메뉴 건너뛰기




Volumn 4, Issue 3, 2010, Pages 582-591

Estimating the number of endmembers in hyperspectral images using the normal compositional model and a hierarchical bayesian algorithm

Author keywords

Bayesian inference; Hyperspectral images; Monte Carlo methods; Normal compositional model; Reversible jump; Spectral unmixing

Indexed keywords

BAYESIAN INFERENCE; COMPOSITIONAL MODELS; HYPER-SPECTRAL IMAGES; REVERSIBLE JUMP; SPECTRAL UNMIXING;

EID: 77952595305     PISSN: 19324553     EISSN: None     Source Type: Journal    
DOI: 10.1109/JSTSP.2009.2038212     Document Type: Article
Times cited : (61)

References (38)
  • 2
    • 0032157956 scopus 로고    scopus 로고
    • Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)
    • Sep
    • R. O. Green et al., "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS), " Remote Sens. Environ., vol. 65, no. 3, pp. 227-248, Sep. 1998.
    • (1998) Remote Sens. Environ. , vol.65 , Issue.3 , pp. 227-248
    • Green, R.O.1
  • 5
    • 0000385570 scopus 로고    scopus 로고
    • Fast autonomous spectral endmember determination in hyperspectral data
    • in, Vancouver, BC, Canada, Apr
    • M. E. Winter, "Fast autonomous spectral endmember determination in hyperspectral data, " in Proc. 13th Int. Conf. Appl. Geol. Remote Sens., Vancouver, BC, Canada, Apr. 1999, vol. 2, pp. 337-344.
    • (1999) Proc. 13th Int. Conf. Appl. Geol. Remote Sens. , vol.2 , pp. 337-344
    • Winter, M.E.1
  • 6
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr
    • J. M. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: a fast algorithm to unmix hyperspectral data, " IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.1    Bioucas-Dias, J.M.2
  • 9
    • 51449083209 scopus 로고    scopus 로고
    • Bayesian linear unmixing of hyperspectral images corrupted by colored Gaussian noise with unknown covariance matrix
    • in, Las Vegas, NV, Apr
    • N. Dobigeon, J.-Y. Tourneret, and A. O. Hero, III, "Bayesian linear unmixing of hyperspectral images corrupted by colored Gaussian noise with unknown covariance matrix, " in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Las Vegas, NV, Apr. 2008, pp. 3433-3436.
    • (2008) Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP) , pp. 3433-3436
    • Dobigeon, N.1    Tourneret, J.-Y.2    Hero, A.O.I.3
  • 10
    • 0030189048 scopus 로고    scopus 로고
    • On the relationship between spectral unmixing and subspace projection
    • Jul
    • J. Settle, "On the relationship between spectral unmixing and subspace projection, " IEEE Trans. Geosci. Remote Sens., vol. 34, no. 4, pp. 1045-1046, Jul. 1996.
    • (1996) IEEE Trans. Geosci. Remote Sens. , vol.34 , Issue.4 , pp. 1045-1046
    • Settle, J.1
  • 11
    • 0001703594 scopus 로고    scopus 로고
    • Further results on relationship between spectral unmixing and subspace projection
    • May
    • C.-I. Chang, "Further results on relationship between spectral unmixing and subspace projection, " IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 1030-1032, May 1998.
    • (1998) IEEE Trans. Geosci. Remote Sens. , vol.36 , Issue.3 , pp. 1030-1032
    • Chang, C.-I.1
  • 12
    • 0006606953 scopus 로고    scopus 로고
    • Least squares subspace projection approach to mixed pixel classification for hyperspectral images
    • May
    • C.-I. Chang, X.-L. Zhao, M. L. G. Althouse, and J. J. Pan, "Least squares subspace projection approach to mixed pixel classification for hyperspectral images, " IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 898-912, May 1998.
    • (1998) IEEE Trans. Geosci. Remote Sens. , vol.36 , Issue.3 , pp. 898-912
    • Chang, C.-I.1    Zhao, X.-L.2    Althouse, M.L.G.3    Pan, J.J.4
  • 13
    • 0035392132 scopus 로고    scopus 로고
    • Hyperspectral subpixel target detection using the linear mixing model
    • Jul
    • D. Manolakis, C. Siracusa, and G. Shaw, "Hyperspectral subpixel target detection using the linear mixing model, " IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1392-1409, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.7 , pp. 1392-1409
    • Manolakis, D.1    Siracusa, C.2    Shaw, G.3
  • 14
    • 77952616442 scopus 로고    scopus 로고
    • Bayesian estimation of linear mixtures using the normal compositional model: Application to hyperspectral imagery
    • Jun, see also technical report available at
