메뉴 건너뛰기




Volumn 5, Issue 3, 2011, Pages 606-617

A survey of active learning algorithms for supervised remote sensing image classification

Author keywords

active learning; hyperspectral; image classification; support vector machine (SVM); training set definition; very high resolution (VHR)

Indexed keywords

ACTIVE LEARNING; ACTIVE-LEARNING ALGORITHM; DATA SETS; FINANCIAL RESOURCES; HYPERSPECTRAL; HYPERSPECTRAL IMAGE CLASSIFICATION; MODEL PERFORMANCE; REMOTE SENSING IMAGE CLASSIFICATION; TRAINING SET DEFINITION; TRAINING SETS; VERY HIGH RESOLUTION; VERY HIGH SPATIAL RESOLUTIONS;

EID: 79957456032     PISSN: 19324553     EISSN: None     Source Type: Journal    
DOI: 10.1109/JSTSP.2011.2139193     Document Type: Article
Times cited : (510)

References (56)
  • 6
    • 33748331356 scopus 로고    scopus 로고
    • A multilevel context-based system for classification of very high spatial resolution images
    • DOI 10.1109/TGRS.2006.875360, 1677767
    • L. Bruzzone and L. Carlin, "A multilevel context-based system for classification of very high resolution images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 9, pp. 2587-2600, Sep. 2006. (Pubitemid 44321552)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.9 , pp. 2587-2600
    • Bruzzone, L.1    Carlin, L.2
  • 7
    • 64549105242 scopus 로고    scopus 로고
    • A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification
    • F. Pacifici, M. Chini, and W. J. Emery, "A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification," Remote Sens. Environ., vol. 113, no. 6, pp. 1276-1292, 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.6 , pp. 1276-1292
    • Pacifici, F.1    Chini, M.2    Emery, W.J.3
  • 8
    • 70350655559 scopus 로고    scopus 로고
    • Classification of very high spatial resolution imagery using mathematical morphology and support vector machines
    • Nov.
    • D. Tuia, F. Pacifici, M. Kanevski, and W. J. Emery, "Classification of very high spatial resolution imagery using mathematical morphology and support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 11, pp. 3866-3879, Nov. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.11 , pp. 3866-3879
    • Tuia, D.1    Pacifici, F.2    Kanevski, M.3    Emery, W.J.4
  • 9
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 11
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov.
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 12
    • 4544272407 scopus 로고    scopus 로고
    • Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification
    • DOI 10.1016/j.rse.2004.06.017, PII S003442570400207X
    • G. M. Foody and A. Mathur, "Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification," Remote Sens. Env., vol. 93, pp. 107-117, 2004. (Pubitemid 39234714)
    • (2004) Remote Sensing of Environment , vol.93 , Issue.1-2 , pp. 107-117
    • Foody, G.M.1    Mathur, A.2
  • 13
    • 33747610735 scopus 로고    scopus 로고
    • Training set size requirements for the classification of a specific class
    • DOI 10.1016/j.rse.2006.03.004, PII S0034425706001234
    • G. M. Foody, A. Mathur, C. Sanchez-Hernandez, and D. S. Boyd, "Training set size requirements for the classification of a specific class," Remote Sens. Env., vol. 104, pp. 1-14, 2006. (Pubitemid 44262339)
    • (2006) Remote Sensing of Environment , vol.104 , Issue.1 , pp. 1-14
    • Foody, G.M.1    Mathur, A.2    Sanchez-Hernandez, C.3    Boyd, D.S.4
  • 14
    • 33745756516 scopus 로고    scopus 로고
    • The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM
    • DOI 10.1016/j.rse.2006.04.001, PII S0034425706001350
    • G. M. Foody and A. Mathur, "The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM," Remote Sens. Environ., vol. 103, no. 2, pp. 179-189, 2006. (Pubitemid 44015803)
    • (2006) Remote Sensing of Environment , vol.103 , Issue.2 , pp. 179-189
    • Foody, G.M.1    Mathur, A.2
  • 15
    • 0000695404 scopus 로고
    • Information based objective functions for active data selection
    • D. J. C. MacKay, "Information based objective functions for active data selection," Neural Comput., vol. 4, no. 4, pp. 590-604, 1992.
    • (1992) Neural Comput. , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.J.C.1
  • 16
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • D. Cohn, L. Atlas, and R. Ladner, "Improving generalization with active learning," Mach. Learn., vol. 15, no. 2, pp. 201-221, 1994.
    • (1994) Mach. Learn. , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 18
    • 85124125604 scopus 로고
    • Heterogeneous uncertainty sampling for supervised learning
    • D. D. Lewis and J. Catlett, "Heterogeneous uncertainty sampling for supervised learning," in Proc. Int. Conf. Mach. Learn. (ICML), 1994, pp. 148-156.
