-
1
-
-
0003684449
-
-
ser. Statistics, 2nd ed. New York: Springer
-
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, ser. Statistics, 2nd ed. New York: Springer, 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
2
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," in Proc. Annu. Workshop Comput. Learn. Theroy, 1992, pp. 144-152.
-
(1992)
Proc. Annu. Workshop Comput. Learn. Theroy
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
6
-
-
33748331356
-
A multilevel context-based system for classification of very high spatial resolution images
-
DOI 10.1109/TGRS.2006.875360, 1677767
-
L. Bruzzone and L. Carlin, "A multilevel context-based system for classification of very high resolution images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 9, pp. 2587-2600, Sep. 2006. (Pubitemid 44321552)
-
(2006)
IEEE Transactions on Geoscience and Remote Sensing
, vol.44
, Issue.9
, pp. 2587-2600
-
-
Bruzzone, L.1
Carlin, L.2
-
7
-
-
64549105242
-
A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification
-
F. Pacifici, M. Chini, and W. J. Emery, "A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification," Remote Sens. Environ., vol. 113, no. 6, pp. 1276-1292, 2009.
-
(2009)
Remote Sens. Environ.
, vol.113
, Issue.6
, pp. 1276-1292
-
-
Pacifici, F.1
Chini, M.2
Emery, W.J.3
-
8
-
-
70350655559
-
Classification of very high spatial resolution imagery using mathematical morphology and support vector machines
-
Nov.
-
D. Tuia, F. Pacifici, M. Kanevski, and W. J. Emery, "Classification of very high spatial resolution imagery using mathematical morphology and support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 11, pp. 3866-3879, Nov. 2009.
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, vol.47
, Issue.11
, pp. 3866-3879
-
-
Tuia, D.1
Pacifici, F.2
Kanevski, M.3
Emery, W.J.4
-
9
-
-
4344614511
-
Classification of hyperspectral remote sensing images with support vector machines
-
Aug.
-
F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
10
-
-
3843096026
-
Robust support vector method for hyperspectral data classification and knowledge discovery
-
Jul.
-
G. Camps-Valls, L. Gómez-Chova, J. Calpe-Maravilla, J. D. Martín- Guerrero, E. Soria-Olivas, L. Alonso-Chordá, and J. Moreno, "Robust support vector method for hyperspectral data classification and knowledge discovery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 7, pp. 1530-1542, Jul. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.7
, pp. 1530-1542
-
-
Camps-Valls, G.1
Gómez-Chova, L.2
Calpe-Maravilla, J.3
Martín-Guerrero, J.D.4
Soria-Olivas, E.5
Alonso-Chordá, L.6
Moreno, J.7
-
11
-
-
56849127860
-
Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
-
Nov.
-
M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
-
(2008)
IEEE Trans. Geosci. Remote Sens.
, vol.46
, Issue.11
, pp. 3804-3814
-
-
Fauvel, M.1
Benediktsson, J.A.2
Chanussot, J.3
Sveinsson, J.R.4
-
12
-
-
4544272407
-
Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification
-
DOI 10.1016/j.rse.2004.06.017, PII S003442570400207X
-
G. M. Foody and A. Mathur, "Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification," Remote Sens. Env., vol. 93, pp. 107-117, 2004. (Pubitemid 39234714)
-
(2004)
Remote Sensing of Environment
, vol.93
, Issue.1-2
, pp. 107-117
-
-
Foody, G.M.1
Mathur, A.2
-
13
-
-
33747610735
-
Training set size requirements for the classification of a specific class
-
DOI 10.1016/j.rse.2006.03.004, PII S0034425706001234
-
G. M. Foody, A. Mathur, C. Sanchez-Hernandez, and D. S. Boyd, "Training set size requirements for the classification of a specific class," Remote Sens. Env., vol. 104, pp. 1-14, 2006. (Pubitemid 44262339)
-
(2006)
Remote Sensing of Environment
, vol.104
, Issue.1
, pp. 1-14
-
-
Foody, G.M.1
Mathur, A.2
Sanchez-Hernandez, C.3
Boyd, D.S.4
-
14
-
-
33745756516
-
The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM
-
DOI 10.1016/j.rse.2006.04.001, PII S0034425706001350
-
G. M. Foody and A. Mathur, "The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM," Remote Sens. Environ., vol. 103, no. 2, pp. 179-189, 2006. (Pubitemid 44015803)
-
(2006)
Remote Sensing of Environment
, vol.103
, Issue.2
, pp. 179-189
-
-
Foody, G.M.1
Mathur, A.2
-
15
-
-
0000695404
-
Information based objective functions for active data selection
-
D. J. C. MacKay, "Information based objective functions for active data selection," Neural Comput., vol. 4, no. 4, pp. 590-604, 1992.
