메뉴 건너뛰기




Volumn 13, Issue 10, 2017, Pages 629-646

Mitochondrial energetics in the kidney

Author keywords

[No Author keywords available]

Indexed keywords

5 AMINO 4 IMIDAZOLECARBOXAMIDE RIBOSIDE; ADENOSINE TRIPHOSPHATE; ELAMIPRETIDE; FENOFIBRATE; FORMOTEROL; G PROTEIN COUPLED RECEPTOR; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; MAMMALIAN TARGET OF RAPAMYCIN; N (3 DIMETHYLAMINO 2,3,4,9 TETRAHYDRO 1H CARBAZOL 6 YL) 4 FLUOROBENZAMIDE; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR AGONIST; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; SIRTUIN 3;

EID: 85030439191     PISSN: 17595061     EISSN: 1759507X     Source Type: Journal    
DOI: 10.1038/nrneph.2017.107     Document Type: Review
Times cited : (857)

References (229)
  • 1
    • 78651322531 scopus 로고    scopus 로고
    • Specific metabolic rates of major organs and tissues across adulthood: Evaluation by mechanistic model of resting energy expenditure
    • Wang, Z. M. et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr. 92, 1369-1377 (2010).
    • (2010) Am. J. Clin. Nutr. , vol.92 , pp. 1369-1377
    • Wang, Z.M.1
  • 2
    • 46349103594 scopus 로고    scopus 로고
    • A mitochondrial protein compendium elucidates complex I disease biology
    • Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112-123 (2008).
    • (2008) Cell , vol.134 , pp. 112-123
    • Pagliarini, D.J.1
  • 3
    • 33748883938 scopus 로고    scopus 로고
    • Renal oxygen delivery: Matching delivery to metabolic demand
    • O'Connor, P. M. Renal oxygen delivery: matching delivery to metabolic demand. Clin. Exp. Pharmacol. Physiol. 33, 961-967 (2006).
    • (2006) Clin. Exp. Pharmacol. Physiol. , vol.33 , pp. 961-967
    • O'Connor, P.M.1
  • 4
    • 0022559183 scopus 로고
    • ATP and the regulation of renal cell function
    • Soltoff, S. P. ATP and the regulation of renal cell function. Annu. Rev. Physiol. 48, 9-31 (1986).
    • (1986) Annu. Rev. Physiol. , vol.48 , pp. 9-31
    • Soltoff, S.P.1
  • 5
    • 0041850110 scopus 로고    scopus 로고
    • Glomerular filtration: An overview
    • quiz 281-282
    • Holechek, M. J. et al. Glomerular filtration: an overview. Nephrol. Nurs. J. 30, 285-290, quiz 281-282 (2003).
    • (2003) Nephrol. Nurs. J. , vol.30 , pp. 285-290
    • Holechek, M.J.1
  • 6
    • 33746620461 scopus 로고    scopus 로고
    • (De)constructing mitochondria: What for?
    • Dimmer, K. S. & Scorrano, L. (De)constructing mitochondria: what for? Physiol. (Bethesda) 21, 233-241 (2006).
    • (2006) Physiol. (Bethesda) , vol.21 , pp. 233-241
    • Dimmer, K.S.1    Scorrano, L.2
  • 8
    • 0033697284 scopus 로고    scopus 로고
    • Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury
    • Weinberg, J. M. et al. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury. Am. J. Physiol. Renal Physiol. 279, F927-F943 (2000).
    • (2000) Am. J. Physiol. Renal Physiol. , vol.279 , pp. F927-F943
    • Weinberg, J.M.1
  • 10
    • 85019568033 scopus 로고    scopus 로고
    • Modeling glucose metabolism and lactate production in the kidney
    • Chen, Y., Fry, B. C. & Layton, A. T. Modeling glucose metabolism and lactate production in the kidney. Math. Biosci. 289, 116-129 (2017).
