메뉴 건너뛰기




Volumn 20, Issue 2, 2009, Pages 189-201

Normalized mutual information feature selection

Author keywords

Feature selection; Genetic algorithms; Multilayer perceptron (MLP) neural networks; Normalized mutual information (MI)

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; ELECTRIC LOADS; GENETIC ALGORITHMS; LEARNING ALGORITHMS; MULTILAYER NEURAL NETWORKS; MULTILAYERS;

EID: 60849097547     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2008.2005601     Document Type: Article
Times cited : (1075)

References (47)
  • 1
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 3
    • 85099325734 scopus 로고
    • Irrelevant features and the subset selection problem
    • J. Kohavi and K. Pfleger, "Irrelevant features and the subset selection problem," in Proc. 11th Int. Conf. Mach. Learn., 1994, pp. 121-129.
    • (1994) Proc. 11th Int. Conf. Mach. Learn , pp. 121-129
    • Kohavi, J.1    Pfleger, K.2
  • 4
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash and H. Liu, "Feature selection for classification," Intell. Data Anal., vol. 1, no. 3, pp. 131-156, 1997.
    • (1997) Intell. Data Anal , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 5
    • 0034856599 scopus 로고    scopus 로고
    • Feature selection from huge feature sets
    • Vancouver, BC, Canada, Jul
    • J. Bins and B. Draper, "Feature selection from huge feature sets," in Proc. Int. Conf. Comput. Vis., Vancouver, BC, Canada, Jul. 2001, pp. 159-165.
    • (2001) Proc. Int. Conf. Comput. Vis , pp. 159-165
    • Bins, J.1    Draper, B.2
  • 6
    • 0036532821 scopus 로고    scopus 로고
    • A hybrid filter/wrapper approach of feature selection using information theory
    • Apr
    • M. Sebban and R. Nock, "A hybrid filter/wrapper approach of feature selection using information theory," Pattern Recognit., vol. 35, no. 4, pp. 835-846, Apr. 2002.
    • (2002) Pattern Recognit , vol.35 , Issue.4 , pp. 835-846
    • Sebban, M.1    Nock, R.2
  • 8
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Oct
    • L. Yu and H. Liu, "Efficient feature selection via analysis of relevance and redundancy," J. Mach. Learn. Res., vol. 5, pp. 1205-1224, Oct. 2004.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 9
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dec
    • M. Dash and H. Liu, "Consistency-based search in feature selection," Artif. Intell. J., vol. 151, pp. 155-176, Dec. 2003.
    • (2003) Artif. Intell. J , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 10
    • 1842587887 scopus 로고    scopus 로고
    • Relevant, irredundant feature selection and noisy example elimination
    • Apr
    • G. Lashkia and L. Anthony, "Relevant, irredundant feature selection and noisy example elimination," IEEE Trans. Syst. Man Cybern. B, Cybern. vol. 34, no. 2, pp. 888-897, Apr. 2004.
    • (2004) IEEE Trans. Syst. Man Cybern. B, Cybern , vol.34 , Issue.2 , pp. 888-897
    • Lashkia, G.1    Anthony, L.2
  • 11
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Jul
    • R. Battiti, "Using mutual information for selecting features in supervised neural net learning," IEEE Trans. Neural Netw., vol. 5, no. 4, pp. 537-550, Jul. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 12
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Jan
    • N. Kwak and C.-H. Choi, "Input feature selection for classification problems," IEEE Trans. Neural Netw., vol. 3, no. 1, pp. 143-159, Jan. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.3 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.-H.2
  • 13
    • 0038486418 scopus 로고    scopus 로고
    • A niching genetic algorithm for selecting features for neural networks classifiers
    • New York: Springer-Verlag
    • P. A. Estévez and R. Caballero, "A niching genetic algorithm for selecting features for neural networks classifiers," in Perspectives in Neural Computation (ICANN'98). New York: Springer-Verlag, 1998, pp. 311-316.
    • (1998) Perspectives in Neural Computation (ICANN'98) , pp. 311-316
    • Estévez, P.A.1    Caballero, R.2
  • 14
    • 33749830485 scopus 로고    scopus 로고
