-
1
-
-
78651322531
-
Specific metabolic rates of major organs and tissues across adulthood: Evaluation by mechanistic model of resting energy expenditure
-
Wang, Z. M. et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr. 92, 1369-1377 (2010).
-
(2010)
Am. J. Clin. Nutr.
, vol.92
, pp. 1369-1377
-
-
Wang, Z.M.1
-
2
-
-
46349103594
-
A mitochondrial protein compendium elucidates complex I disease biology
-
Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112-123 (2008).
-
(2008)
Cell
, vol.134
, pp. 112-123
-
-
Pagliarini, D.J.1
-
3
-
-
33748883938
-
Renal oxygen delivery: Matching delivery to metabolic demand
-
O'Connor, P. M. Renal oxygen delivery: matching delivery to metabolic demand. Clin. Exp. Pharmacol. Physiol. 33, 961-967 (2006).
-
(2006)
Clin. Exp. Pharmacol. Physiol.
, vol.33
, pp. 961-967
-
-
O'Connor, P.M.1
-
4
-
-
0022559183
-
ATP and the regulation of renal cell function
-
Soltoff, S. P. ATP and the regulation of renal cell function. Annu. Rev. Physiol. 48, 9-31 (1986).
-
(1986)
Annu. Rev. Physiol.
, vol.48
, pp. 9-31
-
-
Soltoff, S.P.1
-
5
-
-
0041850110
-
Glomerular filtration: An overview
-
quiz 281-282
-
Holechek, M. J. et al. Glomerular filtration: an overview. Nephrol. Nurs. J. 30, 285-290, quiz 281-282 (2003).
-
(2003)
Nephrol. Nurs. J.
, vol.30
, pp. 285-290
-
-
Holechek, M.J.1
-
6
-
-
33746620461
-
(De)constructing mitochondria: What for?
-
Dimmer, K. S. & Scorrano, L. (De)constructing mitochondria: what for? Physiol. (Bethesda) 21, 233-241 (2006).
-
(2006)
Physiol. (Bethesda)
, vol.21
, pp. 233-241
-
-
Dimmer, K.S.1
Scorrano, L.2
-
8
-
-
0033697284
-
Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury
-
Weinberg, J. M. et al. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury. Am. J. Physiol. Renal Physiol. 279, F927-F943 (2000).
-
(2000)
Am. J. Physiol. Renal Physiol.
, vol.279
, pp. F927-F943
-
-
Weinberg, J.M.1
-
9
-
-
84923777947
-
The glomerulus: The sphere of influence
-
Pollak, M. R., Quaggin, S. E., Hoenig, M. P. & Dworkin, L. D. The glomerulus: the sphere of influence. Clin. J. Am. Soc. Nephrol. 9, 1461-1469 (2014).
-
(2014)
Clin. J. Am. Soc. Nephrol.
, vol.9
, pp. 1461-1469
-
-
Pollak, M.R.1
Quaggin, S.E.2
Hoenig, M.P.3
Dworkin, L.D.4
-
10
-
-
85019568033
-
Modeling glucose metabolism and lactate production in the kidney
-
Chen, Y., Fry, B. C. & Layton, A. T. Modeling glucose metabolism and lactate production in the kidney. Math. Biosci. 289, 116-129 (2017).
-
(2017)
Math. Biosci.
, vol.289
, pp. 116-129
-
-
Chen, Y.1
Fry, B.C.2
Layton, A.T.3
-
11
-
-
76249133903
-
Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: Therapeutic implications
-
Gerich, J. E. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med. 27, 136-142 (2010).
-
(2010)
Diabet Med.
, vol.27
, pp. 136-142
-
-
Gerich, J.E.1
-
12
-
-
0033825826
-
Inner medullary lactate production and accumulation: A vasa recta model
-
Thomas, S. R. Inner medullary lactate production and accumulation: a vasa recta model. Am. J. Physiol. Renal Physiol. 279, F468-F481 (2000).
-
(2000)
Am. J. Physiol. Renal Physiol.
, vol.279
, pp. F468-F481
-
-
Thomas, S.R.1
-
13
-
-
0022627453
-
Glucose metabolism in renal tubular function
-
Ross, B. D., Espinal, J. & Silva, P. Glucose metabolism in renal tubular function. Kidney Int. 29, 54-67 (1986).
-
(1986)
Kidney Int.
, vol.29
, pp. 54-67
-
-
Ross, B.D.1
Espinal, J.2
Silva, P.3
-
14
-
-
84886581971
-
Misconceptions about aerobic and anaerobic energy expenditure
-
Scott, C. Misconceptions about aerobic and anaerobic energy expenditure. J. Int. Soc. Sports Nutr. 2, 32 (2005).
-
(2005)
J. Int. Soc. Sports Nutr.
, vol.2
, pp. 32
-
-
Scott, C.1
-
16
-
-
0021619876
-
Enzyme distribution along the nephron
-
Guder, W. G. & Ross, B. D. Enzyme distribution along the nephron. Kidney Int. 26, 101-111 (1984).
-
(1984)
Kidney Int.
, vol.26
, pp. 101-111
-
-
Guder, W.G.1
Ross, B.D.2
-
17
-
-
0015537893
-
Renal energy metabolism and sodium reabsorption
-
Lewy, P. R., Quintanilla, A., Levin, N. W. & Kessler, R. H. Renal energy metabolism and sodium reabsorption. Annu. Rev. Med. 24, 365-384 (1973).
-
(1973)
Annu. Rev. Med.
, vol.24
, pp. 365-384
-
-
Lewy, P.R.1
Quintanilla, A.2
Levin, N.W.3
Kessler, R.H.4
-
18
-
-
84966528862
-
Alteration of fatty acid oxidation in tubular epithelial cells: From acute kidney injury to renal fibrogenesis
-
Simon, N. & Hertig, A. Alteration of fatty acid oxidation in tubular epithelial cells: from acute kidney injury to renal fibrogenesis. Front. Med. (Lausanne) 2, 52 (2015).
-
(2015)
Front. Med. (Lausanne)
, vol.2
, pp. 52
-
-
Simon, N.1
Hertig, A.2
-
19
-
-
57349187680
-
CD36 is one of important receptors promoting renal tubular injury by advanced oxidation protein products
-
Iwao, Y. et al. CD36 is one of important receptors promoting renal tubular injury by advanced oxidation protein products. Am. J. Physiol. Renal Physiol. 295, F1871-F1880 (2008).
-
(2008)
Am. J. Physiol. Renal Physiol.
, vol.295
, pp. F1871-F1880
-
-
Iwao, Y.1
-
21
-
-
84969544773
-
Mitochondria-power players in kidney function?
-
Forbes, J. M. Mitochondria-power players in kidney function? Trends Endocrinol. Metab. 27, 441-442 (2016).
-
(2016)
Trends Endocrinol. Metab.
, vol.27
, pp. 441-442
-
-
Forbes, J.M.1
-
22
-
-
77954086433
-
Renal lipid metabolism and lipotoxicity
-
Bobulescu, I. A. Renal lipid metabolism and lipotoxicity. Curr. Opin. Nephrol. Hypertens. 19, 393-402 (2010).
-
(2010)
Curr. Opin. Nephrol. Hypertens.
, vol.19
, pp. 393-402
-
-
Bobulescu, I.A.1
-
23
-
-
33750580307
-
Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes
-
Proctor, G. et al. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes 55, 2502-2509 (2006).
-
(2006)
Diabetes
, vol.55
, pp. 2502-2509
-
-
Proctor, G.1
-
24
-
-
9644254466
-
Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-γ
-
Arici, M., Chana, R., Lewington, A., Brown, J. & Brunskill, N. J. Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-γ. J. Am. Soc. Nephrol. 14, 17-27 (2003).
-
(2003)
J. Am. Soc. Nephrol.
, vol.14
, pp. 17-27
-
-
Arici, M.1
Chana, R.2
Lewington, A.3
Brown, J.4
Brunskill, N.J.5
-
25
-
-
84900560375
-
Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis
-
Ruggiero, C. et al. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis. Am. J. Physiol. Renal Physiol. 306, F896-F906 (2014).
-
(2014)
Am. J. Physiol. Renal Physiol.
, vol.306
, pp. F896-F906
-
-
Ruggiero, C.1
-
26
-
-
0027765905
-
Invited review free radicals in disease processes: A compilation of cause and consequence
-
Gutteridge, J. M. C. & Halliwell, B. Invited review free radicals in disease processes: a compilation of cause and consequence. Free Radic. Res. Commun. 19, 141-158 (1993).
-
(1993)
Free Radic. Res. Commun.
, vol.19
, pp. 141-158
-
-
Gutteridge, J.M.C.1
Halliwell, B.2
-
27
-
-
84857116578
-
Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
-
Ray, P. D., Huang, B. W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981-990 (2012).
-
(2012)
Cell. Signal.
, vol.24
, pp. 981-990
-
-
Ray, P.D.1
Huang, B.W.2
Tsuji, Y.3
-
28
-
-
84901316606
-
Cellular mechanisms and physiological consequences of redox-dependent signalling
-
Holmstrom, K. M. & Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell. Biol. 15, 411-421 (2014).
-
(2014)
Nat. Rev. Mol. Cell. Biol.
, vol.15
, pp. 411-421
-
-
Holmstrom, K.M.1
Finkel, T.2
-
29
-
-
84882236393
-
Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic
-
Ruiz, S. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic. Kidney Int. 83, 1029-1041 (2013).
-
(2013)
Kidney Int.
, vol.83
, pp. 1029-1041
-
-
Ruiz, S.1
-
30
-
-
0015694842
-
Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization
-
Weisiger, R. A. & Fridovich, I. Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J. Biol. Chem. 248, 4793-4796 (1973).
