메뉴 건너뛰기




Volumn 50, Issue 4, 2012, Pages 1185-1198

Locality-preserving dimensionality reduction and classification for hyperspectral image analysis

Author keywords

Dimensionality reduction; Gaussian mixture model (GMM); hyperspectral data; local discriminant analysis; support vector machine

Indexed keywords

DIMENSIONALITY REDUCTION; ELECTROMAGNETIC SPECTRA; FISHER'S DISCRIMINANT; GAUSSIAN MIXTURE MODEL; GAUSSIAN-MIXTURE-MODEL (GMM); HIGH-DIMENSIONAL FEATURE SPACE; HYPERSPECTRAL; HYPERSPECTRAL DATA; HYPERSPECTRAL IMAGE ANALYSIS; HYPERSPECTRAL IMAGERY; ILL-CONDITIONED; LINEAR DISCRIMINANT ANALYSIS; MAXIMUM LIKELIHOOD CLASSIFIERS; MULTI-MODAL DATA; MULTIMODAL STRUCTURE; STATISTICAL STRUCTURES; WEALTH OF INFORMATION;

EID: 84859784358     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2011.2165957     Document Type: Article
Times cited : (475)

References (34)
  • 2
    • 0027632336 scopus 로고
    • Analyzing high-dimensional multispectral data
    • Jul.
    • C. Lee and D. A. Landgrebe, "Analyzing high-dimensional multispectral data," IEEE Trans. Geosci. Remote Sens., vol. 31, no. 4, pp. 792-800, Jul. 1993.
    • (1993) IEEE Trans. Geosci. Remote Sens. , vol.31 , Issue.4 , pp. 792-800
    • Lee, C.1    Landgrebe, D.A.2
  • 3
    • 53349127642 scopus 로고    scopus 로고
    • Decision fusion with confidence-based weight assignment for hyperspectral target recognition
    • May
    • S. Prasad and L. M. Bruce, "Decision fusion with confidence-based weight assignment for hyperspectral target recognition," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1448-1456, May 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.5 , pp. 1448-1456
    • Prasad, S.1    Bruce, L.M.2
  • 4
    • 36349016757 scopus 로고    scopus 로고
    • Dimensionality reduction based on clonal selection for hyperspectral imagery
    • Dec.
    • L. Zhang, Y. Zhong, B. Huang, J. Gong, and P. Li, "Dimensionality reduction based on clonal selection for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 4172-4186, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.12 , pp. 4172-4186
    • Zhang, L.1    Zhong, Y.2    Huang, B.3    Gong, J.4    Li, P.5
  • 5
    • 18844429782 scopus 로고    scopus 로고
    • On the impact of PCA dimension reduction for hyperspectral detection of difficult targets
    • Apr.
    • M. D. Farrell and R. M. Mersereau, "On the impact of PCA dimension reduction for hyperspectral detection of difficult targets," IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2, pp. 192-195, Apr. 2005.
    • (2005) IEEE Geosci. Remote Sens. Lett. , vol.2 , Issue.2 , pp. 192-195
    • Farrell, M.D.1    Mersereau, R.M.2
  • 6
    • 0032737410 scopus 로고    scopus 로고
    • Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification
    • Jan.
    • X. Jia and J. A. Richards, "Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 1, pp. 538-542, Jan. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.1 , pp. 538-542
    • Jia, X.1    Richards, J.A.2
  • 7
    • 55649122577 scopus 로고    scopus 로고
    • Limitations of principal component analysis for hyperspectral target recognition
    • Oct.
    • S. Prasad and L. M. Bruce, "Limitations of principal component analysis for hyperspectral target recognition," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 625-629, Oct. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 625-629
    • Prasad, S.1    Bruce, L.M.2
  • 8
    • 0001364888 scopus 로고
    • Gaussian maximum likelihood and contextual classification algorithms for multicrop classification
    • Nov.
    • S. Di Zenzo, R. Bernstein, S. D. Degloria, and H. C. Kolsky, "Gaussian maximum likelihood and contextual classification algorithms for multicrop classification," IEEE Trans. Geosci. Remote Sens., vol. GRS-25, no. 6, pp. 805-814, Nov. 1987.
    • (1987) IEEE Trans. Geosci. Remote Sens. , vol.GRS-25 , Issue.6 , pp. 805-814
    • Di Zenzo, S.1    Bernstein, R.2    Degloria, S.D.3    Kolsky, H.C.4
  • 10
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
    • May
    • M. Sugiyama, "Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis," J. Mach. Learn. Res., vol. 8, no. 5, pp. 1027-1061, May 2007.