    • (2017) Math. Biosci. , vol.289 , pp. 116-129
    • Chen, Y.1    Fry, B.C.2    Layton, A.T.3
  • 11
    • 76249133903 scopus 로고    scopus 로고
    • Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: Therapeutic implications
    • Gerich, J. E. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med. 27, 136-142 (2010).
    • (2010) Diabet Med. , vol.27 , pp. 136-142
    • Gerich, J.E.1
  • 12
    • 0033825826 scopus 로고    scopus 로고
    • Inner medullary lactate production and accumulation: A vasa recta model
    • Thomas, S. R. Inner medullary lactate production and accumulation: a vasa recta model. Am. J. Physiol. Renal Physiol. 279, F468-F481 (2000).
    • (2000) Am. J. Physiol. Renal Physiol. , vol.279 , pp. F468-F481
    • Thomas, S.R.1
  • 13
    • 0022627453 scopus 로고
    • Glucose metabolism in renal tubular function
    • Ross, B. D., Espinal, J. & Silva, P. Glucose metabolism in renal tubular function. Kidney Int. 29, 54-67 (1986).
    • (1986) Kidney Int. , vol.29 , pp. 54-67
    • Ross, B.D.1    Espinal, J.2    Silva, P.3
  • 14
    • 84886581971 scopus 로고    scopus 로고
    • Misconceptions about aerobic and anaerobic energy expenditure
    • Scott, C. Misconceptions about aerobic and anaerobic energy expenditure. J. Int. Soc. Sports Nutr. 2, 32 (2005).
    • (2005) J. Int. Soc. Sports Nutr. , vol.2 , pp. 32
    • Scott, C.1
  • 15
    • 0022521185 scopus 로고
    • Renal substrate metabolism
    • Wirthensohn, G. & Guder, W. G. Renal substrate metabolism. Physiol. Rev. 66, 469-497 (1986).
    • (1986) Physiol. Rev. , vol.66 , pp. 469-497
    • Wirthensohn, G.1    Guder, W.G.2
  • 16
    • 0021619876 scopus 로고
    • Enzyme distribution along the nephron
    • Guder, W. G. & Ross, B. D. Enzyme distribution along the nephron. Kidney Int. 26, 101-111 (1984).
    • (1984) Kidney Int. , vol.26 , pp. 101-111
    • Guder, W.G.1    Ross, B.D.2
  • 18
    • 84966528862 scopus 로고    scopus 로고
    • Alteration of fatty acid oxidation in tubular epithelial cells: From acute kidney injury to renal fibrogenesis
    • Simon, N. & Hertig, A. Alteration of fatty acid oxidation in tubular epithelial cells: from acute kidney injury to renal fibrogenesis. Front. Med. (Lausanne) 2, 52 (2015).
    • (2015) Front. Med. (Lausanne) , vol.2 , pp. 52
    • Simon, N.1    Hertig, A.2
  • 19
    • 57349187680 scopus 로고    scopus 로고
    • CD36 is one of important receptors promoting renal tubular injury by advanced oxidation protein products
    • Iwao, Y. et al. CD36 is one of important receptors promoting renal tubular injury by advanced oxidation protein products. Am. J. Physiol. Renal Physiol. 295, F1871-F1880 (2008).
    • (2008) Am. J. Physiol. Renal Physiol. , vol.295 , pp. F1871-F1880
    • Iwao, Y.1
  • 21
    • 84969544773 scopus 로고    scopus 로고
    • Mitochondria-power players in kidney function?
    • Forbes, J. M. Mitochondria-power players in kidney function? Trends Endocrinol. Metab. 27, 441-442 (2016).
    • (2016) Trends Endocrinol. Metab. , vol.27 , pp. 441-442
    • Forbes, J.M.1
  • 22
    • 77954086433 scopus 로고    scopus 로고
    • Renal lipid metabolism and lipotoxicity
    • Bobulescu, I. A. Renal lipid metabolism and lipotoxicity. Curr. Opin. Nephrol. Hypertens. 19, 393-402 (2010).
