메뉴 건너뛰기




Volumn 48, Issue 1, 2018, Pages 16-28

Simultaneous spectral-spatial feature selection and extraction for hyperspectral images

Author keywords

Feature extraction; Feature selection; Hyperspectral data; Spectral spatial classification

Indexed keywords

DATA MINING; EXTRACTION; FEATURE EXTRACTION; IMAGE ENHANCEMENT; REMOTE SENSING; SPACE OPTICS; SPECTROSCOPY;

EID: 85042539031     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2016.2605044     Document Type: Article
Times cited : (246)

References (52)
  • 1
    • 85032751634 scopus 로고    scopus 로고
    • Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
    • Jan
    • G. Camps-Valls, D. Tuia, L. Bruzzone, and J. A. Benediktsson, “Advances in hyperspectral image classification: Earth monitoring with statistical learning methods,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 45-54, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1    Tuia, D.2    Bruzzone, L.3    Benediktsson, J.A.4
  • 2
    • 84869488524 scopus 로고    scopus 로고
    • Adjustable model-based fusion method for multispectral and panchromatic images
    • Dec
    • L. Zhang, H. Shen, W. Gong, and H. Zhang, “Adjustable model-based fusion method for multispectral and panchromatic images,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 6, pp. 1693-1704, Dec. 2012.
    • (2012) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.42 , Issue.6 , pp. 1693-1704
    • Zhang, L.1    Shen, H.2    Gong, W.3    Zhang, H.4
  • 3
    • 84876468871 scopus 로고    scopus 로고
    • An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery
    • Mar
    • Y. Zhong and L. Zhang, “An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 894-909, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 894-909
    • Zhong, Y.1    Zhang, L.2
  • 4
    • 84943547237 scopus 로고    scopus 로고
    • Missing information reconstruction of remote sensing data: A technical review
    • Sep
    • H. Shen et al., “Missing information reconstruction of remote sensing data: A technical review,” IEEE Geosci. Remote Sens. Mag., vol. 3, no. 3, pp. 61-85, Sep. 2015.
    • (2015) IEEE Geosci. Remote Sens. Mag. , vol.3 , Issue.3 , pp. 61-85
    • Shen, H.1
  • 5
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, “Advances in spectral-spatial classification of hyperspectral images,” Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 6
    • 84938536972 scopus 로고    scopus 로고
    • Learning hierarchical spectral-spatial features for hyperspectral image classification
    • Jul
    • Y. Zhou and Y. Wei, “Learning hierarchical spectral-spatial features for hyperspectral image classification,” IEEE Trans. Cybern., vol. 46, no. 7, pp. 1667-1678, Jul. 2016.
    • (2016) IEEE Trans. Cybern. , vol.46 , Issue.7 , pp. 1667-1678
    • Zhou, Y.1    Wei, Y.2
  • 7
    • 84859784358 scopus 로고    scopus 로고
    • Locality-preserving dimensionality reduction and classification for hyperspectral image analysis
    • Apr
    • W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, “Locality-preserving dimensionality reduction and classification for hyperspectral image analysis,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1185-1198, Apr. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.4 , pp. 1185-1198
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 8
    • 85027925056 scopus 로고    scopus 로고
    • Learning with hypergraph for hyperspectral image feature extraction
    • Aug
    • H. Yuan and Y. Y. Tang, “Learning with hypergraph for hyperspectral image feature extraction,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 8, pp. 1695-1699, Aug. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.8 , pp. 1695-1699
    • Yuan, H.1    Tang, Y.Y.2
  • 9
    • 84891040747 scopus 로고    scopus 로고
    • Multiagent object-based classifier for high spatial resolution imagery
    • Feb
    • Y. Zhong, B. Zhao, and L. Zhang, “Multiagent object-based classifier for high spatial resolution imagery,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 841-857, Feb. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.2 , pp. 841-857
    • Zhong, Y.1    Zhao, B.2    Zhang, L.3
  • 10
    • 84920948047 scopus 로고    scopus 로고
    • Detail-preserving smoothing classifier based on conditional random fields for high spatial resolution remote sensing imagery
    • May
    • J. Zhao, Y. Zhong, and L. Zhang, “Detail-preserving smoothing classifier based on conditional random fields for high spatial resolution remote sensing imagery,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2440-2452, May 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2440-2452
    • Zhao, J.1    Zhong, Y.2    Zhang, L.3
  • 11
    • 85027924217 scopus 로고    scopus 로고
    • Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels
    • Dec
    • L. Fang, S. Li, W. Duan, J. Ren, and J. A. Benediktsson, “Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 12, pp. 6663-6674, Dec. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.12 , pp. 6663-6674
