메뉴 건너뛰기




Volumn 49, Issue 11 PART 1, 2011, Pages 4263-4281

Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery

Author keywords

Hyperspectral imaging; scene classification; sparse modeling; spectral unmixing

Indexed keywords

HYPERSPECTRAL IMAGERY; HYPERSPECTRAL IMAGING; LINEAR COMBINATIONS; LINEAR MIXTURES; MODELING TECHNIQUE; PIXEL CLASSIFICATION; REGULARIZER; SCENE CLASSIFICATION; SOURCE SEPARATION; SPARSE MODELING; SPARSE REPRESENTATION; SPECTRAL UNMIXING; SPECTRAL VARIABILITY; SUB PIXELS; UNSUPERVISED CLASSIFICATION;

EID: 80455122805     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2011.2163822     Document Type: Article
Times cited : (120)

References (66)
  • 4
    • 84863386014 scopus 로고    scopus 로고
    • Nonparametric Bayesian dictionary learning for sparse image representations
    • Vancouver, BC, Canada
    • M. Zhou, H. Chen, J. Paisley, L. Ren, G. Sapiro, and L. Carin, Nonparametric Bayesian dictionary learning for sparse image representations, in Proc. NIPS, Vancouver, BC, Canada, 2009
    • (2009) Proc. NIPS
    • Zhou, M.1    Chen, H.2    Paisley, J.3    Ren, L.4    Sapiro, G.5    Carin, L.6
  • 5
    • 0035665441 scopus 로고    scopus 로고
    • A VNIR/SWIR atmospheric correction algorithm for hyperspectral imagery with adjacency effect
    • DOI 10.1016/S0034-4257(01)00219-X, PII S003442570100219X
    • L. C. Sanders, J. R. Schott, and R. V. Raqueno, A VNIR/SWIR atmospheric correction algorithm for hyperspectral imagery with adjacency effect, Remote Sens. Environ., vol. 78, no. 3, pp. 252-263, Dec. 2001 (Pubitemid 34009896)
    • (2001) Remote Sensing of Environment , vol.78 , Issue.3 , pp. 252-263
    • Sanders, L.C.1    Schott, J.R.2    Raqueno, R.3
  • 6
    • 0033890553 scopus 로고    scopus 로고
    • Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis
    • DOI 10.1109/36.841987
    • C. Bateson, G. Asner, and C. Wessman, Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis, IEEE Trans. Geosci. Remote Sens., vol. 38, no. 2, pp. 1083- 1094, Mar. 2000 (Pubitemid 30594771)
    • (2000) IEEE Transactions on Geoscience and Remote Sensing , vol.38 , Issue.2 , pp. 1083-1094
    • Ann Bateson, C.1    Asner, G.P.2    Wessman, C.A.3
  • 7
    • 67651166641 scopus 로고    scopus 로고
    • Generalization of subpixel analysis for hyperspectral data with flexibility in spectral similarity measures
    • Jul
    • J. Chen, X. Jia, W. Yang, and B. Matsushita, Generalization of subpixel analysis for hyperspectral data with flexibility in spectral similarity measures, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2165-2171, Jul. 2009
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.7 , pp. 2165-2171
    • Chen, J.1    Jia, X.2    Yang, W.3    Matsushita, B.4
  • 8
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • DOI 10.1109/79.974718
    • D. Landgrebe, Hyperspectral image data analysis, IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, Jan. 2002 (Pubitemid 34237205)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 9
    • 0033224771 scopus 로고    scopus 로고
    • Hyperspectral data analysis and supervised feature reduction via projection pursuit
    • DOI 10.1109/36.803413
    • L. Jimenez and D. Landgrebe, Hyperspectral data analysis and supervised feature reduction via projection pursuit, IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2653-2667, Nov. 1999 (Pubitemid 30519598)
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.6 , pp. 2653-2667
    • Jimenez, L.O.1
  • 10
    • 0346061723 scopus 로고    scopus 로고
    • High-dimensional data analysis: The curses and blessings of dimensionality
