메뉴 건너뛰기




Volumn 52, Issue 9, 2014, Pages 5396-5411

Reduction of signal-dependent noise from hyperspectral images for target detection

Author keywords

Denoising; hyperspectral image (HSI); PARAFAC; signal dependent (SD) noise; target detection

Indexed keywords

ALGEBRA; AUDIO SIGNAL PROCESSING; DATA HANDLING; EXPERIMENTS; INDEPENDENT COMPONENT ANALYSIS; SPECTROSCOPY; TARGET TRACKING;

EID: 84898600752     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2013.2288525     Document Type: Article
Times cited : (27)

References (39)
  • 2
    • 80052775340 scopus 로고    scopus 로고
    • Hyperspectral unmixing based on mixtures of Dirichlet components
    • Mar.
    • J. M. P. Nascimento and J. M. Bioucas-Dias, "Hyperspectral unmixing based on mixtures of Dirichlet components," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 863-878, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 863-878
    • Nascimento, J.M.P.1    Bioucas-Dias, J.M.2
  • 3
    • 48849090040 scopus 로고    scopus 로고
    • Improvement of target detection methods by multiway filtering
    • Aug.
    • N. Renard and S. Bourennane, "Improvement of target detection methods by multiway filtering," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2407-2417, Aug. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.8 , pp. 2407-2417
    • Renard, N.1    Bourennane, S.2
  • 4
    • 35348920168 scopus 로고    scopus 로고
    • Feature selection and classification of hyperspectral images with support vector machines
    • DOI 10.1109/LGRS.2007.905116
    • R. Archibald and G. Fann, "Feature selection and classification of hyperspectral images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 4, no. 4, pp. 674-677, Oct. 2007. (Pubitemid 47588053)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.4 , pp. 674-677
    • Archibald, R.1    Fann, G.2
  • 5
    • 79960904516 scopus 로고    scopus 로고
    • Signal-dependent noise modeling and model parameter estimation in hyperspectral images
    • Aug.
    • N. Acito, M. Diani, and G. Corsini, "Signal-dependent noise modeling and model parameter estimation in hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 8, pp. 2957-2971, Aug. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.8 , pp. 2957-2971
    • Acito, N.1    Diani, M.2    Corsini, G.3
  • 6
    • 34249809456 scopus 로고    scopus 로고
    • Stripe noise reduction in modis data by combining histogram matching with facet filter
    • Jun.
    • P. Rakwatin, W. Takeuchi, and Y. Yasuoka, "Stripe noise reduction in modis data by combining histogram matching with facet filter," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1844-1856, Jun. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.6 , pp. 1844-1856
    • Rakwatin, P.1    Takeuchi, W.2    Yasuoka, Y.3
  • 7
    • 79957488968 scopus 로고    scopus 로고
    • Local signal-dependent noise variance estimation from hyperspectral textural images
    • Jun.
    • M. Uss, B. Vozel, V. Lukin, and K. Chehdi, "Local signal-dependent noise variance estimation from hyperspectral textural images," IEEE J. Sel. Topics. Signal Process., vol. 5, no. 3, pp. 469-486, Jun. 2011.
    • (2011) IEEE J. Sel. Topics. Signal Process. , vol.5 , Issue.3 , pp. 469-486
    • Uss, M.1    Vozel, B.2    Lukin, V.3    Chehdi, K.4
  • 9
    • 0030235916 scopus 로고    scopus 로고
    • Principal components transform with simple, automatic noise adjustment
    • R. E. Roger, "Principal components transform with simple, automatic noise adjustment," INT. J. Remote Sens., vol. 17, no. 14, pp. 2719-2727, 1996.
    • (1996) INT. J. Remote Sens. , vol.17 , Issue.14 , pp. 2719-2727
    • Roger, R.E.1
  • 10
