-
1
-
-
85032751930
-
Spectral unmixing
-
DOI 10.1109/79.974727
-
N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44-57, 2002. (Pubitemid 34237207)
-
(2002)
IEEE Signal Processing Magazine
, vol.19
, Issue.1
, pp. 44-57
-
-
Keshava, N.1
Mustard, J.F.2
-
2
-
-
84861772901
-
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
-
J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot, "Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches," IEEE J. Sel. Top. Appl. Earth Observat. Remote Sens., vol. 5, no. 2, pp. 354-379, 2012.
-
(2012)
IEEE J. Sel. Top. Appl. Earth Observat. Remote Sens
, vol.5
, Issue.2
, pp. 354-379
-
-
Bioucas-Dias, J.M.1
Plaza, A.2
Dobigeon, N.3
Parente, M.4
Du, Q.5
Gader, P.6
Chanussot, J.7
-
3
-
-
0002081183
-
Atomatic spectral unmixing of AVIRIS data using convex geometry concepts
-
J. Boardman, "Atomatic spectral unmixing of AVIRIS data using convex geometry concepts," in Proc. AVIRIS Workshop, 1993, vol. 1, pp. 11-14.
-
(1993)
Proc. AVIRIS Workshop
, vol.1
, pp. 11-14
-
-
Boardman, J.1
-
4
-
-
16444373735
-
Vertex component analysis: A fast algorithm to unmix hyperspectral data
-
DOI 10.1109/TGRS.2005.844293
-
J. M. P. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.4
, pp. 898-910
-
-
Nascimento, J.M.P.1
Dias, J.M.B.2
-
5
-
-
0033310314
-
N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
-
M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," in Proc. SPIE Spectrom. V, 1999, vol. 3753, pp. 266-277.
-
(1999)
Proc. SPIE Spectrom. v
, vol.3753
, pp. 266-277
-
-
Winter, M.E.1
-
6
-
-
84872100099
-
Recent developments in endmember extraction and spectral unmixing
-
S. Prasad L. Bruce, and J. Chanussot, Eds. New York: Springer
-
A. Plaza, G. Martín, J. Plaza, M. Zortea, and S. Sánchez, "Recent developments in endmember extraction and spectral unmixing," in Optical Remote Sensing: Advances in Signal Processing and Exploitation Techniques, S. Prasad, L. Bruce, and J. Chanussot, Eds. New York: Springer, 2011, pp. 235-267.
-
(2011)
Optical Remote Sensing: Advances in Signal Processing and Exploitation Techniques
, pp. 235-267
-
-
Plaza, A.1
Martín, G.2
Plaza, J.3
Zortea, M.4
Sánchez, S.5
-
7
-
-
84861345596
-
Geometric unmixing of large hyperspectral images: A barycentric coordinate approach
-
P. Honeine and C. Richard, "Geometric unmixing of large hyperspectral images: A barycentric coordinate approach," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 6, pp. 2185-2195, 2012.
-
(2012)
IEEE Trans. Geosci. Remote Sens
, vol.50
, Issue.6
, pp. 2185-2195
-
-
Honeine, P.1
Richard, C.2
-
8
-
-
67649830104
-
Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data
-
J. Li and J. M. Bioucas-Dias, "Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data," in Proc. IEEE IGARSS, 2008, pp. III-250-III-253.
-
(2008)
Proc IEEE IGARSS
-
-
Li, J.1
Bioucas-Dias, J.M.2
-
9
-
-
70350488509
-
A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
-
T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, "A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, 2009.
-
(2009)
IEEE Trans. Signal Process
, vol.57
, Issue.11
, pp. 4418-4432
-
-
Chan, T.-H.1
Chi, C.-Y.2
Huang, Y.-M.3
Ma, W.-K.4
-
10
-
-
33847733865
-
Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
-
DOI 10.1109/TGRS.2006.888466
-
L. Miao and H. Qi, "Endmember extraction from highly mixed data usingminimumvolume constrained nonnegativematrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, 2007. (Pubitemid 46375748)
-
(2007)
IEEE Transactions on Geoscience and Remote Sensing
, vol.45
, Issue.3
, pp. 765-777
-
-
Miao, L.1
Qi, H.2
-
11
-
-
0035273728
-
Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
-
DOI 10.1109/36.911111, PII S0196289201020861
-
D. C. Heinz and C.-I. Chang, "Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, 2001. (Pubitemid 32400422)
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.3
, pp. 529-545
-
-
Heinz, D.C.1
Chang, C.-I.2
-
12
-
-
44649130165
-
On the decomposition ofMars hyperspectral data by ICA and Bayesian positive source separation
-
S. Moussaoui, H. Hauksdottir, F. Schmidt, C. Jutten, J. Chanussot, D. Brie, S. Douté, and J. A. Benediktsson, "On the decomposition ofMars hyperspectral data by ICA and Bayesian positive source separation," Neurocomput., vol. 71, no. 10, pp. 2194-2208, 2008.
