메뉴 건너뛰기




Volumn 61, Issue 2, 2013, Pages 480-492

Nonlinear unmixing of hyperspectral data based on a linear-mixture/ nonlinear-fluctuation model

Author keywords

Hyperspectral imaging; multi kernel learning; nonlinear spectral unmixing; support vector regression

Indexed keywords

COMPLEX INTERACTION; ENDMEMBERS; HYPERSPECTRAL DATA; HYPERSPECTRAL IMAGING; LINEAR MIXTURE MODELS; LINEAR MIXTURES; MIXING MECHANISMS; MULTI-KERNEL; NON-LINEAR UNMIXING; REAL IMAGES; REPRODUCING KERNEL HILBERT SPACES; SPECTRAL UNMIXING; STATE-OF-THE-ART METHODS; SUPPORT VECTOR REGRESSION (SVR);

EID: 84872104815     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2012.2222390     Document Type: Article
Times cited : (170)

References (49)
  • 1
  • 3
    • 0002081183 scopus 로고
    • Atomatic spectral unmixing of AVIRIS data using convex geometry concepts
    • J. Boardman, "Atomatic spectral unmixing of AVIRIS data using convex geometry concepts," in Proc. AVIRIS Workshop, 1993, vol. 1, pp. 11-14.
    • (1993) Proc. AVIRIS Workshop , vol.1 , pp. 11-14
    • Boardman, J.1
  • 4
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. M. P. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 5
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," in Proc. SPIE Spectrom. V, 1999, vol. 3753, pp. 266-277.
    • (1999) Proc. SPIE Spectrom. v , vol.3753 , pp. 266-277
    • Winter, M.E.1
  • 7
    • 84861345596 scopus 로고    scopus 로고
    • Geometric unmixing of large hyperspectral images: A barycentric coordinate approach
    • P. Honeine and C. Richard, "Geometric unmixing of large hyperspectral images: A barycentric coordinate approach," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 6, pp. 2185-2195, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.6 , pp. 2185-2195
    • Honeine, P.1    Richard, C.2
  • 8
    • 67649830104 scopus 로고    scopus 로고
    • Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data
    • J. Li and J. M. Bioucas-Dias, "Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data," in Proc. IEEE IGARSS, 2008, pp. III-250-III-253.
    • (2008) Proc IEEE IGARSS
    • Li, J.1    Bioucas-Dias, J.M.2
  • 9
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, "A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, 2009.
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.-H.1    Chi, C.-Y.2    Huang, Y.-M.3    Ma, W.-K.4
  • 10
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data usingminimumvolume constrained nonnegativematrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, 2007. (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 11
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. C. Heinz and C.-I. Chang, "Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 13
    • 70350493345 scopus 로고    scopus 로고
    • Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery
    • N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O. Hero, "Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4355-4368, 2009.
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.11 , pp. 4355-4368
    • Dobigeon, N.1    Moussaoui, S.2    Coulon, M.3    Tourneret, J.-Y.4    Hero, A.O.5
  • 14
    • 77952616442 scopus 로고    scopus 로고
    • Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery
    • O. Eches, N. Dobigeon, C. Mailhes, and J.-Y. Tourneret, "Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery," IEEE Trans. Image Process., vol. 19, no. 6, pp. 1403-1413, 2010.
    • (2010) IEEE Trans. Image Process , vol.19 , Issue.6 , pp. 1403-1413
    • Eches, O.1    Dobigeon, N.2    Mailhes, C.3    Tourneret, J.-Y.4
  • 15
    • 84855912794 scopus 로고    scopus 로고
    • A novel hierarchical Bayesian approach for sparse semisupervised hyperspectral unmixing
    • K. E. Themelis, A. A. Rontogiannis, and K. D. Koutroumbas, "A novel hierarchical Bayesian approach for sparse semisupervised hyperspectral unmixing," IEEE Trans. Signal Process., vol. 60, no. 2, pp. 585-599, 2012.