-
(1973)
J. Biol. Chem.
, vol.248
, pp. 4793-4796
-
-
Weisiger, R.A.1
Fridovich, I.2
-
31
-
-
84890074607
-
Expression of oxidative stress and antioxidant defense genes in the kidney of inbred mice after intestinal ischemia and reperfusion
-
Teruya, R. et al. Expression of oxidative stress and antioxidant defense genes in the kidney of inbred mice after intestinal ischemia and reperfusion. Acta Cir. Bras. 28, 848-855 (2013).
-
(2013)
Acta Cir. Bras.
, vol.28
, pp. 848-855
-
-
Teruya, R.1
-
32
-
-
84904727267
-
Glutathione and mitochondria
-
Ribas, V., Garcva-Ruiz, C. & Fernandez-Checa, J. C. Glutathione and mitochondria. Front. Pharmacol. 5, 151 (2014).
-
(2014)
Front. Pharmacol.
, vol.5
, pp. 151
-
-
Ribas, V.1
Garcva-Ruiz, C.2
Fernandez-Checa, J.C.3
-
33
-
-
84869110746
-
Glutathione homeostasis and functions: Potential targets for medical interventions
-
Lushchak, V. I. Glutathione homeostasis and functions: potential targets for medical interventions. J. Amino Acids 2012, 26 (2012).
-
(2012)
J. Amino Acids
, vol.2012
, pp. 26
-
-
Lushchak, V.I.1
-
34
-
-
66449110388
-
Glutathione peroxidase 1 regulates mitochondrial function to modulate
-
Handy, D. E. et al. Glutathione peroxidase 1 regulates mitochondrial function to modulate. J. Biol. Chem. 284, 11913-11921 (2009).
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 11913-11921
-
-
Handy, D.E.1
-
35
-
-
84867564026
-
Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria
-
Fedorenko, A., Lishko, P. V. & Kirichok, Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151, 400-413 (2012).
-
(2012)
Cell
, vol.151
, pp. 400-413
-
-
Fedorenko, A.1
Lishko, P.V.2
Kirichok, Y.3
-
36
-
-
25144476923
-
Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3
-
Brand, M. D. & Esteves, T. C. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2, 85-93 (2005).
-
(2005)
Cell Metab.
, vol.2
, pp. 85-93
-
-
Brand, M.D.1
Esteves, T.C.2
-
37
-
-
4043147798
-
Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins
-
Brand, M. D. et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic. Biol. Med. 37, 755-767 (2004).
-
(2004)
Free Radic. Biol. Med.
, vol.37
, pp. 755-767
-
-
Brand, M.D.1
-
38
-
-
85030541576
-
UCP2 attenuates apoptosis of tubular epithelial cells in renal ischemia/reperfusion injury
-
Zhou, Y. et al. UCP2 attenuates apoptosis of tubular epithelial cells in renal ischemia/reperfusion injury. Am. J. Physiol. Renal Physiol. http://dx.doi.org/10.1152/ajprenal.00118.2017 (2017).
-
(2017)
Am. J. Physiol. Renal Physiol.
-
-
Zhou, Y.1
-
39
-
-
84941648798
-
Polymorphisms of the UCP2 gene are associated with glomerular filtration rate in type 2 diabetic patients and with decreased UCP2 gene expression in human kidney
-
Souza, B. M. d. et al. Polymorphisms of the UCP2 gene are associated with glomerular filtration rate in type 2 diabetic patients and with decreased UCP2 gene expression in human kidney. PLoS ONE 10, e0132938 (2015).
-
(2015)
PLoS ONE
, vol.10
, pp. e0132938
-
-
Souza, B.M.D.1
-
40
-
-
0142166332
-
Targeting HIF 1 for cancer therapy
-
Semenza, G. L. Targeting HIF 1 for cancer therapy. Nat. Rev. Cancer 3, 721-732 (2003).
-
(2003)
Nat. Rev. Cancer
, vol.3
, pp. 721-732
-
-
Semenza, G.L.1
-
41
-
-
33746655373
-
Hypoxia-inducible factors in the kidney
-
Haase, V. H. Hypoxia-inducible factors in the kidney. Am. J. Physiol. Renal Physiol. 291, F271-F281 (2006).
-
(2006)
Am. J. Physiol. Renal Physiol.
, vol.291
, pp. F271-F281
-
-
Haase, V.H.1
-
42
-
-
34347227058
-
Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1
-
Semenza, G. L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem. J. 405, 1-9 (2007).
-
(2007)
Biochem. J.
, vol.405
, pp. 1-9
-
-
Semenza, G.L.1
-
43
-
-
0032578458
-
Mitochondrial reactive oxygen species trigger hypoxia-induced transcription
-
Chandel, N. S. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA 95, 11715-11720 (1998).
-
(1998)
Proc. Natl Acad. Sci. USA
, vol.95
, pp. 11715-11720
-
-
Chandel, N.S.1
-
44
-
-
0034682786
-
Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor 1a during hypoxia: A mechanism of O2 sensing
-
Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor 1a during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130-25138 (2000).
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 25130-25138
-
-
Chandel, N.S.1
-
45
-
-
40949126440
-
Mitochondrial complex III regulates hypoxic activation of HIF
-
Klimova, T. & Chandel, N. S. Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ. 15, 660-666 (2008).
-
(2008)
Cell Death Differ.
, vol.15
, pp. 660-666
-
-
Klimova, T.1
Chandel, N.S.2
-
46
-
-
84980383473
-
Roles of mTOR complexes in the kidney: Implications for renal disease and transplantation
-
Fantus, D., Rogers, N. M., Grahammer, F., Huber, T. B. & Thomson, A. W. Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat. Rev. Nephrol. 12, 587-609 (2016).
-
(2016)
Nat. Rev. Nephrol.
, vol.12
, pp. 587-609
-
-
Fantus, D.1
Rogers, N.M.2
Grahammer, F.3
Huber, T.B.4
Thomson, A.W.5
-
47
-
-
84967184685
-
Adenosine monophosphate-activated protein kinase in diabetic nephropathy
-
Kim, Y. & Park, C. W. Adenosine monophosphate-activated protein kinase in diabetic nephropathy. Kidney Res. Clin. Pract. 35, 69-77 (2016).
-
(2016)
Kidney Res. Clin. Pract.
, vol.35
, pp. 69-77
-
-
Kim, Y.1
Park, C.W.2
-
48
-
-
84969208677
-
MTORC2 critically regulates renal potassium handling
-
Grahammer, F. et al. mTORC2 critically regulates renal potassium handling. J. Clin. Invest. 126, 1773-1782 (2016).
-
(2016)
J. Clin. Invest.
, vol.126
, pp. 1773-1782
-
-
Grahammer, F.1
-
49
-
-
84920380185
-
MTORC2 regulates renal tubule sodium uptake by promoting ENaC activity
-
Gleason, C. E. et al. mTORC2 regulates renal tubule sodium uptake by promoting ENaC activity. J. Clin. Invest. 125, 117-128 (2015).
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 117-128
-
-
Gleason, C.E.1
-
50
-
-
36749081539
-
MTOR controls mitochondrial oxidative function through a YY1 PGC 1a transcriptional complex
-
Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1 PGC 1a transcriptional complex. Nature 450, 736-740 (2007).
-
(2007)
Nature
, vol.450
, pp. 736-740
-
-
Cunningham, J.T.1
-
51
-
-
84903957218
-
MTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress
-
Grahammer, F. et al. mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress. Proc. Natl Acad. Sci. USA 111, E2817-E2826 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. E2817-E2826
-
-
Grahammer, F.1
-
52
-
-
80053035284
-
AMP-activated protein kinase: An energy sensor that regulates all aspects of cell function
-
Hardie, D. G. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 25, 1895-1908 (2011).
-
(2011)
Genes Dev.
, vol.25
, pp. 1895-1908
-
-
Hardie, D.G.1
-
53
-
-
80052511813
-
The AMP-activated protein kinase (AMPK) signaling pathway coordinates cell growth, autophagy and metabolism
-
Mihaylova, M. M. & Shaw, R. J. The AMP-activated protein kinase (AMPK) signaling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016-1023 (2011).
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1016-1023
-
-
Mihaylova, M.M.1
Shaw, R.J.2
-
54
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC 1a
-
Jager, S., Handschin, C., St Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC 1a. Proc. Natl Acad. Sci. USA 104, 12017-12022 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 12017-12022
-
-
Jager, S.1
Handschin, C.2
St Pierre, J.3
Spiegelman, B.M.4
-
55
-
-
84877578621
-
Rheb regulates mitophagy induced by mitochondrial energetic status
-
Melser, S. et al. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab. 17, 719-730 (2013).
-
(2013)
Cell Metab.
, vol.17
, pp. 719-730
-
-
Melser, S.1
-
56
-
-
79957960940
-
Metabolic control of mitochondrial biogenesis through the PGC 1 family regulatory network
-
Scarpulla, R. C. Metabolic control of mitochondrial biogenesis through the PGC 1 family regulatory network. Biochim. Biophys. Acta 1813, 1269-1278 (2011).
-
(2011)
Biochim. Biophys. Acta
, vol.1813
, pp. 1269-1278
-
-
Scarpulla, R.C.1
-
57
-
-
84865414333
-
Transcriptional integration of mitochondrial biogenesis
-
Scarpulla, R. C., Vega, R. B. & Kelly, D. P. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 23, 459-466 (2012).
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 459-466
-
-
Scarpulla, R.C.1
Vega, R.B.2
Kelly, D.P.3
-
58
-
-
85024387657
-
Loss of renal tubular PGC 1a exacerbates diet-induced renal steatosis and age-related urinary sodium excretion in mice
-
Svensson, K., Schnyder, S., Cardel, B. & Handschin, C. Loss of renal tubular PGC 1a exacerbates diet-induced renal steatosis and age-related urinary sodium excretion in mice. PLoS ONE 11, e0158716 (2016).