    • (2007) J. Mach. Learn. Res. , vol.8 , Issue.5 , pp. 1027-1061
    • Sugiyama, M.1
  • 11
    • 0033886917 scopus 로고    scopus 로고
    • Robust parameter estimation for mixture model
    • Jan.
    • S. Tadjudin and D. A. Landgrebe, "Robust parameter estimation for mixture model," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 1, pp. 439-445, Jan. 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.1 , pp. 439-445
    • Tadjudin, S.1    Landgrebe, D.A.2
  • 12
    • 0036991339 scopus 로고    scopus 로고
    • A model-based mixture-supervised classification approach in hyperspectral data analysis
    • Dec.
    • M. M. Dundar and D. A. Landgrebe, "A model-based mixture-supervised classification approach in hyperspectral data analysis," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 12, pp. 2692-2699, Dec. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.12 , pp. 2692-2699
    • Dundar, M.M.1    Landgrebe, D.A.2
  • 13
    • 33750796618 scopus 로고    scopus 로고
    • Structured Gaussian components for hyperspectral image classification
    • Nov.
    • A. Berge and A. H. S. Solberg, "Structured Gaussian components for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3386-3396, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3386-3396
    • Berge, A.1    Solberg, A.H.S.2
  • 14
    • 34249753618 scopus 로고
    • Support vector networks
    • Sep.
    • C. Cortes and V. N. Vapnik, "Support vector networks," Mach. Learn., vol. 20, no. 3, pp. 273-297, Sep. 1995.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 15
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 16
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun.
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 17
    • 77957001686 scopus 로고    scopus 로고
    • Learning relevant image features with multiple-kernel classifications
    • Oct.
    • D. Tuia, G. Camps-Valls, G. Matasci, and M. Kanevski, "Learning relevant image features with multiple-kernel classifications," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3780-3791, Oct. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.10 , pp. 3780-3791
    • Tuia, D.1    Camps-Valls, G.2    Matasci, G.3    Kanevski, M.4
  • 18
    • 13444286179 scopus 로고    scopus 로고
    • Locality preserving projections
    • S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press
    • X. He and P. Niyogo, "Locality preserving projections," in Advances in Neural Information Processing System, S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004.
    • (2004) Advances in Neural Information Processing System
    • He, X.1    Niyogo, P.2
  • 19
    • 0037381325 scopus 로고    scopus 로고
    • Fast approximation of Kullback-Leibler distance for dependence trees and hidden Markov models
    • Apr.
    • M. N. Do, "Fast approximation of Kullback-Leibler distance for dependence trees and hidden Markov models," IEEE Signal Process. Lett., vol. 10, no. 4, pp. 115-118, Apr. 2003.
    • (2003) IEEE Signal Process. Lett. , vol.10 , Issue.4 , pp. 115-118
    • Do, M.N.1
  • 20
    • 85032751238 scopus 로고    scopus 로고
    • Signal processing for hyperspectral image exploitation
    • Jan.
    • G. Shaw and D. Manolakis, "Signal processing for hyperspectral image exploitation," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 12-16, Jan. 2002.
    • (2002) IEEE Signal Process. Mag. , vol.19 , Issue.1 , pp. 12-16
    • Shaw, G.1    Manolakis, D.2
  • 21
    • 0036469527 scopus 로고    scopus 로고
    • A greedy em algorithm for Gaussian mixture learning
    • Feb.
    • N. Vlassis and A. Likas, "A greedy EM algorithm for Gaussian mixture learning," Neural Process. Lett., vol. 15, no. 1, pp. 77-87, Feb. 2002.
    • (2002) Neural Process. Lett. , vol.15 , Issue.1 , pp. 77-87
    • Vlassis, N.1    Likas, A.2
  • 22
    • 34047195663 scopus 로고    scopus 로고
    • EBEM: An entropybased em algorithm for Gaussian mixture models
    • New York, Jun.
    • A. P. Benavent, F. E. Ruiz, and J. M. S. Martínez, "EBEM: An entropybased EM algorithm for Gaussian mixture models," in Proc. IEEE Int. Conf. Pattern Recognit., New York, Jun. 2006, vol. 2, pp. 451-455.