-
(2008)
Neurocomput
, vol.71
, Issue.10
, pp. 2194-2208
-
-
Moussaoui, S.1
Hauksdottir, H.2
Schmidt, F.3
Jutten, C.4
Chanussot, J.5
Brie, D.6
Douté, S.7
Benediktsson, J.A.8
-
13
-
-
70350493345
-
Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery
-
N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O. Hero, "Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4355-4368, 2009.
-
(2009)
IEEE Trans. Signal Process
, vol.57
, Issue.11
, pp. 4355-4368
-
-
Dobigeon, N.1
Moussaoui, S.2
Coulon, M.3
Tourneret, J.-Y.4
Hero, A.O.5
-
14
-
-
77952616442
-
Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery
-
O. Eches, N. Dobigeon, C. Mailhes, and J.-Y. Tourneret, "Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery," IEEE Trans. Image Process., vol. 19, no. 6, pp. 1403-1413, 2010.
-
(2010)
IEEE Trans. Image Process
, vol.19
, Issue.6
, pp. 1403-1413
-
-
Eches, O.1
Dobigeon, N.2
Mailhes, C.3
Tourneret, J.-Y.4
-
15
-
-
84855912794
-
A novel hierarchical Bayesian approach for sparse semisupervised hyperspectral unmixing
-
K. E. Themelis, A. A. Rontogiannis, and K. D. Koutroumbas, "A novel hierarchical Bayesian approach for sparse semisupervised hyperspectral unmixing," IEEE Trans. Signal Process., vol. 60, no. 2, pp. 585-599, 2012.
-
(2012)
IEEE Trans. Signal Process
, vol.60
, Issue.2
, pp. 585-599
-
-
Themelis, K.E.1
Rontogiannis, A.A.2
Koutroumbas, K.D.3
-
16
-
-
69949128613
-
L1 unmixing and its application to hyperspectral image enhancement
-
Z. Guo, T. Wittman, and S. Osher, "L1 unmixing and its application to hyperspectral image enhancement," in Proc. SPIE Conf. Algorithms and Technol.Multispectr., Hyperspectr., and Ultraspectr. Imagery XV, 2009, vol. 7334, pp. 73341M-73341M.
-
(2009)
Proc. SPIE Conf. Algorithms and Technol.Multispectr., Hyperspectr., and Ultraspectr. Imagery XV
, vol.7334
-
-
Guo, Z.1
Wittman, T.2
Osher, S.3
-
17
-
-
78649723716
-
Hyperspectral unmixing: Geometrical, statistical, and sparse regression-based approaches
-
J. M. Bioucas-Dias and A. Plaza, "Hyperspectral unmixing: Geometrical, statistical, and sparse regression-based approaches," in Proc. SPIE Image and Signal Process. Remote Sens. XVI, 2010, vol. 7830, pp. 78300A1-78300A15.
-
(2010)
Proc. SPIE Image and Signal Process. Remote Sens. XVI
, vol.7830
-
-
Bioucas-Dias, J.M.1
Plaza, A.2
-
18
-
-
79957667304
-
Sparse unmixing of hyperspectral data
-
M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Sparse unmixing of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2014-2039, 2010.
-
(2010)
IEEE Trans. Geosci. Remote Sens
, vol.49
, Issue.6
, pp. 2014-2039
-
-
Iordache, M.D.1
Bioucas-Dias, J.M.2
Plaza, A.3
-
19
-
-
0029667294
-
Nonlinear spectral mixing in desert vegetation
-
T. W. Ray and B. C. Murray, "Nonlinear spectral mixing in desert vegetation," Remote Sens. Environ. , vol. 55, no. 1, pp. 59-64, 1996.
-
(1996)
Remote Sens. Environ.
, vol.55
, Issue.1
, pp. 59-64
-
-
Ray, T.W.1
Murray, B.C.2
-
20
-
-
80455158223
-
Nonlinear unmixing of hyperspectral images using a generalized bilinear model
-
A. Halimi, Y. Altman, N. Dobigeon, and J.-Y. Tourneret, "Nonlinear unmixing of hyperspectral images using a generalized bilinear model," IEEETrans.Geosci.Remote Sens., vol. 49, no. 11, pp. 4153-4162, 2011.