-
(2016)
PLoS ONE
, vol.11
, pp. e0158716
-
-
Svensson, K.1
Schnyder, S.2
Cardel, B.3
Handschin, C.4
-
59
-
-
33847253895
-
PGC 1a over-expression promotes recovery from mitochondrial dysfunction and cell injury
-
Rasbach, K. A. & Schnellmann, R. G. PGC 1a over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem. Biophys. Res. Commun. 355, 734-739 (2007).
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.355
, pp. 734-739
-
-
Rasbach, K.A.1
Schnellmann, R.G.2
-
60
-
-
84949115098
-
PPARs and ERRs: Molecular mediators of mitochondrial metabolism
-
Fan, W. & Evans, R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr. Opin. Cell Biol. 33, 49-54 (2015).
-
(2015)
Curr. Opin. Cell Biol.
, vol.33
, pp. 49-54
-
-
Fan, W.1
Evans, R.2
-
61
-
-
77951901129
-
Structural overview of the nuclear receptor superfamily: Insights into physiology and therapeutics
-
Huang, P., Chandra, V. & Rastinejad, F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72, 247-272 (2010).
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 247-272
-
-
Huang, P.1
Chandra, V.2
Rastinejad, F.3
-
62
-
-
0033977890
-
The coactivator PGC 1 cooperates with peroxisome proliferator-activated receptor a in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
-
Vega, R. B., Huss, J. M. & Kelly, D. P. The coactivator PGC 1 cooperates with peroxisome proliferator-activated receptor a in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol. 20, 1868-1876 (2000).
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 1868-1876
-
-
Vega, R.B.1
Huss, J.M.2
Kelly, D.P.3
-
63
-
-
0037174798
-
Peroxisome proliferator-activated receptor coactivator 1a (PGC 1a) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and-γ. Identification of novel leucine-rich interaction motif within PGC 1a
-
Huss, J. M., Kopp, R. P. & Kelly, D. P. Peroxisome proliferator-activated receptor coactivator 1a (PGC 1a) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and-γ. Identification of novel leucine-rich interaction motif within PGC 1a. J. Biol. Chem. 277, 40265-40274 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 40265-40274
-
-
Huss, J.M.1
Kopp, R.P.2
Kelly, D.P.3
-
64
-
-
84954116598
-
Mitochondrial biogenesis as a pharmacological target: A new approach to acute and chronic diseases
-
Whitaker, R. M., Corum, D., Beeson, C. C. & Schnellmann, R. G. Mitochondrial biogenesis as a pharmacological target: A new approach to acute and chronic diseases. Annu. Rev. Pharmacol. Toxicol. 56, 229-249 (2016).
-
(2016)
Annu. Rev. Pharmacol. Toxicol.
, vol.56
, pp. 229-249
-
-
Whitaker, R.M.1
Corum, D.2
Beeson, C.C.3
Schnellmann, R.G.4
-
65
-
-
79953210362
-
Regulation of PGC 1a, a nodal regulator of mitochondrial biogenesis
-
Fernandez-Marcos, P. J. & Auwerx, J. Regulation of PGC 1a, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 93, 884S-890S (2011).
-
(2011)
Am. J. Clin. Nutr.
, vol.93
, pp. 884S-890S
-
-
Fernandez-Marcos, P.J.1
Auwerx, J.2
-
66
-
-
85003550776
-
Development of therapeutics that induce mitochondrial biogenesis for the treatment of acute and chronic degenerative diseases
-
Cameron, R. B., Beeson, C. C. & Schnellmann, R. G. Development of therapeutics that induce mitochondrial biogenesis for the treatment of acute and chronic degenerative diseases. J. Med. Chem. 59, 10411-10434 (2016).
-
(2016)
J. Med. Chem.
, vol.59
, pp. 10411-10434
-
-
Cameron, R.B.1
Beeson, C.C.2
Schnellmann, R.G.3
-
67
-
-
84923138740
-
New insights into PGC 1 coactivators: Redefining their role in the regulation of mitochondrial function and beyond
-
Villena, J. A. New insights into PGC 1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J. 282, 647-672 (2015).
-
(2015)
FEBS J.
, vol.282
, pp. 647-672
-
-
Villena, J.A.1
-
68
-
-
33644660537
-
PGC 1 coactivators: Inducible regulators of energy metabolism in health and disease
-
Finck, B. N. & Kelly, D. P. PGC 1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116, 615-622 (2006).
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 615-622
-
-
Finck, B.N.1
Kelly, D.P.2
-
69
-
-
84901826020
-
Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis
-
Palikaras, K. & Tavernarakis, N. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 56, 182-188 (2014).
-
(2014)
Exp. Gerontol.
, vol.56
, pp. 182-188
-
-
Palikaras, K.1
Tavernarakis, N.2
-
70
-
-
13444271923
-
Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress
-
Lee, H. C. & Wei, Y. H. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int. J. Biochem. Cell Biol. 37, 822-834 (2005).
-
(2005)
Int. J. Biochem. Cell Biol.
, vol.37
, pp. 822-834
-
-
Lee, H.C.1
Wei, Y.H.2
-
71
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
Ahn, B. H. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA 105, 14447-14452 (2008).
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 14447-14452
-
-
Ahn, B.H.1
-
72
-
-
77955347446
-
Sirtuin 3, a new target of PGC 1a, plays an important role in the suppression of ROS and mitochondrial biogenesis
-
Kong, X. et al. Sirtuin 3, a new target of PGC 1a, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS ONE http://dx.doi.org/10.1371/journal.pone.0011707 (2010).
-
(2010)
PLoS ONE
-
-
Kong, X.1
-
73
-
-
0038810035
-
An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1a expression in muscle
-
Handschin, C., Rhee, J., Lin, J., Tarr, P. T. & Spiegelman, B. M. An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1a expression in muscle. Proc. Natl Acad. Sci. USA 100, 7111-7116 (2003).
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 7111-7116
-
-
Handschin, C.1
Rhee, J.2
Lin, J.3
Tarr, P.T.4
Spiegelman, B.M.5
-
74
-
-
9344220484
-
Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals
-
Nisoli, E. et al. Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc. Natl Acad. Sci. USA 101, 16507-16512 (2004).
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 16507-16512
-
-
Nisoli, E.1
-
75
-
-
26844558334
-
Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
-
Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314-317 (2005).
-
(2005)
Science
, vol.310
, pp. 314-317
-
-
Nisoli, E.1
-
76
-
-
84887985169
-
CGMP-selective phosphodiesterase inhibitors stimulate mitochondrial biogenesis and promote recovery from acute kidney injury
-
Whitaker, R. M., Wills, L. P., Stallons, L. J. & Schnellmann, R. G. cGMP-selective phosphodiesterase inhibitors stimulate mitochondrial biogenesis and promote recovery from acute kidney injury. J. Pharmacol. Exp. Ther. 347, 626-634 (2013).
-
(2013)
J. Pharmacol. Exp. Ther.
, vol.347
, pp. 626-634
-
-
Whitaker, R.M.1
Wills, L.P.2
Stallons, L.J.3
Schnellmann, R.G.4
-
77
-
-
16844366524
-
Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
-
Lemasters, J. J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuven. Res. 8, 3-5 (2005).
-
(2005)
Rejuven. Res.
, vol.8
, pp. 3-5
-
-
Lemasters, J.J.1
-
78
-
-
0033772264
-
OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28
-
Alexander, C. et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26, 211-215 (2000).
-
(2000)
Nat. Genet.
, vol.26
, pp. 211-215
-
-
Alexander, C.1
-
79
-
-
20244381365
-
Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy
-
Delettre, C. et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26, 207-210 (2000).
-
(2000)
Nat. Genet.
, vol.26
, pp. 207-210
-
-
Delettre, C.1
-
80
-
-
0036369531
-
OPA1 (Kjer type) dominant optic atrophy: A novel mitochondrial disease
-
Delettre, C., Lenaers, G., Pelloquin, L., Belenguer, P. & Hamel, C. P. OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol. Genet. Metab. 75, 97-107 (2002).
-
(2002)
Mol. Genet. Metab.
, vol.75
, pp. 97-107
-
-
Delettre, C.1
Lenaers, G.2
Pelloquin, L.3
Belenguer, P.4
Hamel, C.P.5
-
81
-
-
84908250304
-
Determinants and functions of mitochondrial behavior
-
Labbe, K., Murley, A. & Nunnari, J. Determinants and functions of mitochondrial behavior. Annu. Rev. Cell Dev. Biol. 30, 357-391 (2014).
-
(2014)
Annu. Rev. Cell Dev. Biol.
, vol.30
, pp. 357-391
-
-
Labbe, K.1
Murley, A.2
Nunnari, J.3
-
82
-
-
84869030015
-
Fusion and fission: Interlinked processes critical for mitochondrial health
-
Chan, D. C. Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46, 265-287 (2012).
-
(2012)
Annu. Rev. Genet.
, vol.46
, pp. 265-287
-
-
Chan, D.C.1
-
83
-
-
34247525092
-
A lethal defect of mitochondrial and peroxisomal fission
-
Waterham, H. R. et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356, 1736-1741 (2007).
-
(2007)
N. Engl. J. Med.
, vol.356
, pp. 1736-1741
-
-
Waterham, H.R.1
-
84
-
-
0842325793
-
Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells
-
Rossignol, R. et al. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res. 64, 985-993 (2004).
-
(2004)
Cancer Res.
, vol.64
, pp. 985-993
-
-
Rossignol, R.1
-
85
-
-
84897538678
-
Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation
-
Mishra, P., Carelli, V., Manfredi, G. & Chan, D. C. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 19, 630-641 (2014).
-
(2014)
Cell Metab.