-
(1992)
Neural Comput.
, vol.4
, Issue.4
, pp. 590-604
-
-
MacKay, D.J.C.1
-
16
-
-
0028424239
-
Improving generalization with active learning
-
D. Cohn, L. Atlas, and R. Ladner, "Improving generalization with active learning," Mach. Learn., vol. 15, no. 2, pp. 201-221, 1994.
-
(1994)
Mach. Learn.
, vol.15
, Issue.2
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
17
-
-
0029679131
-
Active learning with statistical models
-
D. Cohn, Z. Ghaharamani, and M. I. Jordan, "Active learning with statistical models," J. Artif. Intell. Res., vol. 4, pp. 129-145, 1996. (Pubitemid 126646151)
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 129-145
-
-
Cohn, D.A.1
Ghahramani, Z.2
Jordan, M.I.3
-
18
-
-
85124125604
-
Heterogeneous uncertainty sampling for supervised learning
-
D. D. Lewis and J. Catlett, "Heterogeneous uncertainty sampling for supervised learning," in Proc. Int. Conf. Mach. Learn. (ICML), 1994, pp. 148-156.
-
(1994)
Proc. Int. Conf. Mach. Learn. (ICML)
, pp. 148-156
-
-
Lewis, D.D.1
Catlett, J.2
-
20
-
-
68949137209
-
-
Univ. of Wisconsin- Madison, Comput. Sci. Tech. Rep. 1648
-
B. Settles, "Active learning literature survey," Univ. of Wisconsin- Madison, Comput. Sci. Tech. Rep. 1648, 2010.
-
(2010)
Active Learning Literature Survey
-
-
Settles, B.1
-
21
-
-
67651183638
-
Active learning methods for remote sensing image classification
-
Jul.
-
D. Tuia, F. Ratle, F. Pacifici, M. Kanevski, and W. J. Emery, "Active learning methods for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2218-2232, Jul. 2009.
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, vol.47
, Issue.7
, pp. 2218-2232
-
-
Tuia, D.1
Ratle, F.2
Pacifici, F.3
Kanevski, M.4
Emery, W.J.5
-
22
-
-
78650886233
-
Clusterbased active learning for compact image classification
-
Honolulu, HI
-
D. Tuia, J. Muñoz-Marí, M. Kanevski, and G. Camps-Valls, "Clusterbased active learning for compact image classification," in Proc. IEEE Int. Geosci. Remote Sens. Symp., IGARSS, Honolulu, HI, 2010, pp. 2827-2827.
-
(2010)
Proc. IEEE Int. Geosci. Remote Sens. Symp., IGARSS
, pp. 2827-2827
-
-
Tuia, D.1
Munoz-Marí, J.2
Kanevski, M.3
Camps-Valls, G.4
-
23
-
-
0026981853
-
Query by committee
-
H. S. Seung, M. Opper, and H. Sompolinsky, "Query by committee," in Proc. Annu. Workshop Comput. Learn. Theroy, 1992, pp. 287-294. (Pubitemid 23615454)
-
(1992)
Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory
, pp. 287-294
-
-
Seung, H.S.1
Opper, M.2
Sompolinsky, H.3
-
24
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, "Selective sampling using the query by committee algorithm," Mach. Learn., vol. 28, pp. 133-168, 1997. (Pubitemid 127506338)
-
(1997)
Machine Learning
, vol.28
, Issue.2-3
, pp. 133-168
-
-
Freund, Y.1
Seung, H.S.2
Shamir, E.3
Tishby, N.4
-
27
-
-
78649738931
-
Unbiased query-bybagging active learning for VHR image classification
-
Toulouse, France
-
L. Copa, D. Tuia, M. Volpi, and M. Kanevski, "Unbiased query-bybagging active learning for VHR image classification," in Proc. SPIE Remote Sens. Conf., Toulouse, France, 2010.