    • (2010) Curr. Opin. Nephrol. Hypertens. , vol.19 , pp. 393-402
    • Bobulescu, I.A.1
  • 23
    • 33750580307 scopus 로고    scopus 로고
    • Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes
    • Proctor, G. et al. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes 55, 2502-2509 (2006).
    • (2006) Diabetes , vol.55 , pp. 2502-2509
    • Proctor, G.1
  • 24
    • 9644254466 scopus 로고    scopus 로고
    • Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-γ
    • Arici, M., Chana, R., Lewington, A., Brown, J. & Brunskill, N. J. Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-γ. J. Am. Soc. Nephrol. 14, 17-27 (2003).
    • (2003) J. Am. Soc. Nephrol. , vol.14 , pp. 17-27
    • Arici, M.1    Chana, R.2    Lewington, A.3    Brown, J.4    Brunskill, N.J.5
  • 25
    • 84900560375 scopus 로고    scopus 로고
    • Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis
    • Ruggiero, C. et al. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis. Am. J. Physiol. Renal Physiol. 306, F896-F906 (2014).
    • (2014) Am. J. Physiol. Renal Physiol. , vol.306 , pp. F896-F906
    • Ruggiero, C.1
  • 26
    • 0027765905 scopus 로고
    • Invited review free radicals in disease processes: A compilation of cause and consequence
    • Gutteridge, J. M. C. & Halliwell, B. Invited review free radicals in disease processes: a compilation of cause and consequence. Free Radic. Res. Commun. 19, 141-158 (1993).
    • (1993) Free Radic. Res. Commun. , vol.19 , pp. 141-158
    • Gutteridge, J.M.C.1    Halliwell, B.2
  • 27
    • 84857116578 scopus 로고    scopus 로고
    • Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
    • Ray, P. D., Huang, B. W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981-990 (2012).
    • (2012) Cell. Signal. , vol.24 , pp. 981-990
    • Ray, P.D.1    Huang, B.W.2    Tsuji, Y.3
  • 28
    • 84901316606 scopus 로고    scopus 로고
    • Cellular mechanisms and physiological consequences of redox-dependent signalling
    • Holmstrom, K. M. & Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell. Biol. 15, 411-421 (2014).
    • (2014) Nat. Rev. Mol. Cell. Biol. , vol.15 , pp. 411-421
    • Holmstrom, K.M.1    Finkel, T.2
  • 29
    • 84882236393 scopus 로고    scopus 로고
    • Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic
    • Ruiz, S. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic. Kidney Int. 83, 1029-1041 (2013).
    • (2013) Kidney Int. , vol.83 , pp. 1029-1041
    • Ruiz, S.1
  • 30
    • 0015694842 scopus 로고
    • Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization
    • Weisiger, R. A. & Fridovich, I. Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J. Biol. Chem. 248, 4793-4796 (1973).
    • (1973) J. Biol. Chem. , vol.248 , pp. 4793-4796
    • Weisiger, R.A.1    Fridovich, I.2
  • 31
    • 84890074607 scopus 로고    scopus 로고
    • Expression of oxidative stress and antioxidant defense genes in the kidney of inbred mice after intestinal ischemia and reperfusion
    • Teruya, R. et al. Expression of oxidative stress and antioxidant defense genes in the kidney of inbred mice after intestinal ischemia and reperfusion. Acta Cir. Bras. 28, 848-855 (2013).
    • (2013) Acta Cir. Bras. , vol.28 , pp. 848-855
    • Teruya, R.1
  • 33
    • 84869110746 scopus 로고    scopus 로고
    • Glutathione homeostasis and functions: Potential targets for medical interventions
    • Lushchak, V. I. Glutathione homeostasis and functions: potential targets for medical interventions. J. Amino Acids 2012, 26 (2012).
    • (2012) J. Amino Acids , vol.2012 , pp. 26
    • Lushchak, V.I.1
  • 34
    • 66449110388 scopus 로고    scopus 로고
    • Glutathione peroxidase 1 regulates mitochondrial function to modulate
    • Handy, D. E. et al. Glutathione peroxidase 1 regulates mitochondrial function to modulate. J. Biol. Chem. 284, 11913-11921 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 11913-11921
    • Handy, D.E.1
  • 35
    • 84867564026 scopus 로고    scopus 로고
    • Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria
    • Fedorenko, A., Lishko, P. V. & Kirichok, Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151, 400-413 (2012).