    • O. Eches, N. Dobigeon, C. Mailhes, and J.-Y. Tourneret, "Bayesian estimation of linear mixtures using the normal compositional model: Application to hyperspectral imagery, " IEEE Trans. Image Process., vol. 19, no. 6, Jun. 2010, see also technical report available at http://eches.perso.enseeiht. fr.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.6
    • Eches, O.1    Dobigeon, N.2    Mailhes, C.3    Tourneret, J.-Y.4
  • 15
    • 46749145829 scopus 로고    scopus 로고
    • Semi-supervised linear spectral using a hierarchical Bayesian model for hyperspectral imagery
    • Jul
    • N. Dobigeon, J.-Y. Tourneret, and C.-I. Chang, "Semi-supervised linear spectral using a hierarchical Bayesian model for hyperspectral imagery, " IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2684-2696, Jul. 2008.
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.7 , pp. 2684-2696
    • Dobigeon, N.1    Tourneret, J.-Y.2    Chang, C.-I.3
  • 16
    • 77956889087 scopus 로고
    • Reversible jump Markov Chain Monte Carlo methods computation and Bayesian model determination
    • Dec
    • P. J. Green, "Reversible jump Markov Chain Monte Carlo methods computation and Bayesian model determination, " Biometrika, vol. 82, no. 4, pp. 711-732, Dec. 1995.
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 711-732
    • Green, P.J.1
  • 17
    • 0036504268 scopus 로고    scopus 로고
    • Bayesian curve fitting using MCMC with applications to signal segmentation
    • Mar
    • E. Punskaya, C. Andrieu, A. Doucet, and W. Fitzgerald, "Bayesian curve fitting using MCMC with applications to signal segmentation, " IEEE Trans. Signal Process., vol. 50, no. 3, pp. 747-758, Mar. 2002.
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.3 , pp. 747-758
    • Punskaya, E.1    Andrieu, C.2    Doucet, A.3    Fitzgerald, W.4
  • 18
    • 34147145294 scopus 로고    scopus 로고
    • Joint segmentation of piecewise constant autoregressive processes by using a hierarchical model and a Bayesian sampling approach
    • Apr
    • N. Dobigeon, J.-Y. Tourneret, and M. Davy, "Joint segmentation of piecewise constant autoregressive processes by using a hierarchical model and a Bayesian sampling approach, " IEEE Trans. Signal Process., vol. 55, no. 4, pp. 1251-1263, Apr. 2007.
    • (2007) IEEE Trans. Signal Process. , vol.55 , Issue.4 , pp. 1251-1263
    • Dobigeon, N.1    Tourneret, J.-Y.2    Davy, M.3
  • 19
    • 33645360635 scopus 로고    scopus 로고
    • Bayesian analysis of polyphonic western tonal music
    • Apr
    • M. Davy, S. Godsill, and J. Idier, "Bayesian analysis of polyphonic western tonal music, " J. Acoust. Soc. Amer., vol. 119, no. 4, pp. 2498-2517, Apr. 2006.
    • (2006) J. Acoust. Soc. Amer. , vol.119 , Issue.4 , pp. 2498-2517
    • Davy, M.1    Godsill, S.2    Idier, J.3
  • 20
    • 0033349354 scopus 로고    scopus 로고
    • Joint bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
    • Oct
    • C. Andrieu and A. Doucet, "Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC, " IEEE Trans. Signal Process., vol. 47, no. 10, pp. 2667-2676, Oct. 1999.
    • (1999) IEEE Trans. Signal Process. , vol.47 , Issue.10 , pp. 2667-2676
    • Andrieu, C.1    Doucet, A.2
  • 22
    • 84873751778 scopus 로고
    • An invariant form for the prior probability in estimation problems
    • H. Jeffreys, "An invariant form for the prior probability in estimation problems, " Proc. R. Soc. London. Ser. A, vol. 186, no. 1007, pp. 453-461, 1946.
    • (1946) Proc. R. Soc. London. Ser. A , vol.186 , Issue.1007 , pp. 453-461
    • Jeffreys, H.1
  • 23
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • S. Richardson and P. J. Green, "On Bayesian analysis of mixtures with an unknown number of components, " J. R. Statist. Soc. Ser. B, vol. 59, no. 4, pp. 731-792, 1997.
    • (1997) J. R. Statist. Soc. Ser. B , vol.59 , Issue.4 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 24
    • 0000228369 scopus 로고    scopus 로고
    • Corrigendum: On Bayesian analysis of mixtures with an unknown number of components
    • S. Richardson and P. J. Green, "Corrigendum: On Bayesian analysis of mixtures with an unknown number of components, " J. R. Stat. Soc. Ser. B, vol. 60, no. 3, pp. 661-661, 1998.
    • (1998) J. R. Stat. Soc. Ser. B , vol.60 , Issue.3 , pp. 661-661
    • Richardson, S.1    Green, P.J.2
  • 25
    • 34547501725 scopus 로고    scopus 로고
    • Boulder, CO, RSI Research Syst., Inc.