    • (2006) Proc. IEEE Int. Conf. Pattern Recognit. , vol.2 , pp. 451-455
    • Benavent, A.P.1    Ruiz, F.E.2    Martínez, J.M.S.3
  • 23
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Dec.
    • H. Akaike, "A new look at the statistical model identification, " IEEE Trans. Autom. Control, vol. AC-19, no. 6, pp. 716-723, Dec. 1974.
    • (1974) IEEE Trans. Autom. Control , vol.AC-19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 24
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Mar.
    • G. Schwarz, "Estimating the dimension of a model," Ann. Stat., vol. 6, no. 2, pp. 461-464, Mar. 1978.
    • (1978) Ann. Stat. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 27
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Jan.
    • I. Guyon, J. Weston, S. Barhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., vol. 46, no. 1-3, pp. 389-422, Jan. 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barhill, S.3    Vapnik, V.4
  • 28
    • 35348920168 scopus 로고    scopus 로고
    • Feature selection and classification of hyperspectral images with support vector machines
    • Oct.
    • R. Archibald and G. Fann, "Feature selection and classification of hyperspectral images with support vector machines," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 674-677, Oct. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.4 , pp. 674-677
    • Archibald, R.1    Fann, G.2
  • 29
    • 15944411032 scopus 로고    scopus 로고
    • A collection of data for urban area characterization
    • Anchorage, AK, Sep.
    • P. Gamba, "A collection of data for urban area characterization, " in Proc. IEEE Int. Geosci. Remote Sens. Symp., Anchorage, AK, Sep. 2004, vol. 1, pp. 69-72.
    • (2004) Proc. IEEE Int. Geosci. Remote Sens. Symp. , vol.1 , pp. 69-72
    • Gamba, P.1
  • 30
    • 41649118940 scopus 로고    scopus 로고
    • In search of deterministic methods for initializing kmeans and Gaussian mixture clustering
    • Sep.
    • T. Su and J. G. Dy, "In search of deterministic methods for initializing kmeans and Gaussian mixture clustering," Intell. Data Anal., vol. 11, no. 4, pp. 319-338, Sep. 2007.
    • (2007) Intell. Data Anal. , vol.11 , Issue.4 , pp. 319-338
    • Su, T.1    Dy, J.G.2
  • 31
    • 61349199062 scopus 로고    scopus 로고
    • Classification of hyperspectral images with regularized linear discriminant analysis
    • Mar.
    • T. V. Bandos, L. Bruzzone, and G. Camps-Valls, "Classification of hyperspectral images with regularized linear discriminant analysis," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862-873, Mar. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 862-873
    • Bandos, T.V.1    Bruzzone, L.2    Camps-Valls, G.3
  • 32
    • 80052307660 scopus 로고    scopus 로고
    • Locality-preserving discriminant analysis in kernel-induced spaces for hyperspectral image classification
    • Sep.
    • W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, "Locality- preserving discriminant analysis in kernel-induced spaces for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 5, pp. 894-898, Sep. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.5 , pp. 894-898
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 33
    • 70350493345 scopus 로고    scopus 로고
    • Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery
    • Nov.
    • N. Dobigeon, S. Moussaoui, M. Coulon, J. Y. Tourneret, and A. O. Hero, "Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4355-4368, Nov. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4355-4368
    • Dobigeon, N.1    Moussaoui, S.2    Coulon, M.3    Tourneret, J.Y.4    Hero, A.O.5
  • 34
    • 79957643015 scopus 로고    scopus 로고
    • Robust hyperspectral classification using relevance vector machine
    • Jun.
    • F. A. Mianji and Y. Zhang, "Robust hyperspectral classification using relevance vector machine," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2100-2112, Jun. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.6 , pp. 2100-2112
    • Mianji, F.A.1    Zhang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.