, vol.19
, pp. 630-641
-
-
Mishra, P.1
Carelli, V.2
Manfredi, G.3
Chan, D.C.4
-
86
-
-
64649093169
-
Mitochondrial dynamics and neurodegeneration
-
Lu, B. Mitochondrial dynamics and neurodegeneration. Curr. Neurol. Neurosci. Rep. 9, 212-219 (2009).
-
(2009)
Curr. Neurol. Neurosci. Rep.
, vol.9
, pp. 212-219
-
-
Lu, B.1
-
87
-
-
84922903805
-
Mitoconfusion: Noncanonical functioning of dynamism factors in static mitochondria of the heart
-
Song, M. & Dorn, G. W. II. Mitoconfusion: noncanonical functioning of dynamism factors in static mitochondria of the heart. Cell Metab. 21, 195-205 (2015).
-
(2015)
Cell Metab.
, vol.21
, pp. 195-205
-
-
Song, M.1
Dorn, G.W.2
-
88
-
-
84922627875
-
Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging
-
Ziegler, D. V., Wiley, C. D. & Velarde, M. C. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell 14, 1-7 (2015).
-
(2015)
Aging Cell
, vol.14
, pp. 1-7
-
-
Ziegler, D.V.1
Wiley, C.D.2
Velarde, M.C.3
-
89
-
-
33749265862
-
Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1
-
Yoon, Y. S. et al. Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 209, 468-480 (2006).
-
(2006)
J. Cell. Physiol.
, vol.209
, pp. 468-480
-
-
Yoon, Y.S.1
-
90
-
-
84962821248
-
Mitochondrial quality control and muscle mass maintenance
-
Romanello, V. & Sandri, M. Mitochondrial quality control and muscle mass maintenance. Front. Physiol. http://dx.doi.org/10.3389/fphys.2015.00422 (2015).
-
(2015)
Front. Physiol.
-
-
Romanello, V.1
Sandri, M.2
-
91
-
-
84924653249
-
Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels
-
Mourier, A. et al. Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. J. Cell Biol. 208, 429-442 (2015).
-
(2015)
J. Cell Biol.
, vol.208
, pp. 429-442
-
-
Mourier, A.1
-
92
-
-
84867032955
-
The intracellular redox state is a core determinant of mitochondrial fusion
-
Shutt, T., Geoffrion, M., Milne, R. & McBride, H. M. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep. 13, 909-915 (2012).
-
(2012)
EMBO Rep.
, vol.13
, pp. 909-915
-
-
Shutt, T.1
Geoffrion, M.2
Milne, R.3
McBride, H.M.4
-
93
-
-
34548313688
-
OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L
-
Song, Z., Chen, H., Fiket, M., Alexander, C. & Chan, D. C. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol. 178, 749-755 (2007).
-
(2007)
J. Cell Biol.
, vol.178
, pp. 749-755
-
-
Song, Z.1
Chen, H.2
Fiket, M.3
Alexander, C.4
Chan, D.C.5
-
94
-
-
84896264348
-
The i AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission
-
Anand, R. et al. The i AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204, 919-929 (2014).
-
(2014)
J. Cell Biol.
, vol.204
, pp. 919-929
-
-
Anand, R.1
-
95
-
-
33745699393
-
OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion
-
Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177-189 (2006).
-
(2006)
Cell
, vol.126
, pp. 177-189
-
-
Frezza, C.1
-
96
-
-
84903281183
-
Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling
-
Boissan, M. et al. Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science 344, 1510-1515 (2014).
-
(2014)
Science
, vol.344
, pp. 1510-1515
-
-
Boissan, M.1
-
97
-
-
84959516439
-
Metabolic regulation of mitochondrial dynamics
-
Mishra, P. & Chan, D. C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212, 379-387 (2016).
-
(2016)
J. Cell Biol.
, vol.212
, pp. 379-387
-
-
Mishra, P.1
Chan, D.C.2
-
98
-
-
49349102894
-
Mitochondrial fusion, fission and autophagy as a quality control axis: The bioenergetic view
-
Twig, G., Hyde, B. & Shirihai, O. S. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim. Biophys. Acta 1777, 1092-1097 (2008).
-
(2008)
Biochim. Biophys. Acta
, vol.1777
, pp. 1092-1097
-
-
Twig, G.1
Hyde, B.2
Shirihai, O.S.3
-
99
-
-
84875906572
-
Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
-
Liesa, M. & Shirihai, O. S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17, 491-506 (2013).
-
(2013)
Cell Metab.
, vol.17
, pp. 491-506
-
-
Liesa, M.1
Shirihai, O.S.2
-
100
-
-
78650987611
-
Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission
-
Mears, J. A. et al. Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 18, 20-26 (2011).
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 20-26
-
-
Mears, J.A.1
-
101
-
-
84875273810
-
New insights into the function and regulation of mitochondrial fission
-
Otera, H., Ishihara, N. & Mihara, K. New insights into the function and regulation of mitochondrial fission. Biochim. Biophys. Acta 1833, 1256-1268 (2013).
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 1256-1268
-
-
Otera, H.1
Ishihara, N.2
Mihara, K.3
-
102
-
-
84896739005
-
The mitochondrial fission receptor MiD51 requires ADP as a cofactor
-
Loson, O. C. et al. The mitochondrial fission receptor MiD51 requires ADP as a cofactor. Structure 22, 367-377 (2014).
-
(2014)
Structure
, vol.22
, pp. 367-377
-
-
Loson, O.C.1
-
103
-
-
84894080490
-
Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission
-
Richter, V. et al. Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission. J. Cell Biol. 204, 477-486 (2014).
-
(2014)
J. Cell Biol.
, vol.204
, pp. 477-486
-
-
Richter, V.1
-
105
-
-
77955298543
-
Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1
-
Chang, C. R. & Blackstone, C. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann. NY Acad. Sci. 1201, 34-39 (2010).
-
(2010)
Ann. NY Acad. Sci.
, vol.1201
, pp. 34-39
-
-
Chang, C.R.1
Blackstone, C.2
-
106
-
-
34547611925
-
Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology
-
Chang, C. R. & Blackstone, C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282, 21583-21587 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 21583-21587
-
-
Chang, C.R.1
Blackstone, C.2
-
107
-
-
84876942158
-
A calcineurin docking motif (LXVP) in dynamin-related protein 1 contributes to mitochondrial fragmentation and ischemic neuronal injury
-
Slupe, A. M. et al. A calcineurin docking motif (LXVP) in dynamin-related protein 1 contributes to mitochondrial fragmentation and ischemic neuronal injury. J. Biol. Chem. 288, 12353-12365 (2013).
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 12353-12365
-
-
Slupe, A.M.1
-
108
-
-
57349160257
-
Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria
-
Cereghetti, G. M. et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl Acad. Sci. USA 105, 15803-15808 (2008).
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 15803-15808
-
-
Cereghetti, G.M.1
-
109
-
-
84922776083
-
PINK1/Parkin-mediated mitophagy in mammalian cells
-
Eiyama, A. & Okamoto, K. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr. Opin. Cell Biol. 33, 95-101 (2015).
-
(2015)
Curr. Opin. Cell Biol.
, vol.33
, pp. 95-101
-
-
Eiyama, A.1
Okamoto, K.2
-
110
-
-
84859428688
-
Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
-
Greene, A. W. et al. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 13, 378-385 (2012).
-
(2012)
EMBO Rep.
, vol.13
, pp. 378-385
-
-
Greene, A.W.1
-
111
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
Matsuda, N. et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211-221 (2010).
-
(2010)
J. Cell Biol.
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
-
112
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).
-
(2010)
PLoS Biol.
, vol.8
, pp. e1000298
-
-
Narendra, D.P.1
-
113
-
-
84922794336
-
Phosphorylated ubiquitin chain is the genuine Parkin receptor
-
Okatsu, K. et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J. Cell Biol. 209, 111-128 (2015).
-
(2015)
J. Cell Biol.
, vol.209
, pp. 111-128
-
-
Okatsu, K.1
-
114
-
-
75949098487
-
PINK1 dependent recruitment of Parkin to mitochondria in mitophagy
-
Vives-Bauza, C. et al. PINK1 dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA 107, 378-383 (2010).
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 378-383
-
-
Vives-Bauza, C.1
-
115
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
Tanaka, A. et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367-1380 (2010).
-
(2010)
J. Cell Biol.
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
-
117
-
-
84898624312
-
Self and nonself: How autophagy targets mitochondria and bacteria
-
Randow, F. & Youle, R. J. Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 15, 403-411 (2014).
-
(2014)
Cell Host Microbe
, vol.15
, pp. 403-411
-
-
Randow, F.1
Youle, R.J.2
-
118
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
Sarraf, S. A. et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372-376 (2013).
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
-
119
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
Chan, N. C. et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20, 1726-1737 (2011).
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
-
120
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461 (2011).
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
-
121
-
-
84897493440
-
Rheb and mammalian target of rapamycin in mitochondrial homoeostasis
-
Groenewoud, M. J. & Zwartkruis, F. J. Rheb and mammalian target of rapamycin in mitochondrial homoeostasis. Open Biol. 3, 130185 (2013).
-
(2013)
Open Biol.
, vol.3
, pp. 130185
-
-
Groenewoud, M.J.1
Zwartkruis, F.J.2
-
122
-
-
84954318420
-
Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress
-
Toyama, E. Q. et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275-281 (2016).
-
(2016)
Science
, vol.351
, pp. 275-281
-
-
Toyama, E.Q.1
-
123
-
-
84960899335
-
AMPK promotes autophagy by facilitating mitochondrial fission
-
Zhang, C. S. & Lin, S. C. AMPK promotes autophagy by facilitating mitochondrial fission. Cell Metab. 23, 399-401 (2016).
-
(2016)
Cell Metab.