    • Fang, L.1    Li, S.2    Duan, W.3    Ren, J.4    Benediktsson, J.A.5
  • 12
    • 84962616242 scopus 로고    scopus 로고
    • Spectral-spatial shared linear regression for hyperspectral image classification
    • to be published
    • H. Yuan and Y. Y. Tang, “Spectral-spatial shared linear regression for hyperspectral image classification,” IEEE Trans. Cybern., to be published, doi: 10.1109/TCYB.2016.2533430.
    • IEEE Trans. Cybern.
    • Yuan, H.1    Tang, Y.Y.2
  • 13
    • 84896401103 scopus 로고    scopus 로고
    • Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary
    • Jun
    • J. Li, H. Zhang, Y. Huang, and L. Zhang, “Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3707-3719, Jun. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.6 , pp. 3707-3719
    • Li, J.1    Zhang, H.2    Huang, Y.3    Zhang, L.4
  • 14
    • 84903278535 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation
    • Dec
    • L. Fang, S. Li, X. Kang, and J. A. Benediktsson, “Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 12, pp. 7738-7749, Dec. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.12 , pp. 7738-7749
    • Fang, L.1    Li, S.2    Kang, X.3    Benediktsson, J.A.4
  • 15
    • 84906510987 scopus 로고    scopus 로고
    • Hyperspectral image classification using functional data analysis
    • Sep
    • H. Li, G. Xiao, T. Xia, Y. Y. Tang, and L. Li, “Hyperspectral image classification using functional data analysis,” IEEE Trans. Cybern., vol. 44, no. 9, pp. 1544-1555, Sep. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.9 , pp. 1544-1555
    • Li, H.1    Xiao, G.2    Xia, T.3    Tang, Y.Y.4    Li, L.5
  • 16
    • 84980000082 scopus 로고    scopus 로고
    • High-resolution image classification integrating spectral-spatial-location cues by conditional random fields
    • Sep
    • J. Zhao, Y. Zhong, H. Shu, and L. Zhang, “High-resolution image classification integrating spectral-spatial-location cues by conditional random fields,” IEEE Trans. Image Process., vol. 25, no. 9, pp. 4033-4045, Sep. 2016.
    • (2016) IEEE Trans. Image Process. , vol.25 , Issue.9 , pp. 4033-4045
    • Zhao, J.1    Zhong, Y.2    Shu, H.3    Zhang, L.4
  • 17
    • 84955602136 scopus 로고    scopus 로고
    • Support tensor machines for classification of hyperspectral remote sensing imagery
    • Jun
    • X. Guo et al., “Support tensor machines for classification of hyperspectral remote sensing imagery,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3248-3264, Jun. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.6 , pp. 3248-3264
    • Guo, X.1
  • 18
    • 77956694762 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers
    • Oct
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, “Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 5, pp. 1267-1279, Oct. 2010.
    • (2010) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.40 , Issue.5 , pp. 1267-1279
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 19
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery
    • Jan
    • X. Huang and L. Zhang, “An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 257-272, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 257-272
    • Huang, X.1    Zhang, L.2
  • 20
    • 77953710563 scopus 로고    scopus 로고
    • Learning conditional random fields for classification of hyperspectral images
    • Jul
    • P. Zhong and R. Wang, “Learning conditional random fields for classification of hyperspectral images,” IEEE Trans. Image Process., vol. 19, no. 7, pp. 1890-1907, Jul. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.7 , pp. 1890-1907
    • Zhong, P.1    Wang, R.2
  • 21
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug
    • Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 22
    • 85032751123 scopus 로고    scopus 로고
    • Manifold-learning-based feature extraction for classification of hyperspectral data: A review of advances in manifold learning
    • Jan
    • D. Lunga, S. Prasad, M. M. Crawford, and O. Ersoy, “Manifold-learning-based feature extraction for classification of hyperspectral data: A review of advances in manifold learning,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 55-66, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 55-66
    • Lunga, D.1    Prasad, S.2    Crawford, M.M.3    Ersoy, O.4
  • 23
    • 84874545698 scopus 로고    scopus 로고
    • Feature mining for hyperspectral image classification
    • Mar
    • X. Jia, B.-C. Kuo, and M. M. Crawford, “Feature mining for hyperspectral image classification,” Proc. IEEE, vol. 101, no. 3, pp. 676-697, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 676-697
    • Jia, X.1    Kuo, B.-C.2    Crawford, M.M.3
  • 24
    • 84871736244 scopus 로고    scopus 로고
    • Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction
    • Jan
    • L. Zhang, L. Zhang, D. Tao, and X. Huang, “Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 242-256, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 242-256