    • (2012) Cell , vol.151 , pp. 400-413
    • Fedorenko, A.1    Lishko, P.V.2    Kirichok, Y.3
  • 36
    • 25144476923 scopus 로고    scopus 로고
    • Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3
    • Brand, M. D. & Esteves, T. C. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2, 85-93 (2005).
    • (2005) Cell Metab. , vol.2 , pp. 85-93
    • Brand, M.D.1    Esteves, T.C.2
  • 37
    • 4043147798 scopus 로고    scopus 로고
    • Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins
    • Brand, M. D. et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic. Biol. Med. 37, 755-767 (2004).
    • (2004) Free Radic. Biol. Med. , vol.37 , pp. 755-767
    • Brand, M.D.1
  • 38
    • 85030541576 scopus 로고    scopus 로고
    • UCP2 attenuates apoptosis of tubular epithelial cells in renal ischemia/reperfusion injury
    • Zhou, Y. et al. UCP2 attenuates apoptosis of tubular epithelial cells in renal ischemia/reperfusion injury. Am. J. Physiol. Renal Physiol. http://dx.doi.org/10.1152/ajprenal.00118.2017 (2017).
    • (2017) Am. J. Physiol. Renal Physiol.
    • Zhou, Y.1
  • 39
    • 84941648798 scopus 로고    scopus 로고
    • Polymorphisms of the UCP2 gene are associated with glomerular filtration rate in type 2 diabetic patients and with decreased UCP2 gene expression in human kidney
    • Souza, B. M. d. et al. Polymorphisms of the UCP2 gene are associated with glomerular filtration rate in type 2 diabetic patients and with decreased UCP2 gene expression in human kidney. PLoS ONE 10, e0132938 (2015).
    • (2015) PLoS ONE , vol.10 , pp. e0132938
    • Souza, B.M.D.1
  • 40
    • 0142166332 scopus 로고    scopus 로고
    • Targeting HIF 1 for cancer therapy
    • Semenza, G. L. Targeting HIF 1 for cancer therapy. Nat. Rev. Cancer 3, 721-732 (2003).
    • (2003) Nat. Rev. Cancer , vol.3 , pp. 721-732
    • Semenza, G.L.1
  • 41
    • 33746655373 scopus 로고    scopus 로고
    • Hypoxia-inducible factors in the kidney
    • Haase, V. H. Hypoxia-inducible factors in the kidney. Am. J. Physiol. Renal Physiol. 291, F271-F281 (2006).
    • (2006) Am. J. Physiol. Renal Physiol. , vol.291 , pp. F271-F281
    • Haase, V.H.1
  • 42
    • 34347227058 scopus 로고    scopus 로고
    • Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1
    • Semenza, G. L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem. J. 405, 1-9 (2007).
    • (2007) Biochem. J. , vol.405 , pp. 1-9
    • Semenza, G.L.1
  • 43
    • 0032578458 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species trigger hypoxia-induced transcription
    • Chandel, N. S. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA 95, 11715-11720 (1998).
    • (1998) Proc. Natl Acad. Sci. USA , vol.95 , pp. 11715-11720
    • Chandel, N.S.1
  • 44
    • 0034682786 scopus 로고    scopus 로고
    • Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor 1a during hypoxia: A mechanism of O2 sensing
    • Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor 1a during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130-25138 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 25130-25138
    • Chandel, N.S.1
  • 45
    • 40949126440 scopus 로고    scopus 로고
    • Mitochondrial complex III regulates hypoxic activation of HIF
    • Klimova, T. & Chandel, N. S. Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ. 15, 660-666 (2008).