    • 0033311252 scopus 로고    scopus 로고
    • Interference and noise-adjusted principal components analysis
    • DOI 10.1109/36.789637
    • C.-I. Chang and Q. Du, "Interference and noise adjusted principal components analysis," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 5, pp. 2387-2396, Sep. 1999. (Pubitemid 30518325)
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.5 , pp. 2387-2396
    • Chang, C.-I.1
  • 11
    • 84858078807 scopus 로고    scopus 로고
    • Nonwhite noise reduction in hyperspectral images
    • May
    • X. Liu, S. Bourennane, and C. Fossati, "Nonwhite noise reduction in hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 368-372, May 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.3 , pp. 368-372
    • Liu, X.1    Bourennane, S.2    Fossati, C.3
  • 12
    • 0345427070 scopus 로고
    • Using dark current data to estimate avris noise covariance and improve spectral analyses
    • J. W. Boardman, "Using dark current data to estimate avris noise covariance and improve spectral analyses," AVIRIS Proc., vol. 1, pp. 19-22, 1995.
    • (1995) AVIRIS Proc. , vol.1 , pp. 19-22
    • Boardman, J.W.1
  • 14
    • 33747176570 scopus 로고    scopus 로고
    • Noise modelling and estimation of hyperspectral data from airborne imaging spectrometers
    • B. Aiazzi, L. Alparone, A. Barducci, S. Baronti, P. Marcoionni, I. Pippi, andM. Selva, "Noise modelling and estimation of hyperspectral data from airborne imaging spectrometers," Ann. Geophys., vol. 49, no. 1, pp. 1-9, 2006. (Pubitemid 44226622)
    • (2006) Annals of Geophysics , vol.49 , Issue.1 , pp. 1-9
    • Aiazzi, B.1    Alparone, L.2    Barducci, A.3    Baronti, S.4    Marcoionni, P.5    Pippi, I.6    Selva, M.7
  • 15
    • 33750146454 scopus 로고    scopus 로고
    • Survey on tensor signal algebraic filtering
    • DOI 10.1016/j.sigpro.2005.12.016, PII S016516840600168X
    • D. Muti and S. Bourennane, "Survey on tensor signal algebraic filtering," Signal Process., vol. 87, no. 2, pp. 237-249, Feb. 2007. (Pubitemid 44602251)
    • (2007) Signal Processing , vol.87 , Issue.2 , pp. 237-249
    • Muti, D.1    Bourennane, S.2
  • 16
    • 48849103262 scopus 로고    scopus 로고
    • Denoising and dimensionality reduction using multilinear tools for hyperspectral images
    • Apr.
    • N. Renard, S. Bourennane, and J. Blanc-Talon, "Denoising and dimensionality reduction using multilinear tools for hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 138-142, Apr. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.2 , pp. 138-142
    • Renard, N.1    Bourennane, S.2    Blanc-Talon, J.3
  • 18
    • 34250499792 scopus 로고
    • Analysis of individual differences in multidimensional scaling via an n-way generalization of 'Eckart-Young' decomposition
    • Sep.
    • J. D. Carroll and J. J. Chang, "Analysis of individual differences in multidimensional scaling via an n-way generalization of 'Eckart-Young' decomposition," Psychometrika, vol. 35, no. 3, pp. 283-319, Sep. 1970.
    • (1970) Psychometrika , vol.35 , Issue.3 , pp. 283-319
    • Carroll, J.D.1    Chang, J.J.2
  • 19
    • 0002740437 scopus 로고
    • Foundations of the PARAFAC procedure: Models and conditions for an explanatory" multi-modal factor analysis
    • Dec.
    • R. A. Harshman, "Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-modal factor analysis," UCLA Working Papers Phonetics, vol. 16, pp. 1-84, Dec. 1970.
    • (1970) UCLA Working Papers Phonetics , vol.16 , pp. 1-84
    • Harshman, R.A.1
  • 20
    • 84867090591 scopus 로고    scopus 로고
    • Denoising of hyperspectral images using the parafac model and statistical performance analysis
    • Oct.