-
(2011)
IEEETrans.Geosci.Remote Sens
, vol.49
, Issue.11
, pp. 4153-4162
-
-
Halimi, A.1
Altman, Y.2
Dobigeon, N.3
Tourneret, J.-Y.4
-
21
-
-
0001473286
-
Bidirectional reflectance spectroscopy, 1, Theory
-
B. Hapke, "Bidirectional reflectance spectroscopy, 1, Theory," J. Geophys. Res., vol. 86, no. B4, pp. 3039-3054, 1981.
-
(1981)
J. Geophys. Res
, vol.86
, Issue.B4
, pp. 3039-3054
-
-
Hapke, B.1
-
22
-
-
0035481565
-
A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks
-
DOI 10.1109/36.957296, PII S0196289201054833
-
K. J. Guilfoyle, M. L. Althouse, and C.-I. Chang, "A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 10, pp. 2314-2318, 2001. (Pubitemid 33048403)
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.10
, pp. 2314-2318
-
-
Guilfoyle, K.J.1
Althouse, M.L.2
Chang, C.-I.3
-
23
-
-
84872113958
-
Nonlinear neural network mixture models for fractional abundance estimation in AVIRIS hyperspectral images
-
Pasadena, CA
-
J. Plaza, P. Martínez, R. Péerez, and A. Plaza, "Nonlinear neural network mixture models for fractional abundance estimation in AVIRIS hyperspectral images," in Proc. AVIRIS Workshop, Pasadena, CA, 2004.
-
(2004)
Proc. AVIRIS Workshop
-
-
Plaza, J.1
Martínez, P.2
Péerez, R.3
Plaza, A.4
-
24
-
-
67649398795
-
On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images
-
J. Plaza, A. Plaza, R. Perez, and P. Martinez, "On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images," Pattern Recogn., vol. 42, no. 11, pp. 3032-3045, 2009.
-
(2009)
Pattern Recogn
, vol.42
, Issue.11
, pp. 3032-3045
-
-
Plaza, J.1
Plaza, A.2
Perez, R.3
Martinez, P.4
-
25
-
-
77957976782
-
Nonlinear spectral mixture analysis for hyperspectral imagery in an unknown environment
-
N. Raksuntorn and Q. Du, "Nonlinear spectral mixture analysis for hyperspectral imagery in an unknown environment," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 836-840, 2010.
-
(2010)
IEEE Geosci. Remote Sens. Lett
, vol.7
, Issue.4
, pp. 836-840
-
-
Raksuntorn, N.1
Du, Q.2
-
26
-
-
70350450305
-
Nonlinearmixturemodel for hyperspectral unmixing
-
J.M. P.Nascimento and J.M. Bioucas-Dias, "Nonlinearmixturemodel for hyperspectral unmixing," in Proc. SPIE, 2009, vol. 7477.
-
(2009)
Proc. SPIE
, vol.7477
-
-
Nascimento, J.M.P.1
Bioucas-Dias, J.M.2
-
28
-
-
20444432773
-
Kernel-based methods for hyperspectral image classification
-
DOI 10.1109/TGRS.2005.846154
-
G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, 2005. (Pubitemid 40811944)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.6
, pp. 1351-1362
-
-
Camps-Valls, G.1
Bruzzone, L.2
-
29
-
-
29044445372
-
Kernel orthogonal subspace projection for hyperspectral signal classification
-
DOI 10.1109/TGRS.2005.857904
-
K. Heesung and N. M. Nasrabadi, "Kernel orthogonal subspace projection for hyperspectral signal classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 12, pp. 2952-2962, 2005. (Pubitemid 41788559)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.12
, pp. 2952-2962
-
-
Kwon, H.1
Nasrabadi, N.M.2
-
30
-
-
72049087378
-
Kernel fully constrained least squares abundance estimates
-
J. Broadwater, R. Chellappa, A. Banerjee, and P. Burlina, "Kernel fully constrained least squares abundance estimates," in Proc. IEEE IGARSS, 2007, pp. 4041-4044.
-
(2007)
Proc IEEE IGARSS
, pp. 4041-4044
-
-
Broadwater, J.1
Chellappa, R.2
Banerjee, A.3
Burlina, P.4
-
31
-
-
79957459096
-
A comparison of kernel functions for intimate mixture models
-
J. Broadwater and A. Banerjee, "A comparison of kernel functions for intimate mixture models," in Proc. IEEE IGARSS, 2009, pp. 1-4.
-
(2009)
Proc IEEE IGARSS
, pp. 1-4
-
-
Broadwater, J.1
Banerjee, A.2
-
32
-
-
78649546416
-
A kernel spatial complexity-based nonlinear unmixing method of hyperspectral imagery
-
X. Wu, X. Li, and L. Zhao, "A kernel spatial complexity-based nonlinear unmixing method of hyperspectral imagery," in Proc. LSMS/ICSEE, 2010, pp. 451-458.