    • Los Angeles, CA
    • D. L. Donoho, High-dimensional data analysis: The curses and blessings of dimensionality, in Proc. Amer. Math. Soc. Conf. Math Challenges 21st Century, Los Angeles, CA, 2000
    • (2000) Proc. Amer. Math. Soc. Conf. Math Challenges 21st Century
    • Donoho, D.L.1
  • 11
    • 77951264985 scopus 로고    scopus 로고
    • Reducing the dimensionality of hyperspectral data using diffusion maps
    • L. du Plessis, S. Damelin, and M. Sears, Reducing the dimensionality of hyperspectral data using diffusion maps, in Proc. IGARSS, 2009, vol. 4, pp. IV-885-IV-888
    • (2009) Proc. IGARSS , vol.4
    • Du Plessis, L.1    Damelin, S.2    Sears, M.3
  • 13
    • 39049167499 scopus 로고    scopus 로고
    • Improved manifold coordinate representations of large-scale hyperspectral scenes
    • Oct
    • C. Bachmann, T. Ainsworth, and R. Fusina, Improved manifold coordinate representations of large-scale hyperspectral scenes, IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2786-2803, Oct. 2006
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.10 , pp. 2786-2803
    • Bachmann, C.1    Ainsworth, T.2    Fusina, R.3
  • 14
    • 72049085824 scopus 로고    scopus 로고
    • Edge detection on hyperspectral imagery via manifold techniques
    • Y. Zhou, B. Wu, D. Li, and R. Li, Edge detection on hyperspectral imagery via manifold techniques, in Proc. WHISPERS, 2009, pp. 1-4
    • (2009) Proc. WHISPERS , pp. 1-4
    • Zhou, Y.1    Wu, B.2    Li, D.3    Li, R.4
  • 15
    • 77951095824 scopus 로고    scopus 로고
    • Learning the relevant image features with multiple kernels
    • D. Tuia, G. Matasci, G. Camps-Valls, and M. Kanevski, Learning the relevant image features with multiple kernels, in Proc. IGARSS, 2009, vol. 2, pp. II-65-II-68
    • (2009) Proc. IGARSS , vol.2
    • Tuia, D.1    Matasci, G.2    Camps-Valls, G.3    Kanevski, M.4
  • 16
    • 34247356156 scopus 로고    scopus 로고
    • Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images
    • DOI 10.1109/LGRS.2006.888105
    • A. Mohan, G. Sapiro, and E. Bosch, Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images, IEEE Geosci. Remote Sens. Lett., vol. 4, no. 2, pp. 206-210, Apr. 2007 (Pubitemid 46645133)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.2 , pp. 206-210
    • Mohan, A.1    Sapiro, G.2    Bosch, E.3
  • 17
    • 34547980564 scopus 로고    scopus 로고
    • Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering
    • Univ. Montreal, Montreal, QC, Canada, Tech. Rep 1238
    • Y. Bengio, J. F. Paiement, and P. Vincent, Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering, Dept. dinformatique et Recherche Operationnelle, Univ. Montreal, Montreal, QC, Canada, Tech. Rep. 1238, 2003
    • (2003) Dept. Dinformatique et Recherche Operationnelle
    • Bengio, Y.1    Paiement, J.F.2    Vincent, P.3
  • 19
    • 0027814133 scopus 로고
    • Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
    • Y. C. Pati, R. Rezaifar, and P. S. Krishnaprasad, Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition, in Proc. 27th Asilomar Conf. Signals, Syst. Comput., 1993, pp. 40-44
    • (1993) Proc. 27th Asilomar Conf. Signals, Syst. Comput , pp. 40-44
    • Pati, Y.C.1    Rezaifar, R.2    Krishnaprasad, P.S.3
  • 20
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Rev., vol. 51, no. 1, pp. 34-81, 2009
    • (2009) SIAM Rev , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 22
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Stat. Soc. Ser. B, vol. 58, no. 1, pp. 267-288, 1996
