메뉴 건너뛰기




Volumn 148, Issue , 2015, Pages 363-375

Semi-supervised change detection method for multi-temporal hyperspectral images

Author keywords

Change detection; Distance metrics; Hyperspectral; Noise bands

Indexed keywords

CHANGE DETECTION; DISTANCE METRICS; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL; MULTI-TEMPORAL; NOISE BANDS; SEMI-SUPERVISED;

EID: 84908059485     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.06.024     Document Type: Article
Times cited : (88)

References (44)
  • 1
    • 0028172421 scopus 로고
    • Using remote sensing to detect and monitor land-cover and land-use change
    • Green K., Kempka D., Lackey L. Using remote sensing to detect and monitor land-cover and land-use change. Photogramm. Eng. Remote Sens. 1994, 60:331-337.
    • (1994) Photogramm. Eng. Remote Sens. , vol.60 , pp. 331-337
    • Green, K.1    Kempka, D.2    Lackey, L.3
  • 2
    • 84879967034 scopus 로고    scopus 로고
    • Fault-tolerant building change detection from urban high-resolution remote sensing imagery
    • Tang Y., Huang X., Zhang L. Fault-tolerant building change detection from urban high-resolution remote sensing imagery. IEEE Geosci. Remote Sens. Lett. 2013, 10:1060-1064.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , pp. 1060-1064
    • Tang, Y.1    Huang, X.2    Zhang, L.3
  • 3
    • 84896317984 scopus 로고    scopus 로고
    • Slow feature analysis for change detection in multispectral imagery
    • Wu C., Du B., Zhang L. Slow feature analysis for change detection in multispectral imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52:2858-2874.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , pp. 2858-2874
    • Wu, C.1    Du, B.2    Zhang, L.3
  • 4
    • 34447500304 scopus 로고    scopus 로고
    • Early fire detection using non-linear multi-temporal prediction of thermal imagery
    • Koltunov A., Ustin S.L. Early fire detection using non-linear multi-temporal prediction of thermal imagery. Remote Sens. Environ. 2007, 110:18-28.
    • (2007) Remote Sens. Environ. , vol.110 , pp. 18-28
    • Koltunov, A.1    Ustin, S.L.2
  • 5
    • 0032053337 scopus 로고    scopus 로고
    • An unsupervised change detection and recognition system for forestry
    • Heiler T.H.I., Chanussot J., Miguel-Ayanz J.S. An unsupervised change detection and recognition system for forestry. Int. J. Remote Sens. 1998, 19:1079-1099.
    • (1998) Int. J. Remote Sens. , vol.19 , pp. 1079-1099
    • Heiler, T.H.I.1    Chanussot, J.2    Miguel-Ayanz, J.S.3
  • 6
  • 7
    • 0024855524 scopus 로고    scopus 로고
    • Digital change detection techniques using remotely-sensed data
    • Singh A. Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 2013, 10:989-1003.
    • (2013) Int. J. Remote Sens. , vol.10 , pp. 989-1003
    • Singh, A.1
  • 8
    • 33846223394 scopus 로고    scopus 로고
    • A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain
    • Bovolo F., Bruzzone L. A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain. IEEE Trans. Geosci. Remote Sens. 2007, 45:218-236.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 218-236
    • Bovolo, F.1    Bruzzone, L.2
  • 9
    • 77953718575 scopus 로고    scopus 로고
    • A context-sensitive technique robust to registration noise for change detection in vhr multispectral images
    • Marchesi S., Bovolo F., Bruzzone L. A context-sensitive technique robust to registration noise for change detection in vhr multispectral images. IEEE Trans. Image Process. 2010, 19:1877-1889.
    • (2010) IEEE Trans. Image Process. , vol.19 , pp. 1877-1889
    • Marchesi, S.1    Bovolo, F.2    Bruzzone, L.3
  • 10
    • 0032036301 scopus 로고    scopus 로고
    • Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data. new approaches to change detection studies
    • Nielsen A.A., Conradsen K., Simpson J.J. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data. new approaches to change detection studies. Remote Sens. Environ. 1998, 64:1-19.
    • (1998) Remote Sens. Environ. , vol.64 , pp. 1-19
    • Nielsen, A.A.1    Conradsen, K.2    Simpson, J.J.3
  • 11
    • 33847751877 scopus 로고    scopus 로고
    • The regularized iteratively reweighted mad method for change detection in multi- and hyperspectral data
    • Nielsen A.A. The regularized iteratively reweighted mad method for change detection in multi- and hyperspectral data. IEEE Trans. Image Process. 2007, 16:463-478.
    • (2007) IEEE Trans. Image Process. , vol.16 , pp. 463-478
    • Nielsen, A.A.1
  • 12
    • 79959766431 scopus 로고    scopus 로고
    • Improving change detection results of ir-mad by eliminating strong changes
    • Marpu P.R., Gamba P., Canty M.J. Improving change detection results of ir-mad by eliminating strong changes. IEEE Geosci. Remote Sens. Lett. 2011, 8:799-803.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , pp. 799-803