    • Speeding up the wrapper feature subset selection in regression by mutual information relevance and redundancy analysis
    • Berlin, Germany: Springer-Verlag
    • G. van Dijck and M. M. van Hulle, "Speeding up the wrapper feature subset selection in regression by mutual information relevance and redundancy analysis," in Lecture Notes on Computer Science. Berlin, Germany: Springer-Verlag, 2006, vol. 4131, pp. 31-40.
    • (2006) Lecture Notes on Computer Science , vol.4131 , pp. 31-40
    • van Dijck, G.1    van Hulle, M.M.2
  • 16
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance and min-redundancey
    • Aug
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: Criteria of max-dependency, max-relevance and min-redundancey," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 17
    • 13844298045 scopus 로고    scopus 로고
    • Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information
    • Jan
    • T. W. Chow and D. Huang, "Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information," IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 213-224, Jan. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.1 , pp. 213-224
    • Chow, T.W.1    Huang, D.2
  • 19
    • 50549092368 scopus 로고    scopus 로고
    • Feature selection, mutual information, and the classification of high-dimensional patterns
    • B. Bonev, F. Escalano, and M. Cazorla, "Feature selection, mutual information, and the classification of high-dimensional patterns," Pattern Anal. Appl., vol. 11, no. 3-4, pp. 309-319, 2008.
    • (2008) Pattern Anal. Appl , vol.11 , Issue.3-4 , pp. 309-319
    • Bonev, B.1    Escalano, F.2    Cazorla, M.3
  • 22
    • 0026839971 scopus 로고
    • Fast genetic selection of features for neural networks classifiers
    • Mar
    • F. Brill, D. Brown, and W. Martin, "Fast genetic selection of features for neural networks classifiers," IEEE Trans. Neural Netw., vol. 3, no. 2, pp. 324-328, Mar. 1992.
    • (1992) IEEE Trans. Neural Netw , vol.3 , Issue.2 , pp. 324-328
    • Brill, F.1    Brown, D.2    Martin, W.3
  • 23
    • 0034227313 scopus 로고    scopus 로고
    • Dimensionality reduction using genetic algorithms
    • Jul
    • M. Raymer, W. Punch, E. Goodman, L. Kuhn, and A. Jain, "Dimensionality reduction using genetic algorithms," IEEE Trans. Evol. Comput., vol. 4, no. 2, pp. 164-171, Jul. 2000.
    • (2000) IEEE Trans. Evol. Comput , vol.4 , Issue.2 , pp. 164-171
    • Raymer, M.1    Punch, W.2    Goodman, E.3    Kuhn, L.4    Jain, A.5
  • 24
    • 0003679582 scopus 로고
    • Niching methods for genetic algorithms,
    • Ph.D. dissertation, Dept. General Eng, Univ. Illinois at Urbana-Champaign, Urbana, IL
    • S. W. Mahfoud, "Niching methods for genetic algorithms," Ph.D. dissertation, Dept. General Eng., Univ. Illinois at Urbana-Champaign, Urbana, IL, 1995.
    • (1995)
    • Mahfoud, S.W.1
  • 25
    • 12844260916 scopus 로고    scopus 로고
    • Hybrid genetic algorithms for feature selection
    • Nov
    • I.-S. Oh, J.-S. Lee, and B.-R. Moon, "Hybrid genetic algorithms for feature selection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 11, pp. 1424-1437, Nov. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell , vol.26 , Issue.11 , pp. 1424-1437
    • Oh, I.-S.1    Lee, J.-S.2    Moon, B.-R.3
  • 26
    • 33749583201 scopus 로고    scopus 로고
    • A novel feature selection approach by hybrid genetic algorithm
    • Berlin, Germany: Springer-Verlag
    • J. Huang, N. Lv, and W. Li, "A novel feature selection approach by hybrid genetic algorithm," in Lecture Notes on Artificial Intelligence. Berlin, Germany: Springer-Verlag, 2006, vol. 4099, pp. 721-729.
    • (2006) Lecture Notes on Artificial Intelligence , vol.4099 , pp. 721-729
    • Huang, J.1    Lv, N.2    Li, W.3
  • 29
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • Feb
    • A. M. Fraser and H. L. Swinney, "Independent coordinates for strange attractors from mutual information," Phys. Rev. A, Gen. Phys., vol. 33, no. 2, pp. 1134-1140, Feb. 1986.