    • (1996) J. Roy. Stat. Soc. Ser. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 23
    • 78049403636 scopus 로고    scopus 로고
    • Dictionary learning and sparse coding for unsupervised clustering
    • P. Sprechmann and G. Sapiro, Dictionary learning and sparse coding for unsupervised clustering, in Proc. ICASSP, 2010, pp. 2042-2045
    • Proc. ICASSP , vol.2010 , pp. 2042-2045
    • Sprechmann, P.1    Sapiro, G.2
  • 24
    • 80455132748 scopus 로고    scopus 로고
    • Template matching via l1 minimization and its application to hyperspectral target detection
    • UCLA, Los Angeles, CA
    • Z. Guo and S. Osher, Template matching via l1 minimization and its application to hyperspectral target detection, UCLA, Los Angeles, CA, Tech. Rep. 09-103. Online.. Available: www.math.ucla.edu/applied/cam/
    • Tech Rep. 09-103
    • Guo, Z.1    Osher, S.2
  • 25
    • 77953752258 scopus 로고    scopus 로고
    • Hyperspectral subpixel target identification using least-angle regression
    • P. V. Villeneuve, A. R. Boisvert, and A. D. Stocker, Hyperspectral subpixel target identification using least-angle regression, in Proc. SPIE, 2010, vol. 7695, p. 76951V
    • (2010) Proc. SPIE , vol.7695
    • Villeneuve, P.V.1    Boisvert, A.R.2    Stocker, A.D.3
  • 27
    • 0012523816 scopus 로고    scopus 로고
    • Inferring sparse, overcomplete image codes using an efficient coding framework
    • M. S. Lewicki and B. A. Olshausen, Inferring sparse, overcomplete image codes using an efficient coding framework, in Proc. NIPS, 1997, pp. 815-821
    • (1997) Proc. NIPS , pp. 815-821
    • Lewicki, M.S.1    Olshausen, B.A.2
  • 28
    • 0032625443 scopus 로고    scopus 로고
    • Frame based signal compression using method of optimal directions (MOD)
    • K. Engan, S. O. Aase, and J. H. Husy, Frame based signal compression using method of optimal directions (MOD), in Proc. ISCAS, 1999, pp. 1-4
    • (1999) Proc. ISCAS , pp. 1-4
    • Engan, K.1    Aase, S.O.2    Husy, J.H.3
  • 29
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • Feb
    • M. S. Lewicki and T. J. Sejnowski, Learning overcomplete representations, Neural Comput., vol. 12, no. 2, pp. 337-365, Feb. 2000
    • (2000) Neural Comput , vol.12 , Issue.2 , pp. 337-365
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 30
    • 33845584374 scopus 로고    scopus 로고
    • Image denoising via learned dictionaries and sparse representation
    • M. Elad and M. Aharon, Image denoising via learned dictionaries and sparse representation, in Proc. CVPR, 2006, pp. 17-22
    • (2006) Proc. CVPR , pp. 17-22
    • Elad, M.1    Aharon, M.2
  • 31
    • 84864036295 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms
    • H. Lee, A. Battle, R. Raina, and A. Y. Ng, Efficient sparse coding algorithms, in Proc. NIPS, 2007, pp. 801-808
    • (2007) Proc. NIPS , pp. 801-808
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.Y.4
  • 32
    • 51949103923 scopus 로고    scopus 로고
    • Discriminative learned dictionaries for local image analysis
    • J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Discriminative learned dictionaries for local image analysis, in Proc. CVPR, 2008, pp. 1-8
    • (2008) Proc. CVPR , pp. 1-8
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4    Zisserman, A.5
  • 34
    • 56749154082 scopus 로고    scopus 로고
    • Discriminative sparse image models for class-specific edge detection and image interpretation
    • J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J. Ponce, Discriminative sparse image models for class-specific edge detection and image interpretation, in Proc. ECCV, 2008, pp. 43-56