-
(2010)
Proc. SPIE Remote Sens. Conf.
-
-
Copa, L.1
Tuia, D.2
Volpi, M.3
Kanevski, M.4
-
28
-
-
78650907095
-
Multi-view adaptive disagreement based active learning for hyperspectral image classification
-
Honolulu, HI
-
W. Di and M. Crawford, "Multi-view adaptive disagreement based active learning for hyperspectral image classification," in Proc. IEEE Int. Geosci. Remote Sens. Symp., IGARSS, Honolulu, HI, 2010, pp. 1374-1377.
-
(2010)
Proc. IEEE Int. Geosci. Remote Sens. Symp., IGARSS
, pp. 1374-1377
-
-
Di, W.1
Crawford, M.2
-
29
-
-
0003495934
-
-
Univ. of California at Berkeley, Tech. Rep. 421
-
L. Breiman, "Bagging predictors," Univ. of California at Berkeley, Tech. Rep. 421, 1994.
-
(1994)
Bagging Predictors
-
-
Breiman, L.1
-
30
-
-
33750604335
-
Active learning with multiple views
-
I. Muslea, "Active learning with multiple views," J. Artif. Intell. Res., vol. 27, pp. 203-233, 2006. (Pubitemid 44681377)
-
(2006)
Journal of Artificial Intelligence Research
, vol.27
, pp. 203-233
-
-
Muslea, I.1
Minton, S.2
Knoblock, C.A.3
-
31
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
S. Tong and D. Koller, "Support vector machine active learning with applications to text classification," J. Mach. Learn. Res., vol. 2, pp. 45-66, 2001.
-
(2001)
J. Mach. Learn. Res.
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
32
-
-
0038399423
-
Query learning with large margin classifiers
-
C. Campbell, N. Cristianini, and A. J. Smola, "Query learning with large margin classifiers," in Proc. Int. Conf. Mach. Learn. (ICML), 2000, pp. 111-118.
-
(2000)
Proc. Int. Conf. Mach. Learn. (ICML)
, pp. 111-118
-
-
Campbell, C.1
Cristianini, N.2
Smola, A.J.3
-
33
-
-
0007696417
-
Less is more: Active learning with support vector machines
-
G. Schohn and D. Cohn, "Less is more: Active learning with support vector machines," in Proc. 17th ICML, 2000, pp. 839-846.
-
(2000)
Proc. 17th ICML
, pp. 839-846
-
-
Schohn, G.1
Cohn, D.2
-
34
-
-
9444283161
-
Active learning support vector machines for optimal sample selection in classification
-
S. Zomer, M. N. Sànchez, R. G. Brereton, and J. L. Pérez-Pavón, "Active learning support vector machines for optimal sample selection in classification," J. Chemometrics, vol. 18, no. 6, pp. 294-305, 2004.
-
(2004)
J. Chemometrics
, vol.18
, Issue.6
, pp. 294-305
-
-
Zomer, S.1
Sànchez, M.N.2
Brereton, R.G.3
Pérez-Pavón, J.L.4
-
35
-
-
33750506073
-
An improved incremental training algorithm for support vector machines using active query
-
DOI 10.1016/j.patcog.2006.06.016, PII S0031320306002962
-
S. Cheng and F. Y. Shih, "An improved incremental training algorithm for support vector machines using active query," Patter Recogn., vol. 40, pp. 964-971, 2007. (Pubitemid 44667752)
-
(2007)
Pattern Recognition
, vol.40
, Issue.3
, pp. 964-971
-
-
Cheng, S.1
Shih, F.Y.2
-
36
-
-
2942558578
-
Segmentation of multispectral remote sensing images using active support vector machines
-
DOI 10.1016/j.patrec.2004.03.004, PII S0167865504000704
-
P. Mitra, B. Uma Shankar, and S. K. Pal, "Segmentation of multispectral remote sensing images using active support vector machines," Pattern Recogn. Lett., vol. 25, no. 9, pp. 1067-1074, 2004. (Pubitemid 38763570)
-
(2004)
Pattern Recognition Letters
, vol.25
, Issue.9
, pp. 1067-1074
-
-
Mitra, P.1
Uma Shankar, B.2
Pal, S.K.3
-
37
-
-
77950958259
-
Active learning for classification of remote sensing images
-
Cape Town, South Africa
-
L. Bruzzone and C. Persello, "Active learning for classification of remote sensing images," in Proc. IEEE Int. Geosci. Remote Sens. Symp., IGARSS, Cape Town, South Africa, 2009, pp. 693-696.