    • (2008) Cell Death Differ. , vol.15 , pp. 660-666
    • Klimova, T.1    Chandel, N.S.2
  • 46
    • 84980383473 scopus 로고    scopus 로고
    • Roles of mTOR complexes in the kidney: Implications for renal disease and transplantation
    • Fantus, D., Rogers, N. M., Grahammer, F., Huber, T. B. & Thomson, A. W. Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat. Rev. Nephrol. 12, 587-609 (2016).
    • (2016) Nat. Rev. Nephrol. , vol.12 , pp. 587-609
    • Fantus, D.1    Rogers, N.M.2    Grahammer, F.3    Huber, T.B.4    Thomson, A.W.5
  • 47
    • 84967184685 scopus 로고    scopus 로고
    • Adenosine monophosphate-activated protein kinase in diabetic nephropathy
    • Kim, Y. & Park, C. W. Adenosine monophosphate-activated protein kinase in diabetic nephropathy. Kidney Res. Clin. Pract. 35, 69-77 (2016).
    • (2016) Kidney Res. Clin. Pract. , vol.35 , pp. 69-77
    • Kim, Y.1    Park, C.W.2
  • 48
    • 84969208677 scopus 로고    scopus 로고
    • MTORC2 critically regulates renal potassium handling
    • Grahammer, F. et al. mTORC2 critically regulates renal potassium handling. J. Clin. Invest. 126, 1773-1782 (2016).
    • (2016) J. Clin. Invest. , vol.126 , pp. 1773-1782
    • Grahammer, F.1
  • 49
    • 84920380185 scopus 로고    scopus 로고
    • MTORC2 regulates renal tubule sodium uptake by promoting ENaC activity
    • Gleason, C. E. et al. mTORC2 regulates renal tubule sodium uptake by promoting ENaC activity. J. Clin. Invest. 125, 117-128 (2015).
    • (2015) J. Clin. Invest. , vol.125 , pp. 117-128
    • Gleason, C.E.1
  • 50
    • 36749081539 scopus 로고    scopus 로고
    • MTOR controls mitochondrial oxidative function through a YY1 PGC 1a transcriptional complex
    • Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1 PGC 1a transcriptional complex. Nature 450, 736-740 (2007).
    • (2007) Nature , vol.450 , pp. 736-740
    • Cunningham, J.T.1
  • 51
    • 84903957218 scopus 로고    scopus 로고
    • MTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress
    • Grahammer, F. et al. mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress. Proc. Natl Acad. Sci. USA 111, E2817-E2826 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. E2817-E2826
    • Grahammer, F.1
  • 52
    • 80053035284 scopus 로고    scopus 로고
    • AMP-activated protein kinase: An energy sensor that regulates all aspects of cell function
    • Hardie, D. G. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 25, 1895-1908 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 1895-1908
    • Hardie, D.G.1
  • 53
    • 80052511813 scopus 로고    scopus 로고
    • The AMP-activated protein kinase (AMPK) signaling pathway coordinates cell growth, autophagy and metabolism
    • Mihaylova, M. M. & Shaw, R. J. The AMP-activated protein kinase (AMPK) signaling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016-1023 (2011).
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1016-1023
    • Mihaylova, M.M.1    Shaw, R.J.2
  • 54
    • 34547545892 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC 1a
    • Jager, S., Handschin, C., St Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC 1a. Proc. Natl Acad. Sci. USA 104, 12017-12022 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 12017-12022
    • Jager, S.1    Handschin, C.2    St Pierre, J.3    Spiegelman, B.M.4
  • 55
    • 84877578621 scopus 로고    scopus 로고
    • Rheb regulates mitophagy induced by mitochondrial energetic status
    • Melser, S. et al. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab. 17, 719-730 (2013).
    • (2013) Cell Metab. , vol.17 , pp. 719-730
    • Melser, S.1
  • 56
    • 79957960940 scopus 로고    scopus 로고
    • Metabolic control of mitochondrial biogenesis through the PGC 1 family regulatory network
    • Scarpulla, R. C. Metabolic control of mitochondrial biogenesis through the PGC 1 family regulatory network. Biochim. Biophys. Acta 1813, 1269-1278 (2011).