    • (2008) Proc. ECCV , pp. 43-56
    • Mairal, J.1    Leordeanu, M.2    Bach, F.3    Hebert, M.4    Ponce, J.5
  • 35
    • 34547971961 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabeled data
    • R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, Self-taught learning: Transfer learning from unlabeled data, in Proc. ICML, 2007, pp. 759-766
    • (2007) Proc ICML , pp. 759-766
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5
  • 36
    • 70450184118 scopus 로고    scopus 로고
    • Sparse subspace clustering
    • E. Elhamifar and R. Vidal, Sparse subspace clustering, in Proc. ICCV, 2009, pp. 2790-2797
    • (2009) Proc ICCV , pp. 2790-2797
    • Elhamifar, E.1    Vidal, R.2
  • 39
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • DOI 10.1109/TSP.2006.881199
    • M. Aharon, M. Elad, and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, Nov. 2006 (Pubitemid 44637761)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 40
  • 41
    • 80455158733 scopus 로고    scopus 로고
    • L1 unmixing and its applications to hyperspectral image enhancement, UCLA, Los Angeles, CA
    • Z. Guo, T. Wittman, and S. Osher, L1 unmixing and its applications to hyperspectral image enhancement, UCLA, Los Angeles, CA, Tech. Rep. 09-30. Online.. Available: www.math.ucla.edu/applied/cam/
    • Tech Rep 09-30
    • Guo, Z.1    Wittman, T.2    Osher, S.3
  • 43
    • 15944419508 scopus 로고    scopus 로고
    • Solving adundance estimation in hyperspectral unmixing as a least distance problem
    • 2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings: Science for Society: Exploring and Managing a Changing Planet. IGARSS 2004
    • M. Velez-Reyes and S. Rosario, Solving abundance estimation in hyperspectral unmixing as a least distance problem, in Proc. IGARSS, 2004, vol. 5, pp. 3276-3278 (Pubitemid 40437793)
    • (2004) International Geoscience and Remote Sensing Symposium (IGARSS) , vol.5 , pp. 3276-3278
    • Velez-Reyes, M.1    Rosario, S.2
  • 44
    • 24644478715 scopus 로고    scopus 로고
    • A non-local algorithm for image denoising
    • A. Buades, B. Coll, and J.-M. Morel, A non-local algorithm for image denoising, in Proc. CVPR, 2005, vol. 2, pp. 60-65
    • (2005) Proc. CVPR , vol.2 , pp. 60-65
    • Buades, A.1    Coll, B.2    Morel, J.-M.3
  • 45
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • Oct
    • G. Camps-Valls, T. Bandos, and D. Zhou, Semi-supervised graph-based hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3044-3054, Oct. 2007
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Bandos, T.2    Zhou, D.3
  • 46
    • 34547399927 scopus 로고    scopus 로고
    • A support vector domain description approach to supervised classification of remote sensing images
    • Aug
    • J. Munoz-Marf, L. Bruzzone, and G. Camps-Vails, A support vector domain description approach to supervised classification of remote sensing images, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 8, pp. 2683- 2692, Aug. 2007
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.8 , pp. 2683-2692
    • Munoz-Marf, J.1    Bruzzone, L.2    Camps-Vails, G.3
  • 47
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C.-C. Chang and C.-J. Lin. (2011, Apr.). LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. Online.. 2(3), pp. 27:1-27:27. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm
    • (2011) ACM Trans. Intell. Syst. Technol , vol.2 , Issue.3 , pp. 271-2727
    • Chang, C.-C.1    Lin, C.-J.2
  • 48
    • 77957993814 scopus 로고    scopus 로고
    • Spatio-spectral remote sensing image classification with graph kernels
    • Oct.