, vol.23
, pp. 399-401
-
-
Zhang, C.S.1
Lin, S.C.2
-
124
-
-
84899912073
-
A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
-
Chen, G. et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 54, 362-377 (2014).
-
(2014)
Mol. Cell
, vol.54
, pp. 362-377
-
-
Chen, G.1
-
125
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177-185 (2012).
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 177-185
-
-
Liu, L.1
-
126
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45-51 (2010).
-
(2010)
EMBO Rep.
, vol.11
, pp. 45-51
-
-
Novak, I.1
-
127
-
-
67549101188
-
Role of BNIP3 and NIX in cell death, autophagy, and mitophagy
-
Zhang, J. & Ney, P. A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 16, 939-946 (2009).
-
(2009)
Cell Death Differ.
, vol.16
, pp. 939-946
-
-
Zhang, J.1
Ney, P.A.2
-
128
-
-
79960006475
-
Bnip3 mediated defects in oxidative phosphorylation promote mitophagy
-
Thomas, R. L., Kubli, D. A. & Gustafsson, A. B. Bnip3 mediated defects in oxidative phosphorylation promote mitophagy. Autophagy 7, 775-777 (2011).
-
(2011)
Autophagy
, vol.7
, pp. 775-777
-
-
Thomas, R.L.1
Kubli, D.A.2
Gustafsson, A.B.3
-
129
-
-
84861733247
-
Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy
-
Hanna, R. A. et al. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 287, 19094-19104 (2012).
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 19094-19104
-
-
Hanna, R.A.1
-
130
-
-
77953712088
-
Nix, a receptor protein for mitophagy in mammals
-
Kanki, T. Nix, a receptor protein for mitophagy in mammals. Autophagy 6, 433-435 (2010).
-
(2010)
Autophagy
, vol.6
, pp. 433-435
-
-
Kanki, T.1
-
131
-
-
78650890352
-
Regulation of autophagy by ROS: Physiology and pathology
-
Scherz-Shouval, R. & Elazar, Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Sci. 36, 30-38 (2011).
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 30-38
-
-
Scherz-Shouval, R.1
Elazar, Z.2
-
132
-
-
37248999267
-
Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb
-
Li, Y. et al. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J. Biol. Chem. 282, 35803-35813 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 35803-35813
-
-
Li, Y.1
-
133
-
-
34248998801
-
Functional and physical interaction between Bcl X(L) and a BH3 like domain in Beclin 1
-
Maiuri, M. C. et al. Functional and physical interaction between Bcl X(L) and a BH3 like domain in Beclin 1. EMBO J. 26, 2527-2539 (2007).
-
(2007)
EMBO J.
, vol.26
, pp. 2527-2539
-
-
Maiuri, M.C.1
-
134
-
-
84881619807
-
Sestrin 2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury
-
Ishihara, M. et al. Sestrin 2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am. J. Physiol. Renal Physiol. 305, F495-F509 (2013).
-
(2013)
Am. J. Physiol. Renal Physiol.
, vol.305
, pp. F495-F509
-
-
Ishihara, M.1
-
135
-
-
85021977742
-
Mitophagy: Basic mechanism and potential role in kidney diseases
-
Tang, C., He, L., Liu, J. & Dong, Z. Mitophagy: Basic Mechanism and Potential Role in Kidney Diseases. Kidney Diseases 1, 71-79 (2015).
-
(2015)
Kidney Diseases
, vol.1
, pp. 71-79
-
-
Tang, C.1
He, L.2
Liu, J.3
Dong, Z.4
-
136
-
-
84894038619
-
Mitochondrial dysfunction in the pathophysiology of renal diseases
-
Che, R., Yuan, Y., Huang, S. & Zhang, A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am. J. Physiol.-Renal Physiol. 306, F367-F378 (2014).
-
(2014)
Am. J. Physiol.-Renal Physiol.
, vol.306
, pp. F367-F378
-
-
Che, R.1
Yuan, Y.2
Huang, S.3
Zhang, A.4
-
137
-
-
84971273422
-
Renoprotective approaches and strategies in acute kidney injury
-
Yang, Y. et al. Renoprotective approaches and strategies in acute kidney injury. Pharmacol. Ther. 163, 58-73 (2016).
-
(2016)
Pharmacol. Ther.
, vol.163
, pp. 58-73
-
-
Yang, Y.1
-
138
-
-
0023636281
-
Risk factors and outcome of hospital-acquired acute renal failure. Clinical epidemiologic study
-
Shusterman, N. et al. Risk factors and outcome of hospital-acquired acute renal failure. Clinical epidemiologic study. Am. J. Med. 83, 65-71 (1987).
-
(1987)
Am. J. Med.
, vol.83
, pp. 65-71
-
-
Shusterman, N.1
-
139
-
-
0030606570
-
Acute renal failure
-
Thadhani, R., Pascual, M. & Bonventre, J. V. Acute renal failure. N. Engl. J. Med. 334, 1448-1460 (1996).
-
(1996)
N. Engl. J. Med.
, vol.334
, pp. 1448-1460
-
-
Thadhani, R.1
Pascual, M.2
Bonventre, J.V.3
-
140
-
-
0033977753
-
Acute renal failure in the new millennium: Time to consider combination therapy
-
Kelly, K. J. & Molitoris, B. A. Acute renal failure in the new millennium: time to consider combination therapy. Semin. Nephrol. 20, 4-19 (2000).
-
(2000)
Semin. Nephrol.
, vol.20
, pp. 4-19
-
-
Kelly, K.J.1
Molitoris, B.A.2
-
141
-
-
79953202436
-
Acute kidney injury: What's the prognosis?
-
Murugan, R. & Kellum, J. A. Acute kidney injury: what's the prognosis? Nat. Rev. Nephrol. 7, 209-217 (2011).
-
(2011)
Nat. Rev. Nephrol.
, vol.7
, pp. 209-217
-
-
Murugan, R.1
Kellum, J.A.2
-
142
-
-
44649128709
-
Diagnosis, epidemiology and outcomes of acute kidney injury
-
Waikar, S. S., Liu, K. D. & Chertow, G. M. Diagnosis, epidemiology and outcomes of acute kidney injury. Clin. J. Am. Soc. Nephrol. 3, 844-861 (2008).
-
(2008)
Clin. J. Am. Soc. Nephrol.
, vol.3
, pp. 844-861
-
-
Waikar, S.S.1
Liu, K.D.2
Chertow, G.M.3
-
143
-
-
84977098263
-
Acute kidney injury: Short-term and long-term effects
-
Doyle, J. F. & Forni, L. G. Acute kidney injury: short-term and long-term effects. Crit. Care 20, 188 (2016).
-
(2016)
Crit. Care
, vol.20
, pp. 188
-
-
Doyle, J.F.1
Forni, L.G.2
-
144
-
-
84896825627
-
Cardiovascular events after AKI: A new dimension
-
Hsu, C. & Liu, K. D. Cardiovascular events after AKI: a new dimension. J. Am. Soc. Nephrol. 25, 425-427 (2014).
-
(2014)
J. Am. Soc. Nephrol.
, vol.25
, pp. 425-427
-
-
Hsu, C.1
Liu, K.D.2
-
146
-
-
85028838223
-
Contrast-induced acute kidney injury in patients undergoing carotid artery stenting: An underestimated issue
-
Paraskevas, K. I. & Mikhailidis, D. P. Contrast-induced acute kidney injury in patients undergoing carotid artery stenting: an underestimated issue. Angiology http://dx.doi.org/10.1177/0003319716668934 (2016).
-
(2016)
Angiology
-
-
Paraskevas, K.I.1
Mikhailidis, D.P.2
-
147
-
-
84984605182
-
Heart failure and kidney dysfunction: Epidemiology, mechanisms and management
-
Schefold, J. C., Filippatos, G., Hasenfuss, G., Anker, S. D. & von Haehling, S. Heart failure and kidney dysfunction: epidemiology, mechanisms and management. Nat. Rev. Nephrol. 12, 610-623 (2016).
-
(2016)
Nat. Rev. Nephrol.
, vol.12
, pp. 610-623
-
-
Schefold, J.C.1
Filippatos, G.2
Hasenfuss, G.3
Anker, S.D.4
Von Haehling, S.5
-
148
-
-
84862216992
-
Pathophysiology of acute kidney injury
-
Basile, D. P., Anderson, M. D. & Sutton, T. A. Pathophysiology of acute kidney injury. Compr. Physiol. 2, 1303-1353 (2012).
-
(2012)
Compr. Physiol.
, vol.2
, pp. 1303-1353
-
-
Basile, D.P.1
Anderson, M.D.2
Sutton, T.A.3
-
149
-
-
84983753053
-
Mitochondria: A therapeutic target in acute kidney injury
-
Ishimoto, Y. & Inagi, R. Mitochondria: a therapeutic target in acute kidney injury. Nephrol. Dial. Transplant. 31, 1062-1069 (2016).
-
(2016)
Nephrol. Dial. Transplant.
, vol.31
, pp. 1062-1069
-
-
Ishimoto, Y.1
Inagi, R.2
-
150
-
-
84955271606
-
Mitochondrial dysfunction in inherited renal disease and acute kidney injury
-
Emma, F., Montini, G., Parikh, S. M. & Salviati, L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat. Rev. Nephrol. 12, 267-280 (2016).
-
(2016)
Nat. Rev. Nephrol.
, vol.12
, pp. 267-280
-
-
Emma, F.1
Montini, G.2
Parikh, S.M.3
Salviati, L.4
-
151
-
-
84859464827
-
Persistent disruption of mitochondrial homeostasis after acute kidney injury
-
Funk, J. A. & Schnellmann, R. G. Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am. J. Physiol. Renal Physiol. 302, F853-F864 (2012).
-
(2012)
Am. J. Physiol. Renal Physiol.
