15
    • Kandola, J.1    Cristianini, N.2    Shawe-Taylor, J.3
  • 44
    • 0041775676 scopus 로고    scopus 로고
    • Diffusion kernels on graphs and other discrete input spaces
    • Sydney, Australia
    • R. Kondor and J. Lafferty, "Diffusion kernels on graphs and other discrete input spaces," in Proc. ICML, Sydney, Australia, 2002, pp. 315-322.
    • (2002) Proc. ICML , pp. 315-322
    • Kondor, R.1    Lafferty, J.2
  • 46
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • Vancouver, BC, Canada: MIT Press
    • A. Ng, M. Jordan, and Y. Weiss, "On spectral clustering: Analysis and an algorithm," in Proc. NIPS. Vancouver, BC, Canada: MIT Press, 2002, vol. 14.
    • (2002) Proc. NIPS. , vol.14
    • Ng, A.1    Jordan, M.2    Weiss, Y.3
  • 48
    • 0030502142 scopus 로고    scopus 로고
    • Deflation techniques for an implicitly re-started Arnoldi iteration
    • Feb.
    • R. B. Lehoucq and D. C. Sorensen, "Deflation techniques for an implicitly re-started Arnoldi iteration," SIAM J. Matrix Anal. Appl., vol. 17, no. 2, pp. 789-821, Feb. 1996.
    • (1996) SIAM J. Matrix Anal. Appl. , vol.17 , Issue.2 , pp. 789-821
    • Lehoucq, R.B.1    Sorensen, D.C.2
  • 50
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remotesensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remotesensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 52
    • 84864027458 scopus 로고    scopus 로고
    • Learning with hypergraphs: Clustering, classification, and embedding
    • B. Schölkopf, J. C. Platt, and T. Hofmann, Eds. Cambridge, MA: MIT Press
    • D. Zhou, J. Huang, and B. Schölkopf, "Learning with hypergraphs: clustering, classification, and embedding," in Advances in Neural Information Processing Systems 19, B. Schölkopf, J. C. Platt, and T. Hofmann, Eds. Cambridge, MA: MIT Press, 2007.
    • (2007) Advances in Neural Information Processing Systems , vol.19
    • Zhou, D.1    Huang, J.2    Schölkopf, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.