    • X. Liu, S. Bourennane, and C. Fossati, "Denoising of hyperspectral images using the parafac model and statistical performance analysis," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3717-3724, Oct. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.10 , pp. 3717-3724
    • Liu, X.1    Bourennane, S.2    Fossati, C.3
  • 21
    • 0025430387 scopus 로고
    • Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform
    • DOI 10.1109/36.54356
    • J. Lee, A. Woodyatt, and M. Berman, "Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform," IEEE Trans. Geosci. Remote Sens., vol. 28, no. 3, pp. 295-304, May 1990. (Pubitemid 20702839)
    • (1990) IEEE Transactions on Geoscience and Remote Sensing , vol.28 , Issue.3 , pp. 295-304
    • Lee James, B.1    Woodyatt A.Stephen2    Berman Mark3
  • 22
    • 27744544315 scopus 로고    scopus 로고
    • Multidimensional filtering based on a tensor approach
    • DOI 10.1016/j.sigpro.2004.11.029, PII S0165168405001234
    • D. Muti and S. Bourennane, "Multidimensional filtering based on a tensor approach," Signal Process., vol. 85, no. 12, pp. 2338-2353, Dec. 2005. (Pubitemid 41606027)
    • (2005) Signal Processing , vol.85 , Issue.12 , pp. 2338-2353
    • Muti, D.1    Bourennane, S.2
  • 23
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • Sep.
    • T. G. Kolda and B. W. Bader, "Tensor decompositions and applications," SIAM Rev., vol. 51, no. 3, pp. 455-500, Sep. 2009.
    • (2009) SIAM Rev. , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 24
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • Sep.
    • L. R. Tucker, "Some mathematical notes on three-mode factor analysis," Psychometrika, vol. 31, no. 3, pp. 279-311, Sep. 1966.
    • (1966) Psychometrika , vol.31 , Issue.3 , pp. 279-311
    • Tucker, L.R.1
  • 25
    • 0034250083 scopus 로고    scopus 로고
    • Parallel factor analysis in sensor array processing
    • Aug.
    • N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, "Parallel factor analysis in sensor array processing," IEEE Trans. Signal Process., vol. 48, no. 8, pp. 2377-2388, Aug. 2000.
    • (2000) IEEE Trans. Signal Process. , vol.48 , Issue.8 , pp. 2377-2388
    • Sidiropoulos, N.D.1    Bro, R.2    Giannakis, G.B.3
  • 26
    • 66849113522 scopus 로고    scopus 로고
    • Adaptive algorithms to track the parafac decomposition of a third-order tensor
    • Jun.
    • D. Nion and N. D. Sidiropoulos, "Adaptive algorithms to track the parafac decomposition of a third-order tensor," IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2299-2310, Jun. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.6 , pp. 2299-2310
    • Nion, D.1    Sidiropoulos, N.D.2
  • 27
    • 2942597622 scopus 로고    scopus 로고
    • Structure-seeking multilinear methods for the analysis of fMRI data
    • DOI 10.1016/j.neuroimage.2004.02.026, PII S1053811904001181
    • A. H. Andersen and W. S. Rayens, "Structure-seeking multilinear methods for the analysis of fmri data," NeuroImage, vol. 22, pp. 728-739, Jun. 2004. (Pubitemid 38759435)
    • (2004) NeuroImage , vol.22 , Issue.2 , pp. 728-739
    • Andersen, A.H.1    Rayens, W.S.2
  • 28
    • 55349142218 scopus 로고    scopus 로고
    • Tensor rank and the ill-posedness of the best low-rank approximation problem
    • V. De Silva and L. Lim, "Tensor rank and the ill-posedness of the best low-rank approximation problem," SIAM J. Matrix Anal. Appl., vol. 30, no. 3, pp. 1084-1127, 2008.
    • (2008) SIAM J. Matrix Anal. Appl. , vol.30 , Issue.3 , pp. 1084-1127
    • De Silva, V.1    Lim, L.2
  • 29
    • 84871816658 scopus 로고    scopus 로고
    • Hyperspectral signal subspace identification in the presence of rares vectors and signal-dependent noise