    • "ENVI User's guide Version 4.0, ". Boulder, CO, RSI (Research Syst., Inc.), 2003.
    • (2003) ENVI User's Guide Version 4.0
  • 26
    • 78649400333 scopus 로고    scopus 로고
    • Maximum likelihood estimation of intrinsic dimension
    • in, L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press
    • E. Levina and P. J. Bickel, "Maximum likelihood estimation of intrinsic dimension, " in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press, 2005, pp. 777-784.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 777-784
    • Levina, E.1    Bickel, P.J.2
  • 27
    • 0021892197 scopus 로고
    • Detection of signals by information theoretic criteria
    • Apr
    • M. Wax and T. Kailath, "Detection of signals by information theoretic criteria, " IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-33, no. 2, pp. 387-392, Apr. 1985.
    • (1985) IEEE Trans. Acoust., Speech, Signal Process. , vol.ASSP-33 , Issue.2 , pp. 387-392
    • Wax, M.1    Kailath, T.2
  • 28
    • 46749116893 scopus 로고    scopus 로고
    • Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples
    • Jul
    • R. R. Nadakuditi and A. Edelman, "Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples, " IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2625-2638, Jul. 2008.
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.7 , pp. 2625-2638
    • Nadakuditi, R.R.1    Edelman, A.2
  • 29
    • 85162627225 scopus 로고
    • Statistical F-tests for abstract factor analysis and target testing
    • E. R. Malinowski, "Statistical F-tests for abstract factor analysis and target testing, " J. Chemometrics, vol. 3, no. 1, pp. 49-60, 1988.
    • (1988) J. Chemometrics , vol.3 , Issue.1 , pp. 49-60
    • Malinowski, E.R.1
  • 31
    • 34547885713 scopus 로고    scopus 로고
    • Estimating the number of pure chemical components in a mixture by maximum likelihood
    • E. Levina, A. S. Wagaman, A. F. Callender, G. S. Mandair, and M. D. Morris, "Estimating the number of pure chemical components in a mixture by maximum likelihood, " J. Chemometrics, vol. 21, no. 1-2, pp. 24-34, 2007.
    • (2007) J. Chemometrics , vol.21 , Issue.1-2 , pp. 24-34
    • Levina, E.1    Wagaman, A.S.2    Callender, A.F.3    Mandair, G.S.4    Morris, M.D.5
  • 32
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • H. Akaike, "Information theory and an extension of the maximum likelihood principle, " in Proc. 2nd Int. Symp. Inf. Theory, 1973, pp. 267-281.
    • (1973) Proc. 2nd Int. Symp. Inf. Theory , pp. 267-281
    • Akaike, H.1
  • 33
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Dec
    • H. Akaike, "A new look at the statistical model identification, " IEEE Trans. Autom. Contr., vol. 19, no. 6, pp. 716-723, Dec. 1974.
    • (1974) IEEE Trans. Autom. Contr. , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 34
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen, "Modeling by shortest data description, " Automatica, vol. 14, no. 5, pp. 465-471, 1978.
    • (1978) Automatica , vol.14 , Issue.5 , pp. 465-471
    • Rissanen, J.1
  • 35
    • 27744549755 scopus 로고    scopus 로고
    • Quality criteria benchmark for hyperspectral imagery
    • Sep
    • E. Christophe, D. Léger, and C. Mailhes, "Quality criteria benchmark for hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 43, no. 9, pp. 2103-2114, Sep. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.9 , pp. 2103-2114
    • Christophe, E.1    Léger, D.2    Mailhes, C.3
  • 36
    • 27844467218 scopus 로고    scopus 로고
    • Super-resolution reconstruction of hyperspectral images
    • Nov
    • T. Akgun, Y. Altunbasak, and R. M. Mersereau, "Super-resolution reconstruction of hyperspectral images, " IEEE Trans. Image Process., vol. 14, no. 11, pp. 1860-1875, Nov. 2005.
    • (2005) IEEE Trans. Image Process. , vol.14 , Issue.11 , pp. 1860-1875
    • Akgun, T.1    Altunbasak, Y.2    Mersereau, R.M.3
  • 37
    • 0002081183 scopus 로고
    • Automating spectral unmixing of AVIRIS data using convex geometry concepts
    • in, Washington, DC
    • J. Boardman, "Automating spectral unmixing of AVIRIS data using convex geometry concepts, " in Summaries 4th Annu. JPL Airborne Geosci. Workshop, Washington, DC, 1993, vol. 1, pp. 11-14.
    • (1993) Summaries 4th Annu. JPL Airborne Geosci. Workshop , vol.1 , pp. 11-14
    • Boardman, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.