메뉴 건너뛰기




Volumn 52, Issue 5, 2014, Pages 2654-2665

Nonlinear estimation of material abundances in hyperspectral images with ell1-Norm Spatial Regularization

Author keywords

Hyperspectral imaging; nonlinear spectral unmixing; spatial regularization

Indexed keywords

ESTIMATION; SPECTROSCOPY;

EID: 84896314126     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2013.2264392     Document Type: Article
Times cited : (79)

References (44)
  • 1
    • 85032751930 scopus 로고    scopus 로고
    • Spectral unmixing
    • DOI 10.1109/79.974727
    • N. Keshava and J. F. Mustard, Spectral unmixing, IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002. (Pubitemid 34237207)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 44-57
    • Keshava, N.1    Mustard, J.F.2
  • 2
    • 70350450305 scopus 로고    scopus 로고
    • Nonlinear mixture model for hyperspectral unmixing
    • J. M. P. Nascimento and J. M. Bioucas-Dias, Nonlinear mixture model for hyperspectral unmixing, in Proc. SPIE, 2009, vol. 7477, p. 74 770I.
    • (2009) Proc. SPIE , vol.7477
    • Nascimento, J.M.P.1    Bioucas-Dias, J.M.2
  • 3
    • 77957976782 scopus 로고    scopus 로고
    • Nonlinear spectral mixture analysis for hyperspectral imagery in an unknown environment
    • Oct
    • N. Raksuntorn and Q. Du, Nonlinear spectral mixture analysis for hyperspectral imagery in an unknown environment, IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 836-840, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett , vol.7 , Issue.4 , pp. 836-840
    • Raksuntorn, N.1    Du, Q.2
  • 4
    • 80455158223 scopus 로고    scopus 로고
    • Nonlinear unmixing of hyperspectral images using a generalized bilinear model
    • Nov
    • A. Halimi, Y. Altman, N. Dobigeon, and J.-Y. Tourneret, Nonlinear unmixing of hyperspectral images using a generalized bilinear model, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4153-4162, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.11 , pp. 4153-4162
    • Halimi, A.1    Altman, Y.2    Dobigeon, N.3    Tourneret, J.-Y.4
  • 5
    • 84861144324 scopus 로고    scopus 로고
    • Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery
    • Jun.
    • Y. Altmann, A. Halimi, N. Dobigeon, and J.-Y. Tourneret, Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery, IEEE Trans. Image Process., vol. 21, no. 6, pp. 3017-3025, Jun. 2012.
    • (2012) IEEE Trans. Image Process , vol.21 , Issue.6 , pp. 3017-3025
    • Altmann, Y.1    Halimi, A.2    Dobigeon, N.3    Tourneret, J.-Y.4
  • 6
    • 79957443437 scopus 로고    scopus 로고
    • Non-linear spectral unmixing by geodesic simplex volume maximization
    • Jun
    • R. Heylen, D. Burazerovic, and P. Scheunders, Non-linear spectral unmixing by geodesic simplex volume maximization, IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 534-542, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process , vol.5 , Issue.3 , pp. 534-542
    • Heylen, R.1    Burazerovic, D.2    Scheunders, P.3
  • 7
    • 84873183850 scopus 로고    scopus 로고
    • Hyperspectral image unmixing using manifold learning methods derivations and comparative tests
    • H. N. Nguyen, C. Richard, P. Honeine, and C. Theys, Hyperspectral image unmixing using manifold learning methods derivations and comparative tests, in Proc. IEEE IGARSS, 2012, pp. 3086-3089.
    • (2012) Proc IEEE IGARSS , pp. 3086-3089
    • Nguyen, H.N.1    Richard, C.2    Honeine, P.3    Theys, C.4
  • 8
    • 78049290930 scopus 로고    scopus 로고
    • A novel technique for subpixel image classification based on support vector machine
    • Nov
    • F. Bovolo, L. Bruzzone, and L. Carlin, A novel technique for subpixel image classification based on support vector machine, IEEE Trans. Image Process., vol. 19, no. 11, pp. 2983-2999, Nov. 2010.