    • (2011) Biochim. Biophys. Acta , vol.1813 , pp. 1269-1278
    • Scarpulla, R.C.1
  • 57
    • 84865414333 scopus 로고    scopus 로고
    • Transcriptional integration of mitochondrial biogenesis
    • Scarpulla, R. C., Vega, R. B. & Kelly, D. P. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 23, 459-466 (2012).
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 459-466
    • Scarpulla, R.C.1    Vega, R.B.2    Kelly, D.P.3
  • 58
    • 85024387657 scopus 로고    scopus 로고
    • Loss of renal tubular PGC 1a exacerbates diet-induced renal steatosis and age-related urinary sodium excretion in mice
    • Svensson, K., Schnyder, S., Cardel, B. & Handschin, C. Loss of renal tubular PGC 1a exacerbates diet-induced renal steatosis and age-related urinary sodium excretion in mice. PLoS ONE 11, e0158716 (2016).
    • (2016) PLoS ONE , vol.11 , pp. e0158716
    • Svensson, K.1    Schnyder, S.2    Cardel, B.3    Handschin, C.4
  • 59
    • 33847253895 scopus 로고    scopus 로고
    • PGC 1a over-expression promotes recovery from mitochondrial dysfunction and cell injury
    • Rasbach, K. A. & Schnellmann, R. G. PGC 1a over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem. Biophys. Res. Commun. 355, 734-739 (2007).
    • (2007) Biochem. Biophys. Res. Commun. , vol.355 , pp. 734-739
    • Rasbach, K.A.1    Schnellmann, R.G.2
  • 60
    • 84949115098 scopus 로고    scopus 로고
    • PPARs and ERRs: Molecular mediators of mitochondrial metabolism
    • Fan, W. & Evans, R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr. Opin. Cell Biol. 33, 49-54 (2015).
    • (2015) Curr. Opin. Cell Biol. , vol.33 , pp. 49-54
    • Fan, W.1    Evans, R.2
  • 61
    • 77951901129 scopus 로고    scopus 로고
    • Structural overview of the nuclear receptor superfamily: Insights into physiology and therapeutics
    • Huang, P., Chandra, V. & Rastinejad, F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72, 247-272 (2010).
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 247-272
    • Huang, P.1    Chandra, V.2    Rastinejad, F.3
  • 62
    • 0033977890 scopus 로고    scopus 로고
    • The coactivator PGC 1 cooperates with peroxisome proliferator-activated receptor a in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
    • Vega, R. B., Huss, J. M. & Kelly, D. P. The coactivator PGC 1 cooperates with peroxisome proliferator-activated receptor a in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol. 20, 1868-1876 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 1868-1876
    • Vega, R.B.1    Huss, J.M.2    Kelly, D.P.3
  • 63
    • 0037174798 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor coactivator 1a (PGC 1a) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and-γ. Identification of novel leucine-rich interaction motif within PGC 1a
    • Huss, J. M., Kopp, R. P. & Kelly, D. P. Peroxisome proliferator-activated receptor coactivator 1a (PGC 1a) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and-γ. Identification of novel leucine-rich interaction motif within PGC 1a. J. Biol. Chem. 277, 40265-40274 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 40265-40274
    • Huss, J.M.1    Kopp, R.P.2    Kelly, D.P.3
  • 64
    • 84954116598 scopus 로고    scopus 로고
    • Mitochondrial biogenesis as a pharmacological target: A new approach to acute and chronic diseases
    • Whitaker, R. M., Corum, D., Beeson, C. C. & Schnellmann, R. G. Mitochondrial biogenesis as a pharmacological target: A new approach to acute and chronic diseases. Annu. Rev. Pharmacol. Toxicol. 56, 229-249 (2016).
    • (2016) Annu. Rev. Pharmacol. Toxicol. , vol.56 , pp. 229-249
    • Whitaker, R.M.1    Corum, D.2    Beeson, C.C.3    Schnellmann, R.G.4
  • 65
    • 79953210362 scopus 로고    scopus 로고
    • Regulation of PGC 1a, a nodal regulator of mitochondrial biogenesis
    • Fernandez-Marcos, P. J. & Auwerx, J. Regulation of PGC 1a, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 93, 884S-890S (2011).