, vol.302
, pp. F853-F864
-
-
Funk, J.A.1
Schnellmann, R.G.2
-
152
-
-
80053402552
-
PGC 1a promotes recovery after acute kidney injury during systemic inflammation in mice
-
Tran, M. et al. PGC 1a promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Invest. 121, 4003-4014 (2011).
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 4003-4014
-
-
Tran, M.1
-
153
-
-
84888206498
-
Therapeutic targeting of the mitochondrial dysfunction in septic acute kidney injury
-
Parikh, S. M. Therapeutic targeting of the mitochondrial dysfunction in septic acute kidney injury. Curr. Opin. Crit. Care 19, 554-559 (2013).
-
(2013)
Curr. Opin. Crit. Care
, vol.19
, pp. 554-559
-
-
Parikh, S.M.1
-
154
-
-
0023684184
-
Fatty acid metabolism in renal ischemia
-
Ruidera, E. et al. Fatty acid metabolism in renal ischemia. Lipids 23, 882-884 (1988).
-
(1988)
Lipids
, vol.23
, pp. 882-884
-
-
Ruidera, E.1
-
155
-
-
23044471901
-
Triglyceride accumulation in injured renal tubular cells: Alterations in both synthetic and catabolic pathways
-
Johnson, A. C., Stahl, A. & Zager, R. A. Triglyceride accumulation in injured renal tubular cells: alterations in both synthetic and catabolic pathways. Kidney Int. 67, 2196-2209 (2005).
-
(2005)
Kidney Int.
, vol.67
, pp. 2196-2209
-
-
Johnson, A.C.1
Stahl, A.2
Zager, R.A.3
-
156
-
-
10944237672
-
Renal tubular triglyercide accumulation following endotoxic, toxic, and ischemic injury
-
Zager, R. A., Johnson, A. C. & Hanson, S. Y. Renal tubular triglyercide accumulation following endotoxic, toxic, and ischemic injury. Kidney Int. 67, 111-121 (2005).
-
(2005)
Kidney Int.
, vol.67
, pp. 111-121
-
-
Zager, R.A.1
Johnson, A.C.2
Hanson, S.Y.3
-
157
-
-
0033458684
-
Role of fatty acid beta-oxidation and calcium-independent phospholipase A2 in ischemic acute renal failure
-
Portilla, D. Role of fatty acid beta-oxidation and calcium-independent phospholipase A2 in ischemic acute renal failure. Curr. Opin. Nephrol. Hypertens. 8, 473-477 (1999).
-
(1999)
Curr. Opin. Nephrol. Hypertens.
, vol.8
, pp. 473-477
-
-
Portilla, D.1
-
158
-
-
84865096048
-
Stimulation of carnitine palmitoyltransferase 1 improves renal function and attenuates tissue damage after ischemia/reperfusion
-
Idrovo, J. P., Yang, W. L., Nicastro, J., Coppa, G. F. & Wang, P. Stimulation of carnitine palmitoyltransferase 1 improves renal function and attenuates tissue damage after ischemia/reperfusion. J. Surg. Res. 177, 157-164 (2012).
-
(2012)
J. Surg. Res.
, vol.177
, pp. 157-164
-
-
Idrovo, J.P.1
Yang, W.L.2
Nicastro, J.3
Coppa, G.F.4
Wang, P.5
-
159
-
-
84906062856
-
Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury
-
Smith, J. A., Stallons, L. J. & Schnellmann, R. G. Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 307, F435-F444 (2014).
-
(2014)
Am. J. Physiol. Renal Physiol.
, vol.307
, pp. F435-F444
-
-
Smith, J.A.1
Stallons, L.J.2
Schnellmann, R.G.3
-
160
-
-
84904110427
-
Renal cortical pyruvate depletion during AKI
-
Zager, R. A., Johnson, A. C. & Becker, K. Renal cortical pyruvate depletion during AKI. J. Am. Soc. Nephrol. 25, 998-1012 (2014).
-
(2014)
J. Am. Soc. Nephrol.
, vol.25
, pp. 998-1012
-
-
Zager, R.A.1
Johnson, A.C.2
Becker, K.3
-
161
-
-
84994638475
-
Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI
-
Lan, R. et al. Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J. Am. Soc. Nephrol. 27, 3356-3367 (2016).
-
(2016)
J. Am. Soc. Nephrol.
, vol.27
, pp. 3356-3367
-
-
Lan, R.1
-
162
-
-
84938931511
-
Failed tubule recovery, AKI-CKD transition, and kidney disease progression
-
Venkatachalam, M. A., Weinberg, J. M., Kriz, W. & Bidani, A. K. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J. Am. Soc. Nephrol. 26, 1765-1776 (2015).
-
(2015)
J. Am. Soc. Nephrol.
, vol.26
, pp. 1765-1776
-
-
Venkatachalam, M.A.1
Weinberg, J.M.2
Kriz, W.3
Bidani, A.K.4
-
163
-
-
0025941814
-
Interstitial lactate, inosine and hypoxanthine in rat kidney during normothermic ischaemia and recirculation
-
Eklund, T., Wahlberg, J., Ungerstedt, U. & Hillered, L. Interstitial lactate, inosine and hypoxanthine in rat kidney during normothermic ischaemia and recirculation. Acta Physiol. Scand. 143, 279-286 (1991).
-
(1991)
Acta Physiol. Scand.
, vol.143
, pp. 279-286
-
-
Eklund, T.1
Wahlberg, J.2
Ungerstedt, U.3
Hillered, L.4
-
164
-
-
84875753723
-
Mitochondrial dynamics: Regulatory mechanisms and emerging role in renal pathophysiology
-
Zhan, M., Brooks, C., Liu, F., Sun, L. & Dong, Z. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int. 83, 568-581 (2013).
-
(2013)
Kidney Int.
, vol.83
, pp. 568-581
-
-
Zhan, M.1
Brooks, C.2
Liu, F.3
Sun, L.4
Dong, Z.5
-
165
-
-
66449121454
-
Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models
-
Brooks, C., Wei, Q., Cho, S. G. & Dong, Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest. 119, 1275-1285 (2009).
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 1275-1285
-
-
Brooks, C.1
Wei, Q.2
Cho, S.G.3
Dong, Z.4
-
166
-
-
77953854247
-
Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis
-
Cho, S. G., Du, Q., Huang, S. & Dong, Z. Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis. Am. J. Physiol. Renal Physiol. 299, F199-F206 (2010).
-
(2010)
Am. J. Physiol. Renal Physiol.
, vol.299
, pp. F199-F206
-
-
Cho, S.G.1
Du, Q.2
Huang, S.3
Dong, Z.4
-
167
-
-
84870580153
-
Autophagy in proximal tubules protects against acute kidney injury
-
Jiang, M. et al. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 82, 1271-1283 (2012).
-
(2012)
Kidney Int.
, vol.82
, pp. 1271-1283
-
-
Jiang, M.1
-
168
-
-
84862635122
-
Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury
-
Liu, S. et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8, 826-837 (2012).
-
(2012)
Autophagy
, vol.8
, pp. 826-837
-
-
Liu, S.1
-
169
-
-
79955626606
-
Autophagy protects the proximal tubule from degeneration and acute ischemic injury
-
Kimura, T. et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J. Am. Soc. Nephrol. 22, 902-913 (2011).
-
(2011)
J. Am. Soc. Nephrol.
, vol.22
, pp. 902-913
-
-
Kimura, T.1
-
170
-
-
84965026127
-
Autophagy, innate immunity and tissue repair in acute kidney injury
-
Duann, P., Lianos, E. A., Ma, J. & Lin, P. H. Autophagy, innate immunity and tissue repair in acute kidney injury. Int. J. Mol. Sci. 17, 662 (2016).
-
(2016)
Int. J. Mol. Sci.
, vol.17
, pp. 662
-
-
Duann, P.1
Lianos, E.A.2
Ma, J.3
Lin, P.H.4
-
171
-
-
84879684865
-
Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models
-
Wei, Q., Dong, G., Chen, J. K., Ramesh, G. & Dong, Z. Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models. Kidney Int. 84, 138-148 (2013).
-
(2013)
Kidney Int.
, vol.84
, pp. 138-148
-
-
Wei, Q.1
Dong, G.2
Chen, J.K.3
Ramesh, G.4
Dong, Z.5
-
172
-
-
84890230244
-
Suppressed mitochondrial biogenesis in folic acid-induced acute kidney injury and early fibrosis
-
Stallons, L. J., Whitaker, R. M. & Schnellmann, R. G. Suppressed mitochondrial biogenesis in folic acid-induced acute kidney injury and early fibrosis. Toxicol. Lett. 224, 326-332 (2014).
-
(2014)
Toxicol. Lett.
, vol.224
, pp. 326-332
-
-
Stallons, L.J.1
Whitaker, R.M.2
Schnellmann, R.G.3
-
173
-
-
84961724213
-
PGC1a dependent NAD biosynthesis links oxidative metabolism to renal protection
-
Tran, M. T. et al. PGC1a dependent NAD biosynthesis links oxidative metabolism to renal protection. Nature 531, 528-532 (2016).
-
(2016)
Nature
, vol.531
, pp. 528-532
-
-
Tran, M.T.1
-
174
-
-
84904969665
-
Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury
-
Jesinkey, S. R. et al. Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury. J. Am. Soc. Nephrol. 25, 1157-1162 (2014).
-
(2014)
J. Am. Soc. Nephrol.
, vol.25
, pp. 1157-1162
-
-
Jesinkey, S.R.1
-
175
-
-
84905058536
-
Agonism of the 5 hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury
-
Garrett, S. M., Whitaker, R. M., Beeson, C. C. & Schnellmann, R. G. Agonism of the 5 hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury. J. Pharmacol. Exp. Ther. 350, 257-264 (2014).