    • Marpu, P.R.1    Gamba, P.2    Canty, M.J.3
  • 14
    • 84860338492 scopus 로고    scopus 로고
    • Detection of land-cover transitions in multitemporal remote sensing images with active-learning-based compound classification
    • Demir B., Bovolo F., Bruzzone L. Detection of land-cover transitions in multitemporal remote sensing images with active-learning-based compound classification. IEEE Trans. Geosci. Remote Sens. 2012, 50:1930-1941.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 1930-1941
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 15
    • 84861340870 scopus 로고    scopus 로고
    • A framework for automatic and unsupervised detection of multiple changes in multitemporal images
    • Bovolo F., Marchesi S., Bruzzone L. A framework for automatic and unsupervised detection of multiple changes in multitemporal images. IEEE Trans. Geosci. Remote Sens. 2012, 50:2196-2212.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 2196-2212
    • Bovolo, F.1    Marchesi, S.2    Bruzzone, L.3
  • 16
    • 1642528357 scopus 로고    scopus 로고
    • Object-based classification of remote sensing data for change detection
    • Walter V. Object-based classification of remote sensing data for change detection. ISPRS J. Photogramm. Remote Sens. 2004, 58:225-238.
    • (2004) ISPRS J. Photogramm. Remote Sens. , vol.58 , pp. 225-238
    • Walter, V.1
  • 17
    • 77953805629 scopus 로고    scopus 로고
    • Iterative convex hull volume estimation in hyperspectral imagery for change detection
    • in: SPIE Defense, Security, and Sensing, International Society for Optics and Photonics
    • A.K. Ziemann, D.W. Messinger, W.F. Basener, Iterative convex hull volume estimation in hyperspectral imagery for change detection, in: SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, p. 76951I.
    • Ziemann, A.K.1    Messinger, D.W.2    Basener, W.F.3
  • 19
    • 41249083722 scopus 로고    scopus 로고
    • Using local transition probability models in Markov random fields for forest change detection
    • Liu D., Song K., Townshend J.R., Gong P. Using local transition probability models in Markov random fields for forest change detection. Remote Sens. Environ. 2008, 112:2222-2231.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 2222-2231
    • Liu, D.1    Song, K.2    Townshend, J.R.3    Gong, P.4
  • 22
    • 84888186703 scopus 로고    scopus 로고
    • Semi-supervised change detection using modified self-organizing feature map neural network
    • Ghosh S., Roy M., Ghosh A. Semi-supervised change detection using modified self-organizing feature map neural network. Appl. Soft Comput. 2014, 15:1-20.
    • (2014) Appl. Soft Comput. , vol.15 , pp. 1-20
    • Ghosh, S.1    Roy, M.2    Ghosh, A.3
  • 23
    • 84897049246 scopus 로고    scopus 로고
    • A novel approach for change detection of remotely sensed images using semi-supervised multiple classifier system
    • Roy M., Ghosh S., Ghosh A. A novel approach for change detection of remotely sensed images using semi-supervised multiple classifier system. Inf. Sci. 2014, 269:35-47.
    • (2014) Inf. Sci. , vol.269 , pp. 35-47
    • Roy, M.1    Ghosh, S.2    Ghosh, A.3
  • 24
    • 80054823948 scopus 로고    scopus 로고
    • Complex object correspondence construction in two-dimensional animation
    • Yu J., Liu D., Tao D., Seah H.S. Complex object correspondence construction in two-dimensional animation. IEEE Trans. Image Process. 2011, 20:3257-3269.
    • (2011) IEEE Trans. Image Process. , vol.20 , pp. 3257-3269
    • Yu, J.1    Liu, D.2    Tao, D.3    Seah, H.S.4
  • 25
    • 33845594193 scopus 로고    scopus 로고
    • Learning distance metrics with contextual constraints for image retrieval
    • in: Proceedings of International Conference Computer Vision and Pattern Recognition
    • C. Hoi, W. Liu, M. Lyu, K. Lu, W. Ma, Learning distance metrics with contextual constraints for image retrieval, in: Proceedings of International Conference Computer Vision and Pattern Recognition, 2006, pp. 2072-2078.
    • (2006) , pp. 2072-2078
    • Hoi, C.1    Liu, W.2    Lyu, M.3    Lu, K.4    Ma, W.5
  • 26
    • 77956006653 scopus 로고    scopus 로고
    • Multimodal semi-supervised learning for image classification
    • in: Proceedings of International Conference Computer Vision and Pattern Recognition
    • M. Guillaumin, J. Verbeek, C. Schmid, Multimodal semi-supervised learning for image classification, in: Proceedings of International Conference Computer Vision and Pattern Recognition, 2010, pp. 902-909.
    • (2010) , pp. 902-909
    • Guillaumin, M.1    Verbeek, J.2    Schmid, C.3
  • 27
    • 84864030708 scopus 로고    scopus 로고
    • Metric learning by collapsing classes, in: NIPS
    • A. Globerson, S.T. Roweis, Metric learning by collapsing classes, in: NIPS, 2005.