    • (2012) IEEE Trans. Signal Process , vol.60 , Issue.2 , pp. 585-599
    • Themelis, K.E.1    Rontogiannis, A.A.2    Koutroumbas, K.D.3
  • 17
    • 78649723716 scopus 로고    scopus 로고
    • Hyperspectral unmixing: Geometrical, statistical, and sparse regression-based approaches
    • J. M. Bioucas-Dias and A. Plaza, "Hyperspectral unmixing: Geometrical, statistical, and sparse regression-based approaches," in Proc. SPIE Image and Signal Process. Remote Sens. XVI, 2010, vol. 7830, pp. 78300A1-78300A15.
    • (2010) Proc. SPIE Image and Signal Process. Remote Sens. XVI , vol.7830
    • Bioucas-Dias, J.M.1    Plaza, A.2
  • 19
    • 0029667294 scopus 로고    scopus 로고
    • Nonlinear spectral mixing in desert vegetation
    • T. W. Ray and B. C. Murray, "Nonlinear spectral mixing in desert vegetation," Remote Sens. Environ. , vol. 55, no. 1, pp. 59-64, 1996.
    • (1996) Remote Sens. Environ. , vol.55 , Issue.1 , pp. 59-64
    • Ray, T.W.1    Murray, B.C.2
  • 20
    • 80455158223 scopus 로고    scopus 로고
    • Nonlinear unmixing of hyperspectral images using a generalized bilinear model
    • A. Halimi, Y. Altman, N. Dobigeon, and J.-Y. Tourneret, "Nonlinear unmixing of hyperspectral images using a generalized bilinear model," IEEETrans.Geosci.Remote Sens., vol. 49, no. 11, pp. 4153-4162, 2011.
    • (2011) IEEETrans.Geosci.Remote Sens , vol.49 , Issue.11 , pp. 4153-4162
    • Halimi, A.1    Altman, Y.2    Dobigeon, N.3    Tourneret, J.-Y.4
  • 21
    • 0001473286 scopus 로고
    • Bidirectional reflectance spectroscopy, 1, Theory
    • B. Hapke, "Bidirectional reflectance spectroscopy, 1, Theory," J. Geophys. Res., vol. 86, no. B4, pp. 3039-3054, 1981.
    • (1981) J. Geophys. Res , vol.86 , Issue.B4 , pp. 3039-3054
    • Hapke, B.1
  • 22
    • 0035481565 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks
    • DOI 10.1109/36.957296, PII S0196289201054833
    • K. J. Guilfoyle, M. L. Althouse, and C.-I. Chang, "A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 10, pp. 2314-2318, 2001. (Pubitemid 33048403)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.10 , pp. 2314-2318
    • Guilfoyle, K.J.1    Althouse, M.L.2    Chang, C.-I.3
  • 23
    • 84872113958 scopus 로고    scopus 로고
    • Nonlinear neural network mixture models for fractional abundance estimation in AVIRIS hyperspectral images
    • Pasadena, CA
    • J. Plaza, P. Martínez, R. Péerez, and A. Plaza, "Nonlinear neural network mixture models for fractional abundance estimation in AVIRIS hyperspectral images," in Proc. AVIRIS Workshop, Pasadena, CA, 2004.
    • (2004) Proc. AVIRIS Workshop
    • Plaza, J.1    Martínez, P.2    Péerez, R.3    Plaza, A.4
  • 24
    • 67649398795 scopus 로고    scopus 로고
    • On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images
    • J. Plaza, A. Plaza, R. Perez, and P. Martinez, "On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images," Pattern Recogn., vol. 42, no. 11, pp. 3032-3045, 2009.
    • (2009) Pattern Recogn , vol.42 , Issue.11 , pp. 3032-3045
    • Plaza, J.1    Plaza, A.2    Perez, R.3    Martinez, P.4
  • 25
    • 77957976782 scopus 로고    scopus 로고
    • Nonlinear spectral mixture analysis for hyperspectral imagery in an unknown environment
    • N. Raksuntorn and Q. Du, "Nonlinear spectral mixture analysis for hyperspectral imagery in an unknown environment," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 836-840, 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett , vol.7 , Issue.4 , pp. 836-840
    • Raksuntorn, N.1    Du, Q.2
  • 26
    • 70350450305 scopus 로고    scopus 로고
    • Nonlinearmixturemodel for hyperspectral unmixing
    • J.M. P.Nascimento and J.M. Bioucas-Dias, "Nonlinearmixturemodel for hyperspectral unmixing," in Proc. SPIE, 2009, vol. 7477.
    • (2009) Proc. SPIE , vol.7477
    • Nascimento, J.M.P.1    Bioucas-Dias, J.M.2
  • 27
    • 78649742911 scopus 로고    scopus 로고