-
(2014)
J. Pharmacol. Exp. Ther.
, vol.350
, pp. 257-264
-
-
Garrett, S.M.1
Whitaker, R.M.2
Beeson, C.C.3
Schnellmann, R.G.4
-
176
-
-
84978044209
-
Mitochondrial sirtuin 3 and renal diseases
-
Perico, L., Morigi, M. & Benigni, A. Mitochondrial sirtuin 3 and renal diseases. Nephron 134, 14-19 (2016).
-
(2016)
Nephron
, vol.134
, pp. 14-19
-
-
Perico, L.1
Morigi, M.2
Benigni, A.3
-
177
-
-
33749545733
-
Mortality and renal disease in type 1 diabetes mellitus-progress made, more to be done
-
Maahs, D. M. & Rewers, M. Mortality and renal disease in type 1 diabetes mellitus-progress made, more to be done. J. Clin. Endocrinol. Metab. 91, 3757-3759 (2006).
-
(2006)
J. Clin. Endocrinol. Metab.
, vol.91
, pp. 3757-3759
-
-
Maahs, D.M.1
Rewers, M.2
-
178
-
-
83755170799
-
US Renal Data System 2011 annual data report
-
Collins, A. J. et al. US Renal Data System 2011 annual data report. Am. J. Kidney Dis. 59, A7 (2012).
-
(2012)
Am. J. Kidney Dis.
, vol.59
, pp. A7
-
-
Collins, A.J.1
-
179
-
-
84982792098
-
Oxidative stress in diabetic nephropathy with early chronic kidney disease
-
Miranda-Diaz, A. G., Pazarin-Villasenor, L., Yanowsky-Escatell, F. G. & Andrade-Sierra, J. Oxidative stress in diabetic nephropathy with early chronic kidney disease. J. Diabetes Res. 2016, 7047238 (2016).
-
(2016)
J. Diabetes Res.
, vol.2016
, pp. 7047238
-
-
Miranda-Diaz, A.G.1
Pazarin-Villasenor, L.2
Yanowsky-Escatell, F.G.3
Andrade-Sierra, J.4
-
180
-
-
84983781432
-
Tapping into mitochondria to find novel targets for diabetes complications
-
Flemming, N. B., Gallo, L. A., Ward, M. S. & Forbes, J. M. Tapping into mitochondria to find novel targets for diabetes complications. Curr. Drug Targets 17, 1341-1349 (2016).
-
(2016)
Curr. Drug Targets
, vol.17
, pp. 1341-1349
-
-
Flemming, N.B.1
Gallo, L.A.2
Ward, M.S.3
Forbes, J.M.4
-
181
-
-
84973558774
-
Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes
-
Coughlan, M. T. et al. Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes. Clin. Sci. (Lond.) 130, 711-720 (2016).
-
(2016)
Clin. Sci. (Lond.)
, vol.130
, pp. 711-720
-
-
Coughlan, M.T.1
-
182
-
-
84897380527
-
Mitochondrial dysfunction and mitophagy: The beginning and end to diabetic nephropathy?
-
Higgins, G. C. & Coughlan, M. T. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br. J. Pharmacol. 171, 1917-1942 (2014).
-
(2014)
Br. J. Pharmacol.
, vol.171
, pp. 1917-1942
-
-
Higgins, G.C.1
Coughlan, M.T.2
-
183
-
-
84992489196
-
Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease
-
Coughlan, M. T. & Sharma, K. Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease. Kidney Int. 90, 272-279 (2016).
-
(2016)
Kidney Int.
, vol.90
, pp. 272-279
-
-
Coughlan, M.T.1
Sharma, K.2
-
184
-
-
78349297565
-
Oxidative stress and diabetic complications
-
Giacco, F. & Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 107, 1058-1070 (2010).
-
(2010)
Circ. Res.
, vol.107
, pp. 1058-1070
-
-
Giacco, F.1
Brownlee, M.2
-
185
-
-
0035856980
-
Biochemistry and molecular cell biology of diabetic complications
-
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813-820 (2001).
-
(2001)
Nature
, vol.414
, pp. 813-820
-
-
Brownlee, M.1
-
186
-
-
20044383911
-
Effects of long-term Vitamin E supplementation on cardiovascular events and cancer: A randomized controlled trial
-
Lonn, E. et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 293, 1338-1347 (2005).
-
(2005)
JAMA
, vol.293
, pp. 1338-1347
-
-
Lonn, E.1
-
187
-
-
84966348914
-
The role of mitochondria in diabetic kidney disease
-
Hallan, S. & Sharma, K. The role of mitochondria in diabetic kidney disease. Curr. Diab. Rep. 16, 61 (2016).
-
(2016)
Curr. Diab. Rep.
, vol.16
, pp. 61
-
-
Hallan, S.1
Sharma, K.2
-
188
-
-
0019217651
-
Metabolic effects of large fructose loads in different parts of the rat nephron
-
Burch, H. B. et al. Metabolic effects of large fructose loads in different parts of the rat nephron. J. Biol. Chem. 255, 8239-8244 (1980).
-
(1980)
J. Biol. Chem.
, vol.255
, pp. 8239-8244
-
-
Burch, H.B.1
-
189
-
-
84908075908
-
Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy
-
Lanaspa, M. A. et al. Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy. J. Am. Soc. Nephrol. 25, 2526-2538 (2014).
-
(2014)
J. Am. Soc. Nephrol.
, vol.25
, pp. 2526-2538
-
-
Lanaspa, M.A.1
-
190
-
-
69249216656
-
Ketohexokinase: Expression and localization of the principal fructose-metabolizing enzyme
-
Diggle, C. P. et al. Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme. J. Histochem. Cytochem. 57, 763-774 (2009).
-
(2009)
J. Histochem. Cytochem.
, vol.57
, pp. 763-774
-
-
Diggle, C.P.1
-
191
-
-
84958850926
-
Mitochondrial dynamics and metabolic regulation
-
Wai, T. & Langer, T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27, 105-117 (2016).
-
(2016)
Trends Endocrinol. Metab.
, vol.27
, pp. 105-117
-
-
Wai, T.1
Langer, T.2
-
192
-
-
84863023552
-
Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells
-
Wang, W. et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 15, 186-200 (2012).
-
(2012)
Cell Metab.
, vol.15
, pp. 186-200
-
-
Wang, W.1
-
193
-
-
84862691443
-
Early protective effect of mitofusion 2 overexpression in STZ-induced diabetic rat kidney
-
Tang, W. X., Wu, W. H., Zeng, X. X., Bo, H. & Huang, S. M. Early protective effect of mitofusion 2 overexpression in STZ-induced diabetic rat kidney. Endocr 41, 236-247 (2012).
-
(2012)
Endocr
, vol.41
, pp. 236-247
-
-
Tang, W.X.1
Wu, W.H.2
Zeng, X.X.3
Bo, H.4
Huang, S.M.5
-
194
-
-
84911862896
-
IHG 1 increases mitochondrial fusion and bioenergetic function
-
Hickey, F. B. et al. IHG 1 increases mitochondrial fusion and bioenergetic function. Diabetes 63, 4314-4325 (2014).
-
(2014)
Diabetes
, vol.63
, pp. 4314-4325
-
-
Hickey, F.B.1
-
195
-
-
79960951730
-
IHG 1 promotes mitochondrial biogenesis by stabilizing PGC 1a
-
Hickey, F. B. et al. IHG 1 promotes mitochondrial biogenesis by stabilizing PGC 1a. J. Am. Soc. Nephrol. 22, 1475-1485 (2011).
-
(2011)
J. Am. Soc. Nephrol.
, vol.22
, pp. 1475-1485
-
-
Hickey, F.B.1
-
196
-
-
84929492282
-
Protective role of PGC 1a in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling
-
Guo, K. et al. Protective role of PGC 1a in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS ONE 10, e0125176 (2015).
-
(2015)
PLoS ONE
, vol.10
, pp. e0125176
-
-
Guo, K.1
-
197
-
-
85009804125
-
High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy
-
Imasawa, T. et al. High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy. FASEB J. 31, 294-307 (2017).
-
(2017)
FASEB J.
, vol.31
, pp. 294-307
-
-
Imasawa, T.1
-
198
-
-
85018371570
-
Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction
-
Qi, W. et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat. Med. 23, 753-762 (2017).
-
(2017)
Nat. Med.
, vol.23
, pp. 753-762
-
-
Qi, W.1
-
199
-
-
84994165720
-
Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury
-
Szeto, H. H. et al. Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury. Kidney Int. 90, 997-1011 (2016).
-
(2016)
Kidney Int.
, vol.90
, pp. 997-1011
-
-
Szeto, H.H.1
-
200
-
-
84863228208
-
AMPK activator AICAR ameliorates ischaemia reperfusion injury in the rat kidney
-
Lempiainen, J., Finckenberg, P., Levijoki, J. & Mervaala, E. AMPK activator AICAR ameliorates ischaemia reperfusion injury in the rat kidney. Br. J. Pharmacol. 166, 1905-1915 (2012).
-
(2012)
Br. J. Pharmacol.
, vol.166
, pp. 1905-1915
-
-
Lempiainen, J.1
Finckenberg, P.2
Levijoki, J.3
Mervaala, E.4
-
201
-
-
84879621442
-
AMPK, insulin resistance, and the metabolic syndrome
-
Ruderman, N. B., Carling, D., Prentki, M. & Cacicedo, J. M. AMPK, insulin resistance, and the metabolic syndrome. J. Clin. Invest. 123, 2764-2772 (2013).
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 2764-2772
-
-
Ruderman, N.B.1
Carling, D.2
Prentki, M.3
Cacicedo, J.M.4
-
202
-
-
84887466140
-
AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function
-
Dugan, L. L. et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Invest. 123, 4888-4899 (2013).