    • (2005)
    • Globerson, A.1    Roweis, S.T.2
  • 28
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Weinberger K.Q., Saul L.K. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 2009, 10:207-244.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 29
    • 84888438822 scopus 로고    scopus 로고
    • Smooth approximation method for non-smooth empirical risk minimization based distance metric learning
    • Shi Y., Ji H. Smooth approximation method for non-smooth empirical risk minimization based distance metric learning. Neurocomputing 2014, 127:135-143.
    • (2014) Neurocomputing , vol.127 , pp. 135-143
    • Shi, Y.1    Ji, H.2
  • 30
    • 84893730985 scopus 로고    scopus 로고
    • Globality and locality incorporation in distance metric learning
    • Wang W., Hu B.-G., Wang Z.-F. Globality and locality incorporation in distance metric learning. Neurocomputing 2014, 129:185-198.
    • (2014) Neurocomputing , vol.129 , pp. 185-198
    • Wang, W.1    Hu, B.-G.2    Wang, Z.-F.3
  • 31
    • 84867860164 scopus 로고    scopus 로고
    • Multimodal graph-based reranking for web image search
    • Wang M., Li H., Tao D., Lu K., Wu X. Multimodal graph-based reranking for web image search. IEEE Trans. Image Process. 2012, 21:4649-4661.
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 4649-4661
    • Wang, M.1    Li, H.2    Tao, D.3    Lu, K.4    Wu, X.5
  • 33
    • 85133386144 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • in: Advances in Neural Information Processing Systems
    • E.P. Xing, A.Y. Ng, M.I. Jordan, S.J. Russell, Distance metric learning with application to clustering with side-information, in: Advances in Neural Information Processing Systems, pp. 505-512.
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.J.4
  • 34
    • 77956374577 scopus 로고    scopus 로고
    • Semi-supervised distance metric learning for collaborative image retrieval and clustering
    • Hoi S.C.H., Liu W., Chang S.-F. Semi-supervised distance metric learning for collaborative image retrieval and clustering. ACM Trans. Multimed. Comput. Commun. Appl. 2010, 6.
    • (2010) ACM Trans. Multimed. Comput. Commun. Appl. , vol.6
    • Hoi, S.C.H.1    Liu, W.2    Chang, S.-F.3
  • 36
    • 33746873280 scopus 로고    scopus 로고
    • Collaborative image retrieval via regularized metric learning
    • Si L., Jin R., Hoi S.C.H., Lyu M.R. Collaborative image retrieval via regularized metric learning. Multimed. Syst. 2006, 12:34-44.
    • (2006) Multimed. Syst. , vol.12 , pp. 34-44
    • Si, L.1    Jin, R.2    Hoi, S.C.H.3    Lyu, M.R.4
  • 40
    • 84874648701 scopus 로고    scopus 로고
    • Assessment of spectral band impact on intercalibration over desert sites using simulation based on EO-1 hyperion data
    • Henry P., Chander G., Fougnie B., Thomas C., Xiong X. Assessment of spectral band impact on intercalibration over desert sites using simulation based on EO-1 hyperion data. IEEE Trans. Geosci. Remote Sens. 2013, 51:1297-1308.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , pp. 1297-1308
    • Henry, P.1    Chander, G.2    Fougnie, B.3    Thomas, C.4    Xiong, X.5
  • 41
    • 39749119412 scopus 로고    scopus 로고
    • Automatic Radiometric Normalization of Multitemporal Satellite Imagery with the Iteratively Re-weighted MAD Transformation
    • Canty M.J., Nielsen A.A. Automatic Radiometric Normalization of Multitemporal Satellite Imagery with the Iteratively Re-weighted MAD Transformation. Remote Sens. Environ. 2008, 112:1025-1036.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 1025-1036
    • Canty, M.J.1    Nielsen, A.A.2
  • 42
    • 48249085703 scopus 로고    scopus 로고
    • Pca-based land-use change detection and analysis using multitemporal and multisensor satellite data
    • Deng J.S., Wang K., Deng Y.H., Qi G.J. Pca-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote Sens. 2008, 29:4823-4838.
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 4823-4838
    • Deng, J.S.1    Wang, K.2    Deng, Y.H.3    Qi, G.J.4
  • 43
    • 70350347100 scopus 로고    scopus 로고
    • Unsupervised change detection in satellite images using principal component analysis and k-means clustering
    • Celik T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6:772-776.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , pp. 772-776
    • Celik, T.1
  • 44
    • 85008024035 scopus 로고    scopus 로고
    • Hyperspectral change detection in the presence of diurnal and seasonal variations
    • Eismann M.T., Meola J., Hardie R.C. Hyperspectral change detection in the presence of diurnal and seasonal variations. IEEE Trans. Geosci. Remote Sens. 2008, 46:237-249.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , pp. 237-249
    • Eismann, M.T.1    Meola, J.2    Hardie, R.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.