    • (2010) IEEE Trans. Image Process , vol.19 , Issue.11 , pp. 2983-2999
    • Bovolo, F.1    Bruzzone, L.2    Carlin, L.3
  • 10
    • 79957459096 scopus 로고    scopus 로고
    • A comparison of kernel functions for intimate mixture models
    • J. Broadwater and A. Banerjee, A comparison of kernel functions for intimate mixture models, in Proc. IEEE IGARSS, 2009, pp. 1-4.
    • (2009) Proc IEEE IGARSS , pp. 1-4
    • Broadwater, J.1    Banerjee, A.2
  • 11
    • 84861304278 scopus 로고    scopus 로고
    • A novel kernel-based nonlinear unmixing scheme of hyperspectral images
    • J. Chen, C. Richard, and P. Honeine, A novel kernel-based nonlinear unmixing scheme of hyperspectral images, in Proc. ASILOMAR, 2011, pp. 1898-1902.
    • (2011) Proc. ASILOMAR , pp. 1898-1902
    • Chen, J.1    Richard, C.2    Honeine, P.3
  • 12
    • 84872104815 scopus 로고    scopus 로고
    • Nonlinear unmixing of hyperspectral data based on a linear-mixture/ nonlinear-fluctuation model
    • Jan.
    • J. Chen, C. Richard, and P. Honeine, Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinear-fluctuation model, IEEE Trans. Signal Process., vol. 61, no. 2, pp. 480-492, Jan. 2013.
    • (2013) IEEE Trans. Signal Process , vol.61 , Issue.2 , pp. 480-492
    • Chen, J.1    Richard, C.2    Honeine, P.3
  • 13
    • 84906545682 scopus 로고    scopus 로고
    • Nonlinear unmixing of hyperspectral images with multi-kernel learning
    • J. Chen, C. Richard, and P. Honeine, Nonlinear unmixing of hyperspectral images with multi-kernel learning, in Proc. IEEE WHISPERS, 2012, pp. 1-12.
    • (2012) Proc IEEE WHISPERS , pp. 1-12
    • Chen, J.1    Richard, C.2    Honeine, P.3
  • 14
    • 84890501290 scopus 로고    scopus 로고
    • Nonlinear unmixing of hyperspectral data with partially linear least-squares support vector regression
    • J. Chen, C. Richard, A. Ferrari, and P. Honeine, Nonlinear unmixing of hyperspectral data with partially linear least-squares support vector regression, in Proc. IEEE ICASSP, 2013, pp. 2174-2178.
    • (2013) Proc IEEE ICASSP , pp. 2174-2178
    • Chen, J.1    Richard, C.2    Ferrari, A.3    Honeine, P.4
  • 15
    • 85038570643 scopus 로고    scopus 로고
    • Estimating abundance fractions of materials in hyperspectral images by fitting a post-nonlinear mixing model
    • J. Chen, C. Richard, and P. Honeine, Estimating abundance fractions of materials in hyperspectral images by fitting a post-nonlinear mixing model, in Proc. IEEE WHISPERS, 2013.
    • (2013) Proc IEEE WHISPERS
    • Chen, J.1    Richard, C.2    Honeine, P.3
  • 17
    • 34548036670 scopus 로고    scopus 로고
    • Integration of spatial-spectral information for the improved extraction of endmembers
    • DOI 10.1016/j.rse.2007.02.019, PII S0034425707000934
    • D. M. Rogge, B. Rivard, J. Zhang, A. Sanchez, J. Harris, and J. Feng, Integration of spatial-spectral information for the improved extraction of endmembers, Remote Sens. Environ., vol. 110, no. 3, pp. 287-303, Oct. 2007. (Pubitemid 47285207)
    • (2007) Remote Sensing of Environment , vol.110 , Issue.3 , pp. 287-303
    • Rogge, D.M.1    Rivard, B.2    Zhang, J.3    Sanchez, A.4    Harris, J.5    Feng, J.6
  • 18
    • 67949098957 scopus 로고    scopus 로고
    • Spatial preprocessing for endmember extraction
    • Aug
    • M. Zortea and A. Plaza, Spatial preprocessing for endmember extraction, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679-2693, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.8 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2
  • 19
    • 79959766442 scopus 로고    scopus 로고