    • Jan.
    • N. Acito, M. Diani, and G. Corsini, "Hyperspectral signal subspace identification in the presence of rares vectors and signal-dependent noise," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 283-299, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 283-299
    • Acito, N.1    Diani, M.2    Corsini, G.3
  • 30
    • 45849101292 scopus 로고    scopus 로고
    • Noise removal from hyperspectral images by multidimensional filtering
    • Jul.
    • D. Letexier and S. Bourennane, "Noise removal from hyperspectral images by multidimensional filtering," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 7, pp. 2061-2069, Jul. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.7 , pp. 2061-2069
    • Letexier, D.1    Bourennane, S.2
  • 31
    • 31344444452 scopus 로고    scopus 로고
    • Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage
    • DOI 10.1109/TGRS.2005.860982
    • H. Othman and S.-E. Qian, "Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 2, pp. 397-408, Feb. 2006. (Pubitemid 43146059)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.2 , pp. 397-408
    • Othman, H.1    Qian, S.-E.2
  • 32
    • 79952041437 scopus 로고    scopus 로고
    • Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage
    • Mar.
    • G. Chen and S.-E. Qian, "Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 973-980, Mar. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.3 , pp. 973-980
    • Chen, G.1    Qian, S.-E.2
  • 33
    • 0002258223 scopus 로고
    • The parafac model for three-way factor analysis and multidimensional scaling
    • New York, NY, USA: Praeger
    • R. A. Harshman and M. E. Lundy, "The parafac model for three-way factor analysis and multidimensional scaling," in Research Methods For Multimode Data Analysis. New York, NY, USA: Praeger, 1984, pp. 122-215.
    • (1984) Research Methods for Multimode Data Analysis , pp. 122-215
    • Harshman, R.A.1    Lundy, M.E.2
  • 34
    • 0002645698 scopus 로고
    • Parafac: Parallel factor analysis
    • R. A. Harshman and M. E. Lundy, "Parafac: Parallel factor analysis," Comput. Stat. Data Anal., vol. 18, no. 1, pp. 39-72, 1994.
    • (1994) Comput. Stat. Data Anal. , vol.18 , Issue.1 , pp. 39-72
    • Harshman, R.A.1    Lundy, M.E.2
  • 37
    • 67650153214 scopus 로고    scopus 로고
    • The adaptive coherence estimator is the generalized likelihood ratio test for a class of heterogeneous environments
    • S. Bidon, O. Besson, and J.-Y. Tourneret, "The adaptive coherence estimator is the generalized likelihood ratio test for a class of heterogeneous environments," IEEE Signal Process. Lett., vol. 15, pp. 281-284, 2008.
    • (2008) IEEE Signal Process. Lett. , vol.15 , pp. 281-284
    • Bidon, S.1    Besson, O.2    Tourneret, J.-Y.3
  • 38
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • DOI 10.1109/79.974724
    • D. Manolakis and G. Shaw, "Detection algorithms for hyperspectral imaging applications," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 29-43, Jan. 2002. (Pubitemid 34237206)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.G.1    Shaw, G.2
  • 39
    • 27844593728 scopus 로고    scopus 로고
    • Spectral linear mixing model in low spatial resolution image data
    • DOI 10.1109/TGRS.2005.848692
    • V. Haertel and Y. Shimabukuro, "Spectral linear mixing model in low spatial resolution image data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 11, pp. 2555-2562, Nov. 2005. (Pubitemid 41640779)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.11 , pp. 2555-2562
    • Haertel, V.F.1    Shimabukuro, Y.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.