    • (1994) Proc. Int. Conf. Mach. Learn. (ICML) , pp. 148-156
    • Lewis, D.D.1    Catlett, J.2
  • 20
    • 68949137209 scopus 로고    scopus 로고
    • Univ. of Wisconsin- Madison, Comput. Sci. Tech. Rep. 1648
    • B. Settles, "Active learning literature survey," Univ. of Wisconsin- Madison, Comput. Sci. Tech. Rep. 1648, 2010.
    • (2010) Active Learning Literature Survey
    • Settles, B.1
  • 24
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, "Selective sampling using the query by committee algorithm," Mach. Learn., vol. 28, pp. 133-168, 1997. (Pubitemid 127506338)
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 27
    • 78649738931 scopus 로고    scopus 로고
    • Unbiased query-bybagging active learning for VHR image classification
    • Toulouse, France
    • L. Copa, D. Tuia, M. Volpi, and M. Kanevski, "Unbiased query-bybagging active learning for VHR image classification," in Proc. SPIE Remote Sens. Conf., Toulouse, France, 2010.
    • (2010) Proc. SPIE Remote Sens. Conf.
    • Copa, L.1    Tuia, D.2    Volpi, M.3    Kanevski, M.4
  • 28
    • 78650907095 scopus 로고    scopus 로고
    • Multi-view adaptive disagreement based active learning for hyperspectral image classification
    • Honolulu, HI
    • W. Di and M. Crawford, "Multi-view adaptive disagreement based active learning for hyperspectral image classification," in Proc. IEEE Int. Geosci. Remote Sens. Symp., IGARSS, Honolulu, HI, 2010, pp. 1374-1377.
    • (2010) Proc. IEEE Int. Geosci. Remote Sens. Symp., IGARSS , pp. 1374-1377
    • Di, W.1    Crawford, M.2
  • 29
    • 0003495934 scopus 로고
    • Univ. of California at Berkeley, Tech. Rep. 421
    • L. Breiman, "Bagging predictors," Univ. of California at Berkeley, Tech. Rep. 421, 1994.
    • (1994) Bagging Predictors
    • Breiman, L.1
  • 31
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller, "Support vector machine active learning with applications to text classification," J. Mach. Learn. Res., vol. 2, pp. 45-66, 2001.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 33
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vector machines
    • G. Schohn and D. Cohn, "Less is more: Active learning with support vector machines," in Proc. 17th ICML, 2000, pp. 839-846.
    • (2000) Proc. 17th ICML , pp. 839-846
    • Schohn, G.1    Cohn, D.2
  • 34
    • 9444283161 scopus 로고    scopus 로고
    • Active learning support vector machines for optimal sample selection in classification
    • S. Zomer, M. N. Sànchez, R. G. Brereton, and J. L. Pérez-Pavón, "Active learning support vector machines for optimal sample selection in classification," J. Chemometrics, vol. 18, no. 6, pp. 294-305, 2004.
    • (2004) J. Chemometrics , vol.18 , Issue.6 , pp. 294-305
    • Zomer, S.1    Sànchez, M.N.2    Brereton, R.G.3    Pérez-Pavón, J.L.4
  • 35
    • 33750506073 scopus 로고    scopus 로고
    • An improved incremental training algorithm for support vector machines using active query
    • DOI 10.1016/j.patcog.2006.06.016, PII S0031320306002962
    • S. Cheng and F. Y. Shih, "An improved incremental training algorithm for support vector machines using active query," Patter Recogn., vol. 40, pp. 964-971, 2007. (Pubitemid 44667752)
    • (2007) Pattern Recognition , vol.40 , Issue.3 , pp. 964-971
    • Cheng, S.1    Shih, F.Y.2
  • 36
    • 2942558578 scopus 로고    scopus 로고
    • Segmentation of multispectral remote sensing images using active support vector machines
    • DOI 10.1016/j.patrec.2004.03.004, PII S0167865504000704
    • P. Mitra, B. Uma Shankar, and S. K. Pal, "Segmentation of multispectral remote sensing images using active support vector machines," Pattern Recogn. Lett., vol. 25, no. 9, pp. 1067-1074, 2004. (Pubitemid 38763570)
    • (2004) Pattern Recognition Letters , vol.25 , Issue.9 , pp. 1067-1074
    • Mitra, P.1    Uma Shankar, B.2    Pal, S.K.3
  • 37
    • 77950958259 scopus 로고    scopus 로고
    • Active learning for classification of remote sensing images
    • Cape Town, South Africa
    • L. Bruzzone and C. Persello, "Active learning for classification of remote sensing images," in Proc. IEEE Int. Geosci. Remote Sens. Symp., IGARSS, Cape Town, South Africa, 2009, pp. 693-696.
    • (2009) Proc. IEEE Int. Geosci. Remote Sens. Symp., IGARSS , pp. 693-696
    • Bruzzone, L.1    Persello, C.2
  • 38
    • 33947617297 scopus 로고    scopus 로고
    • Interactive remote-sensing image retrieval using active relevance feedback
    • DOI 10.1109/TGRS.2007.892007
    • M. Ferecatu and N. Boujemaa, "Interactive remote sensing image retrieval using active relevance feedback," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 818-826, Apr. 2007. (Pubitemid 46495617)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.4 , pp. 818-826
    • Ferecatu, M.1    Boujemaa, N.2