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 25
    • 84907456238 scopus 로고    scopus 로고
    • Multiple feature learning for hyperspectral image classification
    • Mar
    • J. Li et al., “Multiple feature learning for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1592-1606, Mar. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1592-1606
    • Li, J.1
  • 26
    • 84931572289 scopus 로고    scopus 로고
    • Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding
    • Oct
    • L. Zhang et al., “Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding,” Pattern Recognit., vol. 48, no. 10, pp. 3102-3112, Oct. 2015.
    • (2015) Pattern Recognit , vol.48 , Issue.10 , pp. 3102-3112
    • Zhang, L.1
  • 27
    • 85027917034 scopus 로고    scopus 로고
    • Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification
    • Oct
    • J. Li, H. Zhang, and L. Zhang, “Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 10, pp. 5338-5351, Oct. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.10 , pp. 5338-5351
    • Li, J.1    Zhang, H.2    Zhang, L.3
  • 28
    • 84978264354 scopus 로고    scopus 로고
    • Multidomain subspace classification for hyperspectral images
    • Oct
    • L. Zhang, X. Zhu, L. Zhang, and B. Du, “Multidomain subspace classification for hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6138-6150, Oct. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.10 , pp. 6138-6150
    • Zhang, L.1    Zhu, X.2    Zhang, L.3    Du, B.4
  • 29
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan
    • G. F. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Trans. Inf. Theory, vol. 14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 30
    • 84906307287 scopus 로고    scopus 로고
    • Hyperspectral band selection by multitask sparsity pursuit
    • Feb
    • Y. Yuan, G. Zhu, and Q. Wang, “Hyperspectral band selection by multitask sparsity pursuit,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 2, pp. 631-644, Feb. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.2 , pp. 631-644
    • Yuan, Y.1    Zhu, G.2    Wang, Q.3
  • 31
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, “Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 32
    • 84879514791 scopus 로고    scopus 로고
    • A modified stochastic neighbor embedding for multi-feature dimension reduction of remote sensing images
    • Sep
    • L. Zhang, L. Zhang, D. Tao, and X. Huang, “A modified stochastic neighbor embedding for multi-feature dimension reduction of remote sensing images,” ISPRS J. Photogramm. Remote Sens., vol. 83, pp. 30-39, Sep. 2013.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.83 , pp. 30-39
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 33
    • 68549120964 scopus 로고    scopus 로고
    • Patch alignment for dimensionality reduction
    • Sep
    • T. Zhang, D. Tao, X. Li, and J. Yang, “Patch alignment for dimensionality reduction,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1299-1313, Sep. 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1299-1313
    • Zhang, T.1    Tao, D.2    Li, X.3    Yang, J.4
  • 34
    • 85135939782 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint l2,1-norms minimization
    • Vancouver, BC, Canada
    • F. Nie, H. Huang, X. Cai, and C. H. Ding, “Efficient and robust feature selection via joint l2,1-norms minimization,” in Proc. NIPS, Vancouver, BC, Canada, 2010, pp. 1813-1821.
    • (2010) Proc. NIPS , pp. 1813-1821
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.H.4
  • 35
    • 84960497436 scopus 로고    scopus 로고
    • Multi-view intact space learning
    • Dec
    • C. Xu, D. Tao, and C. Xu, “Multi-view intact space learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 12, pp. 2531-2544, Dec. 2015.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , Issue.12 , pp. 2531-2544
    • Xu, C.1    Tao, D.2    Xu, C.3
  • 36
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularized nonnegative matrix factorization for data representation
    • Aug
    • D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized nonnegative matrix factorization for data representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1548-1560, Aug. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.8 , pp. 1548-1560
    • Cai, D.1    He, X.2    Han, J.3    Huang, T.S.4
  • 37
    • 84866523030 scopus 로고    scopus 로고
    • On combining multiple features for cartoon character retrieval and clip synthesis
    • Oct
    • J. Yu, D. Liu, D. Tao, and H. S. Seah, “On combining multiple features for cartoon character retrieval and clip synthesis,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 5, pp. 1413-1427, Oct. 2012.
    • (2012) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.42 , Issue.5 , pp. 1413-1427
    • Yu, J.1    Liu, D.2    Tao, D.3    Seah, H.S.4
  • 38
    • 84903270810 scopus 로고    scopus 로고