-
(2010)
Proc. LSMS/ICSEE
, pp. 451-458
-
-
Wu, X.1
Li, X.2
Zhao, L.3
-
35
-
-
5844297152
-
Theory of reproducing kernels
-
N. Aronszajn, "Theory of reproducing kernels," Trans. Amer. Math. Soc., vol. 68, 1950.
-
(1950)
Trans. Amer. Math. Soc
, vol.68
-
-
Aronszajn, N.1
-
36
-
-
0001500115
-
Functions of positive and negative type and their connection with the theory of integral equations
-
J. Mercer, "Functions of positive and negative type and their connection with the theory of integral equations," Philos. Trans. Roy. Soc. London Ser. A, vol. 209, pp. 415-446, 1909.
-
(1909)
Philos. Trans. Roy. Soc. London Ser. A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
37
-
-
0037695279
-
-
Singapore: World Scientific
-
J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle, Least Squares Support Vector Machines. Singapore: World Scientific, 2002.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
38
-
-
0004019973
-
Convolution kernels on discrete structures
-
Univ. California at Santa Cruz Tech. Rep
-
D. Haussler, Convolution Kernels on Discrete Structures Comput. Sci. Dep., Univ. California at Santa Cruz, 1999, Tech. Rep.
-
(1999)
Comput. Sci. Dep.
-
-
Haussler, D.1
-
41
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. Jordan, "Learning the kernel matrix with semidefinite programming," J. Mach. Learn. Res., vol. 5, pp. 27-72, 2004.
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 27-72
-
-
Lanckriet, G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.5
-
42
-
-
57249084590
-
-
A. Rakotomamonjy, F. Bach, S. Canu, and Y. Granvalet, "SimpleMKL," J. Mach. Learn. Res., vol. 9, pp. 2491-2521, 2008.
-
(2008)
J. Mach. Learn. Res
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Granvalet, Y.4
Simple, M.K.L.5
-
44
-
-
0032096712
-
Optimization problems with perturbations: A guided tour
-
J. F. Bonnans and A. Shapiro, "Optimization problems with perturbations: A guided tour," SIAM Rev., vol. 40, no. 2, pp. 207-227, 1998.
-
(1998)
SIAM Rev
, vol.40
, Issue.2
, pp. 207-227
-
-
Bonnans, J.F.1
Shapiro, A.2
-
45
-
-
80054052910
-
Nonnegative least-mean-square algorithm
-
Nov.
-
J. Chen, C. Richard, J.-C. M. Bermudez, and P. Honeine, "Nonnegative least-mean-square algorithm," IEEE Trans. Signal Process., vol. 59, no. 11, pp. 5225-5235, Nov. 2011.
-
(2011)
IEEE Trans. Signal Process
, vol.59
, Issue.11
, pp. 5225-5235
-
-
Chen, J.1
Richard, C.2
Bermudez, J.-C.M.3
Honeine, P.4
-
47
-
-
61549112727
-
Online prediction of time series data with kernels
-
Mar
-
C. Richard, J.-C. M. Bermudez, and P. Honeine, "Online prediction of time series data with kernels," IEEE Trans. Signal Process., vol. 57, no. 3, pp. 1058-1067, Mar. 2009.
-
(2009)
IEEE Trans. Signal Process
, vol.57
, Issue.3
, pp. 1058-1067
-
-
Richard, C.1
Bermudez, J.-C.M.2
Honeine, P.3
-
48
-
-
79957443437
-
Non-linear spectral unmixing by geodesic simplex volume maximization
-
R. Heylen, D. Burazerovic, and P. Scheunders, "Non-linear spectral unmixing by geodesic simplex volume maximization," IEEE J. Sel. Top. Signal Process., vol. 5, no. 3, pp. 534-542, 2011.
-
(2011)
IEEE J. Sel. Top. Signal Process
, vol.5
, Issue.3
, pp. 534-542
-
-
Heylen, R.1
Burazerovic, D.2
Scheunders, P.3
-
49
-
-
84873183850
-
Hyperspectral image unmixing using manifold learning methods: Derivations and comparative tests
-
N. H. Nguyen, C. Richard, P. Honeine, and C. Theys, "Hyperspectral image unmixing using manifold learning methods: Derivations and comparative tests," in Proc. IEEE IGARSS, 2012.
-
(2012)
Proc IEEE IGARSS
-
-
Nguyen, N.H.1
Richard, C.2
Honeine, P.3
Theys, C.4
|