    • Unmixing hyperspectral intimate mixtures
    • J.M. P. Nascimento and J.M. Bioucas-Dias, "Unmixing hyperspectral intimate mixtures," in Proc. SPIE, 2010, vol. 7830.
    • (2010) Proc. SPIE , vol.7830
    • Nascimento, J.M.P.1    Bioucas-Dias, J.M.2
  • 28
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, 2005. (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 29
    • 29044445372 scopus 로고    scopus 로고
    • Kernel orthogonal subspace projection for hyperspectral signal classification
    • DOI 10.1109/TGRS.2005.857904
    • K. Heesung and N. M. Nasrabadi, "Kernel orthogonal subspace projection for hyperspectral signal classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 12, pp. 2952-2962, 2005. (Pubitemid 41788559)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.12 , pp. 2952-2962
    • Kwon, H.1    Nasrabadi, N.M.2
  • 31
    • 79957459096 scopus 로고    scopus 로고
    • A comparison of kernel functions for intimate mixture models
    • J. Broadwater and A. Banerjee, "A comparison of kernel functions for intimate mixture models," in Proc. IEEE IGARSS, 2009, pp. 1-4.
    • (2009) Proc IEEE IGARSS , pp. 1-4
    • Broadwater, J.1    Banerjee, A.2
  • 32
    • 78649546416 scopus 로고    scopus 로고
    • A kernel spatial complexity-based nonlinear unmixing method of hyperspectral imagery
    • X. Wu, X. Li, and L. Zhao, "A kernel spatial complexity-based nonlinear unmixing method of hyperspectral imagery," in Proc. LSMS/ICSEE, 2010, pp. 451-458.
    • (2010) Proc. LSMS/ICSEE , pp. 451-458
    • Wu, X.1    Li, X.2    Zhao, L.3
  • 35
  • 36
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • J. Mercer, "Functions of positive and negative type and their connection with the theory of integral equations," Philos. Trans. Roy. Soc. London Ser. A, vol. 209, pp. 415-446, 1909.
    • (1909) Philos. Trans. Roy. Soc. London Ser. A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 38
    • 0004019973 scopus 로고    scopus 로고
    • Convolution kernels on discrete structures
    • Univ. California at Santa Cruz Tech. Rep
    • D. Haussler, Convolution Kernels on Discrete Structures Comput. Sci. Dep., Univ. California at Santa Cruz, 1999, Tech. Rep.
    • (1999) Comput. Sci. Dep.
    • Haussler, D.1
  • 44
    • 0032096712 scopus 로고    scopus 로고
    • Optimization problems with perturbations: A guided tour
    • J. F. Bonnans and A. Shapiro, "Optimization problems with perturbations: A guided tour," SIAM Rev., vol. 40, no. 2, pp. 207-227, 1998.
    • (1998) SIAM Rev , vol.40 , Issue.2 , pp. 207-227
    • Bonnans, J.F.1    Shapiro, A.2
  • 47
    • 61549112727 scopus 로고    scopus 로고
    • Online prediction of time series data with kernels
    • Mar
    • C. Richard, J.-C. M. Bermudez, and P. Honeine, "Online prediction of time series data with kernels," IEEE Trans. Signal Process., vol. 57, no. 3, pp. 1058-1067, Mar. 2009.
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.3 , pp. 1058-1067
    • Richard, C.1    Bermudez, J.-C.M.2    Honeine, P.3
  • 48
    • 79957443437 scopus 로고    scopus 로고
    • Non-linear spectral unmixing by geodesic simplex volume maximization
    • R. Heylen, D. Burazerovic, and P. Scheunders, "Non-linear spectral unmixing by geodesic simplex volume maximization," IEEE J. Sel. Top. Signal Process., vol. 5, no. 3, pp. 534-542, 2011.
    • (2011) IEEE J. Sel. Top. Signal Process , vol.5 , Issue.3 , pp. 534-542
    • Heylen, R.1    Burazerovic, D.2    Scheunders, P.3
  • 49
    • 84873183850 scopus 로고    scopus 로고
    • Hyperspectral image unmixing using manifold learning methods: Derivations and comparative tests
    • N. H. Nguyen, C. Richard, P. Honeine, and C. Theys, "Hyperspectral image unmixing using manifold learning methods: Derivations and comparative tests," in Proc. IEEE IGARSS, 2012.
    • (2012) Proc IEEE IGARSS
    • Nguyen, N.H.1    Richard, C.2    Honeine, P.3    Theys, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.