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 4888-4899
-
-
Dugan, L.L.1
-
203
-
-
77449120223
-
Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3 LKB1 AMP-activated kinase pathway
-
Pillai, V. B. et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3 LKB1 AMP-activated kinase pathway. J. Biol. Chem. 285, 3133-3144 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 3133-3144
-
-
Pillai, V.B.1
-
204
-
-
77952940043
-
Diet and exercise signals regulate SIRT3 and activate AMPK and PGC 1a in skeletal muscle
-
Palacios, O. M. et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC 1a in skeletal muscle. Aging (Albany NY) 1, 771-783 (2009).
-
(2009)
Aging (Albany NY)
, vol.1
, pp. 771-783
-
-
Palacios, O.M.1
-
205
-
-
84864062918
-
Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism
-
Nogueiras, R. et al. Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol. Rev. 92, 1479-1514 (2012)
-
(2012)
Physiol. Rev.
, vol.92
, pp. 1479-1514
-
-
Nogueiras, R.1
-
206
-
-
84961291233
-
Sirtuin 3 dependent mitochondrial dynamic improvements protect against acute kidney injury
-
Morigi, M. et al. Sirtuin 3 dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Invest. 125, 715-726 (2015).
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 715-726
-
-
Morigi, M.1
-
207
-
-
84900558337
-
Explicit role of peroxisome proliferator-activated receptor γ in gallic acid-mediated protection against ischemia-reperfusion-induced acute kidney injury in rats
-
Singh, J. P., Singh, A. P. & Bhatti, R. Explicit role of peroxisome proliferator-activated receptor γ in gallic acid-mediated protection against ischemia-reperfusion-induced acute kidney injury in rats. J. Surg. Res. 187, 631-639 (2014).
-
(2014)
J. Surg. Res.
, vol.187
, pp. 631-639
-
-
Singh, J.P.1
Singh, A.P.2
Bhatti, R.3
-
208
-
-
28544436514
-
Protective effect of peroxisome proliferator activated receptor γ agonists on diabetic and non-diabetic renal diseases
-
Chung, B. H. et al. Protective effect of peroxisome proliferator activated receptor γ agonists on diabetic and non-diabetic renal diseases. Nephrol. (Carlton, Vic.) 10 (Suppl.), S40-S43 (2005).
-
(2005)
Nephrol. (Carlton, Vic.)
, vol.10
, pp. S40-S43
-
-
Chung, B.H.1
-
209
-
-
0043074737
-
Agonists of peroxisome-proliferator activated receptor-γ reduce renal ischemia/reperfusion injury
-
Sivarajah, A. et al. Agonists of peroxisome-proliferator activated receptor-γ reduce renal ischemia/reperfusion injury. Am. J. Nephrol. 23, 267-276 (2003).
-
(2003)
Am. J. Nephrol.
, vol.23
, pp. 267-276
-
-
Sivarajah, A.1
-
210
-
-
0032506273
-
Mechanism of action of fibrates on lipid and lipoprotein metabolism
-
Staels, B. et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98, 2088-2093 (1998).
-
(1998)
Circulation
, vol.98
, pp. 2088-2093
-
-
Staels, B.1
-
211
-
-
79955763790
-
Bardoxolone methyl (BARD) ameliorates ischemic AKI and increases expression of protective genes Nrf2, PPARγ, and HO 1
-
Wu, Q. Q. et al. Bardoxolone methyl (BARD) ameliorates ischemic AKI and increases expression of protective genes Nrf2, PPARγ, and HO 1. Am. J. Physiol. Renal Physiol. 300, F1180-F1192 (2011).
-
(2011)
Am. J. Physiol. Renal Physiol.
, vol.300
, pp. F1180-F1192
-
-
Wu, Q.Q.1
-
212
-
-
84890946148
-
Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease
-
de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492-2503 (2013).
-
(2013)
N. Engl. J. Med.
, vol.369
, pp. 2492-2503
-
-
De Zeeuw, D.1
-
213
-
-
33646508121
-
PPARa agonist fenofibrate improves diabetic nephropathy in db/db mice
-
Park, C. W. et al. PPARa agonist fenofibrate improves diabetic nephropathy in db/db mice. Kidney Int. 69, 1511-1517 (2006).
-
(2006)
Kidney Int.
, vol.69
, pp. 1511-1517
-
-
Park, C.W.1
-
214
-
-
84929000506
-
The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease
-
Stadler, K., Goldberg, I. J. & Susztak, K. The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease. Curr. Diabetes Rep. 15, 40 (2015).
-
(2015)
Curr. Diabetes Rep.
, vol.15
, pp. 40
-
-
Stadler, K.1
Goldberg, I.J.2
Susztak, K.3
-
215
-
-
84962439016
-
Fenofibrate attenuates diabetic nephropathy in experimental diabetic rat's model via suppression of augmented TGF β1/Smad3 signaling pathway
-
Al Rasheed, N. M. et al. Fenofibrate attenuates diabetic nephropathy in experimental diabetic rat's model via suppression of augmented TGF β1/Smad3 signaling pathway. Arch. Physiol. Biochem. 122, 186-194 (2016).
-
(2016)
Arch. Physiol. Biochem.
, vol.122
, pp. 186-194
-
-
Al Rasheed, N.M.1
-
216
-
-
84900387354
-
Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC 1a in db/db mice
-
Hong, Y. A. et al. Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC 1a in db/db mice. PLoS ONE 9, e96147 (2014).
-
(2014)
PLoS ONE
, vol.9
, pp. e96147
-
-
Hong, Y.A.1
-
217
-
-
85032590955
-
Dyslipidemia in diabetic nephropathy
-
Kawanami, D., Matoba, K. & Utsunomiya, K. Dyslipidemia in diabetic nephropathy. Ren. Replace. Ther. 2, 16 (2016).
-
(2016)
Ren. Replace. Ther.
, vol.2
, pp. 16
-
-
Kawanami, D.1
Matoba, K.2
Utsunomiya, K.3
-
218
-
-
84939988400
-
Serendipity and the discovery of novel compounds that restore mitochondrial plasticity
-
Szeto, H. H. & Birk, A. V. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin. Pharmacol. Ther. 96, 672-683 (2014).
-
(2014)
Clin. Pharmacol. Ther.
, vol.96
, pp. 672-683
-
-
Szeto, H.H.1
Birk, A.V.2
-
219
-
-
84856011942
-
Conformational properties of cardiolipin-bound cytochrome c
-
Hanske, J. et al. Conformational properties of cardiolipin-bound cytochrome c. Proc. Natl Acad. Sci. USA 109, 125-130 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 125-130
-
-
Hanske, J.1
-
220
-
-
33947386195
-
Cardiolipin switch in mitochondria: Shutting off the reduction of cytochrome c and turning on the peroxidase activity
-
Basova, L. V. et al. Cardiolipin switch in mitochondria: shutting off the reduction of cytochrome c and turning on the peroxidase activity. Biochemistry 46, 3423-3434 (2007).
-
(2007)
Biochemistry
, vol.46
, pp. 3423-3434
-
-
Basova, L.V.1
-
221
-
-
37249013214
-
-
US National Library of Medicine.
-
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02436447 (2015).
-
(2015)
ClinicalTrials.gov
-
-
-
222
-
-
84885054027
-
NADPH oxidases, reactive oxygen species, and the kidney: Friend and foe
-
Sedeek, M., Nasrallah, R., Touyz, R. M. & Hebert, R. L. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J. Am. Soc. Nephrol. 24, 1512-1518 (2013).
-
(2013)
J. Am. Soc. Nephrol.
, vol.24
, pp. 1512-1518
-
-
Sedeek, M.1
Nasrallah, R.2
Touyz, R.M.3
Hebert, R.L.4
-
223
-
-
0035039772
-
Mitochondrial catalase and oxidative injury
-
Bai, J. & Cederbaum, A. I. Mitochondrial catalase and oxidative injury. Biol. Signals Recept. 10, 189-199 (2001).
-
(2001)
Biol. Signals Recept.
, vol.10
, pp. 189-199
-
-
Bai, J.1
Cederbaum, A.I.2
-
224
-
-
42049114034
-
Transcriptional paradigms in mammalian mitochondrial biogenesis and function
-
Scarpulla, R. C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 88, 611-638 (2008).
-
(2008)
Physiol. Rev.
, vol.88
, pp. 611-638
-
-
Scarpulla, R.C.1
-
225
-
-
34548495323
-
The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures
-
Kaufman, B. A. et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol. Biol. Cell 18, 3225-3236 (2007).
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 3225-3236
-
-
Kaufman, B.A.1
-
226
-
-
0028011017
-
Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: A potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis
-
Virbasius, J. V. & Scarpulla, R. C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl Acad. Sci. USA 91, 1309-1313 (1994).
-
(1994)
Proc. Natl Acad. Sci. USA
, vol.91
, pp. 1309-1313
-
-
Virbasius, J.V.1
Scarpulla, R.C.2
-
227
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC 1
-
Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC 1. Cell 98, 115-124 (1999).
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
-
228
-
-
0036289911
-
Acute and chronic treatment of ob/ob and db/db mice with AICAR decreases blood glucose concentrations
-
Halseth, A. E., Ensor, N. J., White, T. A., Ross, S. A. & Gulve, E. A. Acute and chronic treatment of ob/ob and db/db mice with AICAR decreases blood glucose concentrations. Biochem. Biophys. Res. Commun. 294, 798-805 (2002).
-
(2002)
Biochem. Biophys. Res. Commun.
, vol.294
, pp. 798-805
-
-
Halseth, A.E.1
Ensor, N.J.2
White, T.A.3
Ross, S.A.4
Gulve, E.A.5
-
229
-
-
28044452217
-
Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial
-
Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366, 1849-1861 (2005).
-
(2005)
Lancet
, vol.366
, pp. 1849-1861
-
-
Keech, A.1
|