  • 39
    • 79952041537 scopus 로고    scopus 로고
    • Batch mode active learning methods for the interactive classification of remote sensing images
    • B. Demir, C. Persello, and L. Bruzzone, "Batch mode active learning methods for the interactive classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 1014-1031.
    • IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.3 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 40
    • 40149096977 scopus 로고    scopus 로고
    • A stopping criterion for active learning
    • DOI 10.1016/j.csl.2007.12.001, PII S088523080700068X
    • A. Vlachos, "A stopping criterion for active learning," Comput. Speech Lang., vol. 22, no. 3, pp. 295-312, Mar. 2008. (Pubitemid 351329454)
    • (2008) Computer Speech and Language , vol.22 , Issue.3 , pp. 295-312
    • Vlachos, A.1
  • 41
    • 79955522957 scopus 로고    scopus 로고
    • Support vector machine active learning through significance space construction
    • May
    • E. Pasolli, F. Melgani, and Y. Bazi, "Support vector machine active learning through significance space construction," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 431-435, May 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.3 , pp. 431-435
    • Pasolli, E.1    Melgani, F.2    Bazi, Y.3
  • 42
    • 1942517333 scopus 로고    scopus 로고
    • Incorporating diversity in active learning with support vector machines
    • K. Brinker, "Incorporating diversity in active learning with support vector machines," in Proc. 20th ICML, 2003.
    • (2003) Proc. 20th ICML
    • Brinker, K.1
  • 43
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • DOI 10.1109/TNN.2002.1000150, PII S1045922702050038
    • M. Girolami, "Mercer kernel-based clustering in feature space," IEEE Trans. Neural Net., vol. 13, no. 3, pp. 780-784, May 2002. (Pubitemid 34669666)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 780-784
    • Girolami, M.1
  • 46
    • 79957467050 scopus 로고    scopus 로고
    • Cluster-based active learning for remote sensing image classification
    • submitted for publication
    • M. Volpi, D. Tuia, and M. Kanevski, "Cluster-based active learning for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., submitted for publication.
    • IEEE Trans. Geosci. Remote Sens.
    • Volpi, M.1    Tuia, D.2    Kanevski, M.3
  • 47
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • N. Roy and A. McCallum, "Toward optimal active learning through sampling estimation of error reduction," in Proc. Int. Conf. Mach. Learn. (ICML), pp. 441-448.
    • Proc. Int. Conf. Mach. Learn. (ICML) , pp. 441-448
    • Roy, N.1    McCallum, A.2
  • 48
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • DOI 10.1109/TGRS.2007.910220, 4469868
    • S. Rajan, J. Ghosh, and M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008. (Pubitemid 351459470)
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 49
    • 67649763976 scopus 로고    scopus 로고
    • An efficient active learning algorithm with knowledge transfer for hyperspectral data analysis
    • G. Jun and J. Ghosh, "An efficient active learning algorithm with knowledge transfer for hyperspectral data analysis," in IEEE Geosci. Remote Sens. Symp. IGARSS, 2008, pp. 52-55.
    • (2008) IEEE Geosci. Remote Sens. Symp. IGARSS , pp. 52-55
    • Jun, G.1    Ghosh, J.2
  • 50
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • Cambridge, MA: MIT Press
    • J. Platt, "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," in Advances in Large Margin Classifiers. Cambridge, MA: MIT Press, 1999.
    • (1999) Advances in Large Margin Classifiers
    • Platt, J.1
  • 53
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • DOI 10.1109/36.975001, PII S0196289201108776
    • Q. Jackson and D. Landgrebe, "An adaptive classifier design for high-dimensional data analysis with a limited training data set," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 12, pp. 2664-2679, Dec. 2001. (Pubitemid 34091845)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.12 , pp. 2664-2679
    • Jackson, Q.1    Landgrebe, D.A.2
  • 55
    • 78049282844 scopus 로고    scopus 로고
    • Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Nov.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085-4098, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 56
    • 79957460116 scopus 로고    scopus 로고
    • Using active learning to adapt remote sensing image classifiers
    • to be published
    • D. Tuia, E. Pasolli, and W. J. Emery, "Using active learning to adapt remote sensing image classifiers," Remote Sens. Environ., 2011, to be published.
    • (2011) Remote Sens. Environ.
    • Tuia, D.1    Pasolli, E.2    Emery, W.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.