-
(2009)
Proc. IEEE Int. Geosci. Remote Sens. Symp., IGARSS
, pp. 693-696
-
-
Bruzzone, L.1
Persello, C.2
-
38
-
-
33947617297
-
Interactive remote-sensing image retrieval using active relevance feedback
-
DOI 10.1109/TGRS.2007.892007
-
M. Ferecatu and N. Boujemaa, "Interactive remote sensing image retrieval using active relevance feedback," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 818-826, Apr. 2007. (Pubitemid 46495617)
-
(2007)
IEEE Transactions on Geoscience and Remote Sensing
, vol.45
, Issue.4
, pp. 818-826
-
-
Ferecatu, M.1
Boujemaa, N.2
-
39
-
-
79952041537
-
Batch mode active learning methods for the interactive classification of remote sensing images
-
B. Demir, C. Persello, and L. Bruzzone, "Batch mode active learning methods for the interactive classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 1014-1031.
-
IEEE Trans. Geosci. Remote Sens.
, vol.49
, Issue.3
, pp. 1014-1031
-
-
Demir, B.1
Persello, C.2
Bruzzone, L.3
-
40
-
-
40149096977
-
A stopping criterion for active learning
-
DOI 10.1016/j.csl.2007.12.001, PII S088523080700068X
-
A. Vlachos, "A stopping criterion for active learning," Comput. Speech Lang., vol. 22, no. 3, pp. 295-312, Mar. 2008. (Pubitemid 351329454)
-
(2008)
Computer Speech and Language
, vol.22
, Issue.3
, pp. 295-312
-
-
Vlachos, A.1
-
41
-
-
79955522957
-
Support vector machine active learning through significance space construction
-
May
-
E. Pasolli, F. Melgani, and Y. Bazi, "Support vector machine active learning through significance space construction," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 431-435, May 2011.
-
(2011)
IEEE Geosci. Remote Sens. Lett.
, vol.8
, Issue.3
, pp. 431-435
-
-
Pasolli, E.1
Melgani, F.2
Bazi, Y.3
-
42
-
-
1942517333
-
Incorporating diversity in active learning with support vector machines
-
K. Brinker, "Incorporating diversity in active learning with support vector machines," in Proc. 20th ICML, 2003.
-
(2003)
Proc. 20th ICML
-
-
Brinker, K.1
-
43
-
-
0036565280
-
Mercer kernel-based clustering in feature space
-
DOI 10.1109/TNN.2002.1000150, PII S1045922702050038
-
M. Girolami, "Mercer kernel-based clustering in feature space," IEEE Trans. Neural Net., vol. 13, no. 3, pp. 780-784, May 2002. (Pubitemid 34669666)
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.3
, pp. 780-784
-
-
Girolami, M.1
-
44
-
-
31844442747
-
-
Dept. of Comput. Sci., Univ. of Texas, Austin, Tech. Rep. UTCS Tech. Rep. TR-04-25
-
I. Dhillon, Y. Guan, and B. Kulis, "A unified view of kernel k-means, spectral clustering and graph cuts," Dept. of Comput. Sci., Univ. of Texas, Austin, Tech. Rep. UTCS Tech. Rep. TR-04-25, 2005.
-
(2005)
A Unified View of Kernel K-Means, Spectral Clustering and Graph Cuts
-
-
Dhillon, I.1
Guan, Y.2
Kulis, B.3
-
46
-
-
79957467050
-
Cluster-based active learning for remote sensing image classification
-
submitted for publication
-
M. Volpi, D. Tuia, and M. Kanevski, "Cluster-based active learning for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., submitted for publication.
-
IEEE Trans. Geosci. Remote Sens.
