메뉴 건너뛰기




Volumn 47, Issue 9, 2009, Pages 3180-3191

A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability

Author keywords

Expectation maximization (EM) algorithm; Feature selection; Hyperspectral images; Image classification; Remote sensing; Robust features; Semisupervised feature selection; Stationary features

Indexed keywords

EXPECTATION-MAXIMIZATION (EM) ALGORITHM; FEATURE SELECTION; HYPERSPECTRAL IMAGES; ROBUST FEATURES; SEMISUPERVISED FEATURE SELECTION; STATIONARY FEATURES;

EID: 70349332954     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2009.2019636     Document Type: Article
Times cited : (118)

References (34)
  • 1
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote-sensing images with support vector machines
    • Aug
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote-sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol.42, no.8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 2
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspec-tral image classification
    • Jun
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspec-tral image classification," IEEE Trans. Geosci. Remote Sens., vol.43, no.6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 3
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Sep
    • B. M. Shahshahani and D. A. Landgrebe, "The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon," IEEE Trans. Geosci. Remote Sens., vol.32, no.5, pp. 1087-1095, Sep. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.A.2
  • 4
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for the semisupervised classification of remote-sensing images
    • Nov
    • L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVM for the semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol.44, no.11, pp. 3363-3373, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 5
    • 34249810956 scopus 로고    scopus 로고
    • Semi-supervised classification of hyperspectral images by SVMs optimized in the primal
    • Jun
    • M. Chi and L. Bruzzone, "Semi-supervised classification of hyperspectral images by SVMs optimized in the primal," IEEE Trans. Geosci. Remote Sens., vol.45, no.6, pt. 2, pp. 1870-1880, Jun. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.6 PART. 2 , pp. 1870-1880
    • Chi, M.1    Bruzzone, L.2
  • 6
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognition
    • Jan
    • G. F. Hughes, "On the mean accuracy of statistical pattern recognition," IEEE Trans. Inf. Theory, vol.IT-14, no.1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 10
    • 0025199172 scopus 로고
    • Optimum band selection for supervised classification of multispectral data
    • Jan
    • P. W. Mausel, W. J. Kramber, and J. K. Lee, "Optimum band selection for supervised classification of multispectral data," Photogramm. Eng. Remote Sens., vol.56, no.1, pp. 55-60, Jan. 1990.
    • (1990) Photogramm. Eng. Remote Sens. , vol.56 , Issue.1 , pp. 55-60
    • Mausel, P.W.1    Kramber, W.J.2    Lee, J.K.3
  • 11
    • 35348920168 scopus 로고    scopus 로고
    • Feature selection and classification of hy-perspectral images with support vector machines
    • Oct
    • R. Archibald and G. Fann, "Feature selection and classification of hy-perspectral images with support vector machines," IEEE Geosci. Remote Sens. Lett., vol.4, no.4, pp. 674-677, Oct. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.4 , pp. 674-677
    • Archibald, R.1    Fann, G.2
  • 12
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectral remote sensing images
    • Jul
    • S. Serpico and L. Bruzzone, "A new search algorithm for feature selection in hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol.39, no.7, pp. 1360-1367, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.7 , pp. 1360-1367
    • Serpico, S.1    Bruzzone, L.2
  • 13
    • 0029407869 scopus 로고
    • An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection
    • Nov
    • L. Bruzzone, F. Roli, and S. B. Serpico, "An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection," IEEE Trans. Geosci. Remote Sens., vol.33, no.6, pp. 1318-1321, Nov. 1995.
    • (1995) IEEE Trans. Geosci. Remote Sens. , vol.33 , Issue.6 , pp. 1318-1321
    • Bruzzone, L.1    Roli, F.2    Serpico, S.B.3
  • 15
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • Sep
    • P. M. Narendra and K. Fukunaga, "A branch and bound algorithm for feature subset selection," IEEE Trans. Comput., vol.C-26, no.9, pp. 917-922, Sep. 1977.
    • (1977) IEEE Trans. Comput. , vol.C-26 , Issue.9 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 16
    • 0028547556 scopus 로고
    • Floating search methods for feature selection
    • Nov
    • P. Pudil, J. Novovicova, and J. Kittler, "Floating search methods for feature selection," Pattern Recognit. Lett., vol.15, no.11, pp. 1119-1125, Nov. 1994.
    • (1994) Pattern Recognit. Lett. , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovicova, J.2    Kittler, J.3
  • 17
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Feb
    • A. Jain and D. Zongker, "Feature selection: Evaluation, application, and small sample performance," IEEE Trans. Pattern Anal. Mach. Intell., vol.19, no.2, pp. 153-158, Feb. 1997.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 18