    • Manifold-based sparse representation for hyperspectral image classification
    • Dec
    • Y. Y. Tang, H. Yuan, and L. Li, “Manifold-based sparse representation for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 12, pp. 7606-7618, Dec. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.12 , pp. 7606-7618
    • Tang, Y.Y.1    Yuan, H.2    Li, L.3
  • 39
    • 13444286179 scopus 로고    scopus 로고
    • Locality preserving projections
    • X. He and P. Niyogi, “Locality preserving projections,” in Proc. NIPS, vol. 16. 2004, pp. 153-160.
    • (2004) Proc. NIPS , vol.16 , pp. 153-160
    • He, X.1    Niyogi, P.2
  • 41
    • 84959551939 scopus 로고    scopus 로고
    • Tensor canonical correlation analysis for multi-view dimension reduction
    • Nov
    • Y. Luo, D. Tao, K. Ramamohanarao, C. Xu, and Y. Wen, “Tensor canonical correlation analysis for multi-view dimension reduction,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 11, pp. 3111-3124, Nov. 2015.
    • (2015) IEEE Trans. Knowl. Data Eng. , vol.27 , Issue.11 , pp. 3111-3124
    • Luo, Y.1    Tao, D.2    Ramamohanarao, K.3    Xu, C.4    Wen, Y.5
  • 42
    • 84904192140 scopus 로고    scopus 로고
    • Large-margin multi-view information bottleneck
    • Aug
    • C. Xu, D. Tao, and C. Xu, “Large-margin multi-view information bottleneck,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 8, pp. 1559-1572, Aug. 2014.
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell. , vol.36 , Issue.8 , pp. 1559-1572
    • Xu, C.1    Tao, D.2    Xu, C.3
  • 43
    • 84893369645 scopus 로고    scopus 로고
    • Heterogeneous metric learning with joint graph regularization for cross-media retrieval
    • Bellevue, WA, USA
    • X. Zhai, Y. Peng, and J. Xiao, “Heterogeneous metric learning with joint graph regularization for cross-media retrieval,” in Proc. AAAI, Bellevue, WA, USA, 2013, pp. 1198-1204.
    • (2013) Proc. AAAI , pp. 1198-1204
    • Zhai, X.1    Peng, Y.2    Xiao, J.3
  • 44
    • 84937722894 scopus 로고    scopus 로고
    • Adaptive norm selection for regularized image restoration and super-resolution
    • Jun
    • H. Shen, L. Peng, L. Yue, Q. Yuan, and L. Zhang, “Adaptive norm selection for regularized image restoration and super-resolution,” IEEE Trans. Cybern., vol. 46, no. 6, pp. 1388-1399, Jun. 2016.
    • (2016) IEEE Trans. Cybern. , vol.46 , Issue.6 , pp. 1388-1399
    • Shen, H.1    Peng, L.2    Yue, L.3    Yuan, Q.4    Zhang, L.5
  • 45
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Art.
    • C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, 2011, Art. no. 27.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3
    • Chang, C.-C.1    Lin, C.-J.2
  • 46
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification
    • Mar
    • L. Zhang, L. Zhang, D. Tao, and X. Huang, “On combining multiple features for hyperspectral remote sensing image classification,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 879-893, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 879-893
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 47
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Mar
    • J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification of hyperspectral data from urban areas based on extended morphological profiles,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 48
    • 33745309913 scopus 로고    scopus 로고
    • Sparse principal component analysis
    • H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component analysis,” J. Comput. Graph. Stat., vol. 15, no. 2, pp. 265-286, 2006.
    • (2006) J. Comput. Graph. Stat. , vol.15 , Issue.2 , pp. 265-286
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3
  • 50
    • 77958582596 scopus 로고    scopus 로고
    • A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data
    • Mar
    • J.-M. Yang, P.-T. Yu, and B.-C. Kuo, “A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 3, pp. 1279-1293, Mar. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.3 , pp. 1279-1293
    • Yang, J.-M.1    Yu, P.-T.2    Kuo, B.-C.3
  • 51
    • 78049282379 scopus 로고    scopus 로고
    • Double nearest proportion feature extraction for hyperspectral-image classification
    • Nov
    • H.-Y. Huang and B.-C. Kuo, “Double nearest proportion feature extraction for hyperspectral-image classification,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4034-4046, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4034-4046
    • Huang, H.-Y.1    Kuo, B.-C.2
  • 52
    • 84896388891 scopus 로고    scopus 로고
    • Hyperspectral image restoration using low-rank matrix recovery
    • Aug
    • H. Zhang, W. He, L. Zhang, H. Shen, and Q. Yuan, “Hyperspectral image restoration using low-rank matrix recovery,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4729-4743, Aug. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.8 , pp. 4729-4743
    • Zhang, H.1    He, W.2    Zhang, L.3    Shen, H.4    Yuan, Q.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.