    • Region-based spatial preprocessing for endmember extraction and spectral unmixing
    • Jul
    • G. Martin and A. Plaza, Region-based spatial preprocessing for endmember extraction and spectral unmixing, IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 745-749, Jul. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett , vol.8 , Issue.4 , pp. 745-749
    • Martin, G.1    Plaza, A.2
  • 20
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar.
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. Tilton, Advances in spectral-spatial classification of hyperspectral images, Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.5
  • 21
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
    • Mar.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields, IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809-823, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 22
    • 50249160592 scopus 로고    scopus 로고
    • Hyperspectral image unmixing via alternating projected subgradients
    • A. Zymnis, S. J. Kim, J. Skaf, M. Parente, and S. Boyd, Hyperspectral image unmixing via alternating projected subgradients, in Proc. ASILOMAR, 2007, pp. 1164-1168.
    • (2007) Proc. ASILOMAR , pp. 1164-1168
    • Zymnis, A.1    Kim, S.J.2    Skaf, J.3    Parente, M.4    Boyd, S.5
  • 23
    • 80455155174 scopus 로고    scopus 로고
    • Enhancing hyperspectral image unmixing with spatial correlations
    • Nov
    • O. Eches, N. Dobigeon, and J.-Y. Tourneret, Enhancing hyperspectral image unmixing with spatial correlations, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4239-4247, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.11 , pp. 4239-4247
    • Eches, O.1    Dobigeon, N.2    Tourneret, J.-Y.3
  • 24
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatial regularization for sparse hyperspectral unmixing
    • Nov.
    • M.-D. Iordache, J. Bioucas-Dias, and A. Plaza, Total variation spatial regularization for sparse hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4484-4502, Nov. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.11 , pp. 4484-4502
    • Iordache, M.-D.1    Bioucas-Dias, J.2    Plaza, A.3
  • 25
    • 36348990884 scopus 로고    scopus 로고
    • Spectral and spatial complexity-based hyperspectral unmixing
    • DOI 10.1109/TGRS.2007.898443
    • S. Jia and Y. Qian, Spectral and spatial complexity-based hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3867-3879, Dec. 2007. (Pubitemid 350157825)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.12 , pp. 3867-3879
    • Jia, S.1    Qian, Y.2
  • 26
    • 80955150938 scopus 로고    scopus 로고
    • Spatial-spectral unmixing using fuzzy local information
    • A. Zare, Spatial-spectral unmixing using fuzzy local information, in Proc. IEEE IGARSS, 2011, pp. 1139-1142.
    • (2011) Proc IEEE IGARSS , pp. 1139-1142
    • Zare, A.1
  • 27
    • 0030615903 scopus 로고    scopus 로고
    • Spatial autocorrelation analysis of hyperspectral imagery for feature selection
    • Apr
    • T. A. Warner and M. C. Shank, Spatial autocorrelation analysis of hyperspectral imagery for feature selection, Remote Sens. Environ., vol. 60, no. 1, pp. 58-70, Apr. 1997.
    • (1997) Remote Sens. Environ , vol.60 , Issue.1 , pp. 58-70
    • Warner, T.A.1    Shank, M.C.2
  • 28
    • 72049091789 scopus 로고    scopus 로고
    • Improving the quality of extracted endmembers
    • Q. Du, L. Zhang, and N. Raksuntorn, Improving the quality of extracted endmembers, in Proc. WHISPERS, 2009, pp. 1-4.
    • (2009) Proc. WHISPERS , pp. 1-4
    • Du, Q.1    Zhang, L.2    Raksuntorn, N.3
  • 31
    • 32544443001 scopus 로고    scopus 로고
    • An improved training algorithm for nonlinear kernel discriminants