    • G. Camps-Valls, N. Shervashidze, and K. M. Borgwardt, Spatio-spectral remote sensing image classification with graph kernels, IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 741-745, Oct. 2010
    • (2010) IEEE Geosci. Remote Sens. Lett , vol.7 , Issue.4 , pp. 741-745
    • Camps-Valls, G.1    Shervashidze, N.2    Borgwardt, K.M.3
  • 49
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • May
    • M. Craig, Minimum-volume transforms for remotely sensed data, IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542-552, May 1994
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.3 , pp. 542-552
    • Craig, M.1
  • 50
    • 0033342947 scopus 로고    scopus 로고
    • Autonomous hyperspectral end-member determination methods
    • E. M. Winter and M. E. Winter, Autonomous hyperspectral end-member determination methods, Sens., Syst. Next-Gener. Satell. III, vol. 3870, no. 1, pp. 150-158, 1999
    • (1999) Sens., Syst. Next-Gener. Satell. III , vol.3870 , Issue.1 , pp. 150-158
    • Winter, E.M.1    Winter, M.E.2
  • 51
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. Nascimento and J. Dias, Vertex component analysis: A fast algorithm to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005 (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 53
    • 38049105654 scopus 로고    scopus 로고
    • Dependent component analysis: A hyperspectral unmixing algorithm
    • J. M. P. Nascimento and J. M. Bioucas-Dias, Dependent component analysis: A hyperspectral unmixing algorithm, in Proc. IbPRIA (2), 2007, pp. 612-619
    • (2007) Proc. IbPRIA , Issue.2 , pp. 612-619
    • Nascimento, J.M.P.1    Bioucas-Dias, J.M.2
  • 54
    • 67649830104 scopus 로고    scopus 로고
    • Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data
    • Jul
    • J. Li and J. Bioucas-Dias, Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data, in Proc. IGARSS, Jul. 2008, vol. 3, pp. III-250-III-253
    • (2008) Proc. IGARSS , vol.3
    • Li, J.1    Bioucas-Dias, J.2
  • 55
    • 72049109460 scopus 로고    scopus 로고
    • A variable splitting augmented Lagrangian approach to linear spectral unmixing
    • Aug
    • J. Bioucas-Dias, A variable splitting augmented Lagrangian approach to linear spectral unmixing, in Proc. 1st WHISPERS, Aug. 2009, pp. 1-4
    • (2009) Proc. 1st WHISPERS , pp. 1-4
    • Bioucas-Dias, J.1
  • 56
    • 34748813973 scopus 로고    scopus 로고
    • Unsupervised unmixing of hyperspectral imagery
    • DOI 10.1109/MWSCAS.2006.382281, 4267359, Proceedings of the 2006 49th Midwest Symposium on Circuits and Systems, MWSCAS'06
    • Y. Masalmah and M. Velez-Reyes, Unsupervised unmixing of hyperspectral imagery, in Proc. MWSCAS, 2006, vol. 2, pp. 337-341 (Pubitemid 47487005)
    • (2006) Midwest Symposium on Circuits and Systems , vol.2 , pp. 337-341
    • Masalmah, Y.M.1    Velez-Reyes, M.2
  • 58
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. Heinz and C.-I. Chang, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001 (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 59
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Dec
    • P. O. Hoyer and P. Dayan, Non-negative matrix factorization with sparseness constraints, J.Mach. Learn. Res., vol. 5, pp. 1457-1469, Dec. 2004
    • (2004) J.Mach. Learn. Res , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1    Dayan, P.2
  • 60
    • 80455132750 scopus 로고    scopus 로고
    • Sparsity promoting iterated constrained endmember detection with integrated band selection
    • Jul
    • A. Zare and P. Gader, Sparsity promoting iterated constrained endmember detection with integrated band selection, in Proc. IGARSS, Jul. 2007, pp. 4045-4048
    • (2007) Proc. IGARSS , pp. 4045-4048
    • Zare, A.1    Gader, P.2
  • 61
    • 36348990884 scopus 로고    scopus 로고
    • Spectral and spatial complexity-based hyperspectral unmixing
    • Dec
    • S. Jia and Y. Qian, Spectral and spatial complexity-based hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3867- 3879, Dec. 2007
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.12 , pp. 3867-3879
    • Jia, S.1    Qian, Y.2
  • 62
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L. Miao and H. Qi, Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007 (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 63
    • 77952582975 scopus 로고    scopus 로고
    • Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data
    • Jun.
    • A. Huck, M. Guillaume, and J. Blanc-Talon, Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2590-2602, Jun. 2010
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.6 , pp. 2590-2602
    • Huck, A.1    Guillaume, M.2    Blanc-Talon, J.3
  • 66
    • 70349903130 scopus 로고    scopus 로고
    • Fast real-time onboard processing of hyperspectral imagery for detection and classification
    • Aug
    • Q. Du and R. Nekovei, Fast real-time onboard processing of hyperspectral imagery for detection and classification, J. Real-Time Image Process., vol. 4, no. 3, pp. 273-286, Aug. 2009
    • (2009) J. Real-Time Image Process , vol.4 , Issue.3 , pp. 273-286
    • Du, Q.1    Nekovei, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.