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • DOI 10.1016/S0893-6080(00)00026-5, PII S0893608000000265
    • A.Hyvarinen and E. Oja, "Independent component analysis: Algorithms and applications," Neural Netw., vol. 13, no. 4/5, pp. 411-430, May/Jun. 2000. (Pubitemid 30447427)
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 19
    • 33846636871 scopus 로고    scopus 로고
    • Extraction of spectral channels from hyper-spectral images for classification purposes
    • Feb
    • S. Serpico and G. Moser, "Extraction of spectral channels from hyper-spectral images for classification purposes," IEEE Trans. Geosci. Remote Sens., vol.45, no.2, pp. 484-495, Feb. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.2 , pp. 484-495
    • Serpico, S.1    Moser, G.2
  • 20
    • 0142009648 scopus 로고    scopus 로고
    • Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
    • Sep
    • J. A. Benediktsson, M. Pesaresi, and K. Arnason, "Classification and feature extraction for remote sensing images from urban areas based on morphological transformations," IEEE Trans. Geosci. Remote Sens., vol.41, no.9, pp. 1940-1949, Sep. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.9 , pp. 1940-1949
    • Benediktsson, J.A.1    Pesaresi, M.2    Arnason, K.3
  • 21
    • 0036474679 scopus 로고    scopus 로고
    • Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance
    • Feb
    • M. N. Do and M. Vetteri, "Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance," IEEE Trans. Image Process., vol.11, no.2, pp. 146-158, Feb. 2002.
    • (2002) IEEE Trans. Image Process. , vol.11 , Issue.2 , pp. 146-158
    • Do, M.N.1    Vetteri, M.2
  • 22
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Apr
    • H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering," IEEE Trans. Knowl. Data Eng., vol.17, no.4, pp. 491-502, Apr. 2005.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 23
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Aug
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy, " IEEE Trans. Pattern Anal. Mach. Intell., vol.27, no.8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 24
    • 38349181507 scopus 로고    scopus 로고
    • A fast separability-based feature-selection method for high-dimensional remotely sensed image classification
    • May
    • B. Guo, R. I. Damper, S. R. Gunn, and J. D. B. Nelson, "A fast separability-based feature-selection method for high-dimensional remotely sensed image classification," Pattern Recognit., vol.41, no.5, pp. 1653-1662, May 2008.
    • (2008) Pattern Recognit. , vol.41 , Issue.5 , pp. 1653-1662
    • Guo, B.1    Damper, R.I.2    Gunn, S.R.3    Nelson, J.D.B.4
  • 25
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • Nov
    • W. Siedlecki and J. Sklansky, "A note on genetic algorithms for large-scale feature selection," Pattern Recognit. Lett., vol.10, no.5, pp. 335-347, Nov. 1989.
    • (1989) Pattern Recognit. Lett. , vol.10 , Issue.5 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 27
    • 0026839971 scopus 로고
    • Fast genetic selection of features for neural network classifiers
    • Mar
    • F. Z. Brill, D. E. Brown, and W. N. Martin, "Fast genetic selection of features for neural network classifiers," IEEE Trans. Neural Netw., vol.3, no.2, pp. 324-328, Mar. 1992.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.2 , pp. 324-328
    • Brill, F.Z.1    Brown, D.E.2    Martin, W.N.3
  • 28
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Mar./Apr
    • J. H. Yang and V. Honavar, "Feature subset selection using a genetic algorithm," IEEE Intell. Syst., vol.13, no.2, pp. 44-49, Mar./Apr. 1998.
    • (1998) IEEE Intell. Syst. , vol.13 , Issue.2 , pp. 44-49
    • Yang, J.H.1    Honavar, V.2
  • 30
    • 33750123088 scopus 로고    scopus 로고
    • Feature subset selection via multi-objective genetic algorithm"
    • Montreal, QC, Canada, Jul. 31-Aug
    • H. C. Lac and D. A. Stacey, "Feature subset selection via multi-objective genetic algorithm," in Proc. Int. Joint Conf. Neural Netw., Montreal, QC, Canada, Jul. 31-Aug. 4, 2005, pp. 1349-1354.
    • (2005) Proc. Int. Joint Conf. Neural Netw. , vol.4 , pp. 1349-1354
    • Lac, H.C.1    Stacey, D.A.2
  • 31
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • Apr
    • K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Trans. Evol. Comput., vol.6, no.2, pp. 182-197, Apr. 2002.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 32
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. R. Stat. Soc., vol.39, no.1, pp. 1-38, 1977.
    • (1977) J. R. Stat. Soc. , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 33
    • 0035248272 scopus 로고    scopus 로고
    • Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images
    • Feb
    • L. Bruzzone and D. F. Prieto, "Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images," IEEE Trans. Geosci. Remote Sens., vol.39, no.2, pp. 456-460, Feb. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.2 , pp. 456-460
    • Bruzzone, L.1    Prieto, D.F.2
  • 34
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Mar
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol.43, no.3, pp. 492-501, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.