-
-
Volpi, M.1
Tuia, D.2
Kanevski, M.3
-
47
-
-
0442319140
-
Toward optimal active learning through sampling estimation of error reduction
-
N. Roy and A. McCallum, "Toward optimal active learning through sampling estimation of error reduction," in Proc. Int. Conf. Mach. Learn. (ICML), pp. 441-448.
-
Proc. Int. Conf. Mach. Learn. (ICML)
, pp. 441-448
-
-
Roy, N.1
McCallum, A.2
-
48
-
-
41549147912
-
An active learning approach to hyperspectral data classification
-
DOI 10.1109/TGRS.2007.910220, 4469868
-
S. Rajan, J. Ghosh, and M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008. (Pubitemid 351459470)
-
(2008)
IEEE Transactions on Geoscience and Remote Sensing
, vol.46
, Issue.4
, pp. 1231-1242
-
-
Rajan, S.1
Ghosh, J.2
Crawford, M.M.3
-
49
-
-
67649763976
-
An efficient active learning algorithm with knowledge transfer for hyperspectral data analysis
-
G. Jun and J. Ghosh, "An efficient active learning algorithm with knowledge transfer for hyperspectral data analysis," in IEEE Geosci. Remote Sens. Symp. IGARSS, 2008, pp. 52-55.
-
(2008)
IEEE Geosci. Remote Sens. Symp. IGARSS
, pp. 52-55
-
-
Jun, G.1
Ghosh, J.2
-
50
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
Cambridge, MA: MIT Press
-
J. Platt, "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," in Advances in Large Margin Classifiers. Cambridge, MA: MIT Press, 1999.
-
(1999)
Advances in Large Margin Classifiers
-
-
Platt, J.1
-
51
-
-
21844432939
-
Active learning to recognize multiple types of plankton
-
T. Luo, K. Kramer, D. B. Golgof, L. O. Hall, S. Samson, A. Remsen, and T. Hopkins, "Active learning to recognize multiple types of plankton," J. Mach. Learn. Res., vol. 6, pp. 589-613, 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 589-613
-
-
Luo, T.1
Kramer, K.2
Golgof, D.B.3
Hall, L.O.4
Samson, S.5
Remsen, A.6
Hopkins, T.7
-
52
-
-
70350646904
-
Decision fusion for the classification of hyperspectral data: Outcome of the 2008 GRS-S data fusion contest
-
Nov.
-
G. Licciardi, F. Pacifici, D. Tuia, S. Prasad, T. West, F. Giacco, J. Inglada, E. Christophe, J. Chanussot, and P. Gamba, "Decision fusion for the classification of hyperspectral data: Outcome of the 2008 GRS-S data fusion contest," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 11, pp. 3857-3865, Nov. 2009.
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, vol.47
, Issue.11
, pp. 3857-3865
-
-
Licciardi, G.1
Pacifici, F.2
Tuia, D.3
Prasad, S.4
West, T.5
Giacco, F.6
Inglada, J.7
Christophe, E.8
Chanussot, J.9
Gamba, P.10
-
53
-
-
0035694667
-
An adaptive classifier design for high-dimensional data analysis with a limited training data set
-
DOI 10.1109/36.975001, PII S0196289201108776
-
Q. Jackson and D. Landgrebe, "An adaptive classifier design for high-dimensional data analysis with a limited training data set," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 12, pp. 2664-2679, Dec. 2001. (Pubitemid 34091845)
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.12
, pp. 2664-2679
-
-
Jackson, Q.1
Landgrebe, D.A.2
-
55
-
-
78049282844
-
Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning
-
Nov.
-
J. Li, J. M. Bioucas-Dias, and A. Plaza, "Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085-4098, Nov. 2010.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.11
, pp. 4085-4098
-
-
Li, J.1
Bioucas-Dias, J.M.2
Plaza, A.3
-
56
-
-
79957460116
-
Using active learning to adapt remote sensing image classifiers
-
to be published
-
D. Tuia, E. Pasolli, and W. J. Emery, "Using active learning to adapt remote sensing image classifiers," Remote Sens. Environ., 2011, to be published.
-
(2011)
Remote Sens. Environ.
-
-
Tuia, D.1
Pasolli, E.2
Emery, W.J.3
|