    • (1986) Phys. Rev. A, Gen. Phys , vol.33 , Issue.2 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 32
    • 34547372968 scopus 로고    scopus 로고
    • Maximally informative feature and sensor selection in pattern recognition using local and global independent component analysis
    • Aug
    • T. Lan and D. Erdogmus, "Maximally informative feature and sensor selection in pattern recognition using local and global independent component analysis," J. VLSI Signal Process. Syst., vol. 48, no. 1-2, pp. 39-52, Aug. 2007.
    • (2007) J. VLSI Signal Process. Syst , vol.48 , Issue.1-2 , pp. 39-52
    • Lan, T.1    Erdogmus, D.2
  • 33
    • 0002260546 scopus 로고
    • A test for normality based on sample entropy
    • O. Vasicek, "A test for normality based on sample entropy," J. Roy. Statist. Soc. B, vol. 31, pp. 632-636, 1976.
    • (1976) J. Roy. Statist. Soc. B , vol.31 , pp. 632-636
    • Vasicek, O.1
  • 34
    • 0036933407 scopus 로고    scopus 로고
    • Input feature selection by mutual information based on Parzen window
    • Dec
    • N. Kwak and C.-H. Choi, "Input feature selection by mutual information based on Parzen window," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 12, pp. 1667-1671, Dec. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , Issue.12 , pp. 1667-1671
    • Kwak, N.1    Choi, C.-H.2
  • 35
    • 10944222015 scopus 로고    scopus 로고
    • AMIFS: Adaptive feature selection by using mutual information
    • Budapest, Hungary, Jul
    • M. Tesmer and P. A. Estévez, "AMIFS: Adaptive feature selection by using mutual information," in Proc. IEEE Int. Joint Conf. Neural Netw., Budapest, Hungary, Jul. 2004, pp. 303-308.
    • (2004) Proc. IEEE Int. Joint Conf. Neural Netw , pp. 303-308
    • Tesmer, M.1    Estévez, P.A.2
  • 36
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan, "Induction of decision trees," Mach. Learn., vol. 1, pp. 81-106, 1986.
    • (1986) Mach. Learn , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 38
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • W. Siedlecki and J. Sklansky, "A note on genetic algorithms for large-scale feature selection," Pattern Recognit. Lett., vol. 10, no. 5, pp. 335-347, 1989.
    • (1989) Pattern Recognit. Lett , vol.10 , Issue.5 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 39
    • 0030631963 scopus 로고    scopus 로고
    • Partial BFGS update and efficient step-length calculation for three-layer neural networks
    • K. Saito and R. Nakano, "Partial BFGS update and efficient step-length calculation for three-layer neural networks," Neural Comput., vol. 9, no. 1, pp. 123-141, 1997.
    • (1997) Neural Comput , vol.9 , Issue.1 , pp. 123-141
    • Saito, K.1    Nakano, R.2
  • 43
    • 0021455631 scopus 로고
    • An identification algorithm in fuzzy relational systems
    • W. Pedrycz, "An identification algorithm in fuzzy relational systems," Fuzzy Sets Syst., vol. 13, pp. 153-167, 1984.
    • (1984) Fuzzy Sets Syst , vol.13 , pp. 153-167
    • Pedrycz, W.1
  • 44
    • 0027544110 scopus 로고
    • A fuzzy-logic-based approach to qualitative modeling
    • Feb
    • M. Sugeno and T. Yasukawa, "A fuzzy-logic-based approach to qualitative modeling," IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 7-31, Feb. 1993.
    • (1993) IEEE Trans. Fuzzy Syst , vol.1 , Issue.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 45
    • 0002907696 scopus 로고
    • The evaluation of fuzzy models derived from experimental data
    • R. Tong, "The evaluation of fuzzy models derived from experimental data," Fuzzy Sets Syst., vol. 4, pp. 1-12, 1980.
    • (1980) Fuzzy Sets Syst , vol.4 , pp. 1-12
    • Tong, R.1
  • 46
    • 0023209327 scopus 로고
    • Fuzzy model identification and self-learning for dynamic systems
    • Jul./Aug
    • C. Xu and Z. Yong, "Fuzzy model identification and self-learning for dynamic systems," IEEE Trans. Syst. Man Cybern., vol. SMC-17, no. 4, pp. 683-689, Jul./Aug. 1987.
    • (1987) IEEE Trans. Syst. Man Cybern , vol.SMC-17 , Issue.4 , pp. 683-689
    • Xu, C.1    Yong, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.