메뉴 건너뛰기




Volumn 4, Issue 9, 2013, Pages 853-862

Kernel-based extreme learning machine for remote-sensing image classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ACCURACY; COMPUTATION COSTS; COMPUTATIONAL COSTS; EXTREME LEARNING MACHINE; LAND COVER CLASSIFICATION; MACHINE ALGORITHM; REMOTE SENSING IMAGES; USER-DEFINED PARAMETERS;

EID: 84880397408     PISSN: 2150704X     EISSN: 21507058     Source Type: Journal    
DOI: 10.1080/2150704X.2013.805279     Document Type: Article
Times cited : (185)

References (26)
  • 1
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • Benediktsson, J.A., Swain, P.H., and, Ersoy, O.K. 1990. Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 28: 540-551.
    • (1990) IEEE Transactions on Geoscience and Remote Sensing , vol.28 , pp. 540-551
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 3
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C., and, Vapnik, V. 1995. Support vector networks. Machine Learning, 20, pp.,: 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 4
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T.G. 1998. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10: 1895-1923.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 5
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • Foody, G.M. 2004. Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering and Remote Sensing, 70: 627-633.
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 6
    • 0031105722 scopus 로고    scopus 로고
    • An evaluation of some factors affecting the accuracy of classification by an artificial neural network
    • Foody, G.M., and, Arora, M.K. 1997. An evaluation of some factors affecting the accuracy of classification by an artificial neural network. International Journal of Remote Sensing, 18: 799-810.
    • (1997) International Journal of Remote Sensing , vol.18 , pp. 799-810
    • Foody, G.M.1    Arora, M.K.2
  • 7
    • 3042654673 scopus 로고    scopus 로고
    • A relative evaluation of multiclass image classification by support vector machines
    • Foody, G.M., and, Mathur, A. 2004. A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42: 1335-1343.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , pp. 1335-1343
    • Foody, G.M.1    Mathur, A.2
  • 9
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • Huang, G.-B., Ding, X., and, Zhou, H. 2010. Optimization method based extreme learning machine for classification. Neurocomputing, 74: 155-163.
    • (2010) Neurocomputing , vol.74 , pp. 155-163
    • Huang, G.-B.1    Ding, X.2    Zhou, H.3
  • 11
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang, G.-B., Zhu, Q.-Y., and, Siew, C.-K. 2006. Extreme learning machine: theory and applications. Neurocomputing, 70: 489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 12
    • 0346245214 scopus 로고    scopus 로고
    • The use of backpropagating artificial neural networks in land cover classification
    • Kavzoglu, T., and, Mather, P.M. 2003. The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing, 24: 4907-4938.
    • (2003) International Journal of Remote Sensing , vol.24 , pp. 4907-4938
    • Kavzoglu, T.1    Mather, P.M.2
  • 13
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • Lu, D., and, Weng, Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28: 823-870.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 14
    • 37549009133 scopus 로고    scopus 로고
    • The application of artificial neural networks to the analysis of remotely sensed data
    • Mas, J.F., and, Flores, J.J. 2008. The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29: 617-663.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 617-663
    • Mas, J.F.1    Flores, J.J.2
  • 15
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F., and, Bruzzone, L. 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Transaction of Geoscience and Remote Sensing, 42: 1778-1790.
    • (2004) IEEE Transaction of Geoscience and Remote Sensing , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 17
    • 85007613389 scopus 로고    scopus 로고
    • Kernel methods in remote sensing: A review
    • Pal, M. 2009a. Kernel methods in remote sensing: a review. ISH Journal of Hydraulic Engineering, 15: 194-215.
    • (2009) ISH Journal of Hydraulic Engineering , vol.15 , pp. 194-215
    • Pal, M.1
  • 18
    • 70449409294 scopus 로고    scopus 로고
    • Extreme learning machine based land cover classification
    • Pal, M. 2009b. Extreme learning machine based land cover classification. International Journal of Remote Sensing, 30: 3835-3841.
    • (2009) International Journal of Remote Sensing , vol.30 , pp. 3835-3841
    • Pal, M.1
  • 19
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • Pal, M., and, Foody, G.M. 2010. Feature selection for classification of hyperspectral data by SVM. IEEE Transactions on Geoscience and Remote Sensing, 48: 2297-2306.
    • (2010) IEEE Transactions on Geoscience and Remote Sensing , vol.48 , pp. 2297-2306
    • Pal, M.1    Foody, G.M.2
  • 21
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • Pal, M., and, Mather, P.M. 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86: 554-565.
    • (2003) Remote Sensing of Environment , vol.86 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 22
    • 4444230479 scopus 로고    scopus 로고
    • Assessment of the effectiveness of support vector machines for hyperspectral data
    • Pal, M., and, Mather, P.M. 2004. Assessment of the effectiveness of support vector machines for hyperspectral data. Future Generation Computer Systems, 20: 1215-1225.
    • (2004) Future Generation Computer Systems , vol.20 , pp. 1215-1225
    • Pal, M.1    Mather, P.M.2
  • 23
    • 33747086525 scopus 로고    scopus 로고
    • Some issue in classification of DAIS hyperspectral data
    • Pal, M., and, Mather, P.M. 2006. Some issue in classification of DAIS hyperspectral data. International Journal of Remote Sensing, 27: 2895-2916.
    • (2006) International Journal of Remote Sensing , vol.27 , pp. 2895-2916
    • Pal, M.1    Mather, P.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.