    • Oct
    • F. Abdallah, C. Richard, and R. Lengell, An improved training algorithm for nonlinear kernel discriminants, IEEE Trans. Signal Process., vol. 52, no. 10, pp. 2798-2806, Oct. 2004.
    • (2004) IEEE Trans. Signal Process , vol.52 , Issue.10 , pp. 2798-2806
    • Abdallah, F.1    Richard, C.2    Lengell, R.3
  • 32
    • 84969334819 scopus 로고    scopus 로고
    • The split Bregman method for L1 regularized problems
    • T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems, SIAM J. Imag. Sci., vol. 2, no. 2, pp. 323-343, 2009.
    • (2009) SIAM J. Imag. Sci , vol.2 , Issue.2 , pp. 323-343
    • Goldstein, T.1    Osher, S.2
  • 33
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • R. Tibshirani, Regression shrinkage and selection via the Lasso, J. Roy. Stat. Soc. Ser. B, vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. Roy. Stat. Soc. Ser. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 34
    • 0027113845 scopus 로고
    • On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators
    • Apr
    • J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., vol. 55, no. 1-3, pp. 293-318, Apr. 1992.
    • (1992) Math. Program , vol.55 , Issue.1-3 , pp. 293-318
    • Eckstein, J.1    Bertsekas, D.P.2
  • 36
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. C. Heinz and C.-I. Chang, Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 37
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • Jan
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-122, Jan. 2011.
    • (2011) Found. Trends Mach. Learn , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 39
    • 79960904516 scopus 로고    scopus 로고
    • Signal-dependent noise modeling and model parameter estimation in hyperspectral images
    • Aug
    • N. Acito, M. Diani, and G. Corsini, Signal-dependent noise modeling and model parameter estimation in hyperspectral images, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 8, pp. 2957-2971, Aug. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.8 , pp. 2957-2971
    • Acito, N.1    Diani, M.2    Corsini, G.3
  • 40
    • 79960638416 scopus 로고    scopus 로고
    • Modeling and estimation of signal-dependent noise in hyperspectral imagery
    • Jul
    • J. Meola, M.-T. Eismann, R.-L. Moses, and J.-N. Ash, Modeling and estimation of signal-dependent noise in hyperspectral imagery, Appl. Opt., vol. 50, no. 21, pp. 3829-3846, Jul. 2011.
    • (2011) Appl. Opt , vol.50 , Issue.21 , pp. 3829-3846
    • Meola, J.1    Eismann, M.-T.2    Moses, R.-L.3    Ash, J.-N.4
  • 42
    • 33747176570 scopus 로고    scopus 로고
    • Noise modelling and estimation of hyperspectral data from airborne imaging spectrometers
    • B. Aiazzi, L. Alparone, S. Baronti, A. Barducci, P. Marcoionni, I. Pippi, and M. Selva, Noise modeling and estimation of hyperspectral data from airborne imaging spectrometer, Ann. Geophys., vol. 49, no. 1, pp. 1-9, Feb. 2006. (Pubitemid 44226622)
    • (2006) Annals of Geophysics , vol.49 , Issue.1 , pp. 1-9
    • Aiazzi, B.1    Alparone, L.2    Barducci, A.3    Baronti, S.4    Marcoionni, P.5    Pippi, I.6    Selva, M.7
  • 43
    • 79959742177 scopus 로고    scopus 로고
    • Unmixing prior to supervised classification of remotely sensed hyperspectral images
    • Jul
    • I. Dopido, M. Zortea, A. Villa, A. Plaza, and P. Gamba, Unmixing prior to supervised classification of remotely sensed hyperspectral images, IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 760-764, Jul. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett , vol.8 , Issue.4 , pp. 760-764
    • Dopido, I.1    Zortea, M.2    Villa, A.3    Plaza, A.4    Gamba, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.