    • (2011) Am. J. Clin. Nutr. , vol.93 , pp. 884S-890S
    • Fernandez-Marcos, P.J.1    Auwerx, J.2
  • 66
    • 85003550776 scopus 로고    scopus 로고
    • Development of therapeutics that induce mitochondrial biogenesis for the treatment of acute and chronic degenerative diseases
    • Cameron, R. B., Beeson, C. C. & Schnellmann, R. G. Development of therapeutics that induce mitochondrial biogenesis for the treatment of acute and chronic degenerative diseases. J. Med. Chem. 59, 10411-10434 (2016).
    • (2016) J. Med. Chem. , vol.59 , pp. 10411-10434
    • Cameron, R.B.1    Beeson, C.C.2    Schnellmann, R.G.3
  • 67
    • 84923138740 scopus 로고    scopus 로고
    • New insights into PGC 1 coactivators: Redefining their role in the regulation of mitochondrial function and beyond
    • Villena, J. A. New insights into PGC 1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J. 282, 647-672 (2015).
    • (2015) FEBS J. , vol.282 , pp. 647-672
    • Villena, J.A.1
  • 68
    • 33644660537 scopus 로고    scopus 로고
    • PGC 1 coactivators: Inducible regulators of energy metabolism in health and disease
    • Finck, B. N. & Kelly, D. P. PGC 1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116, 615-622 (2006).
    • (2006) J. Clin. Invest. , vol.116 , pp. 615-622
    • Finck, B.N.1    Kelly, D.P.2
  • 69
    • 84901826020 scopus 로고    scopus 로고
    • Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis
    • Palikaras, K. & Tavernarakis, N. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 56, 182-188 (2014).
    • (2014) Exp. Gerontol. , vol.56 , pp. 182-188
    • Palikaras, K.1    Tavernarakis, N.2
  • 70
    • 13444271923 scopus 로고    scopus 로고
    • Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress
    • Lee, H. C. & Wei, Y. H. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int. J. Biochem. Cell Biol. 37, 822-834 (2005).
    • (2005) Int. J. Biochem. Cell Biol. , vol.37 , pp. 822-834
    • Lee, H.C.1    Wei, Y.H.2
  • 71
    • 55749084738 scopus 로고    scopus 로고
    • A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
    • Ahn, B. H. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA 105, 14447-14452 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 14447-14452
    • Ahn, B.H.1
  • 72
    • 77955347446 scopus 로고    scopus 로고
    • Sirtuin 3, a new target of PGC 1a, plays an important role in the suppression of ROS and mitochondrial biogenesis
    • Kong, X. et al. Sirtuin 3, a new target of PGC 1a, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS ONE http://dx.doi.org/10.1371/journal.pone.0011707 (2010).
    • (2010) PLoS ONE
    • Kong, X.1
  • 73
    • 0038810035 scopus 로고    scopus 로고
    • An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1a expression in muscle
    • Handschin, C., Rhee, J., Lin, J., Tarr, P. T. & Spiegelman, B. M. An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1a expression in muscle. Proc. Natl Acad. Sci. USA 100, 7111-7116 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 7111-7116
    • Handschin, C.1    Rhee, J.2    Lin, J.3    Tarr, P.T.4    Spiegelman, B.M.5
  • 74
    • 9344220484 scopus 로고    scopus 로고
    • Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals
    • Nisoli, E. et al. Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc. Natl Acad. Sci. USA 101, 16507-16512 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 16507-16512
    • Nisoli, E.1
  • 75
    • 26844558334 scopus 로고    scopus 로고
    • Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
    • Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314-317 (2005).
    • (2005) Science , vol.310 , pp. 314-317
    • Nisoli, E.1
  • 76
    • 84887985169 scopus 로고    scopus 로고
    • CGMP-selective phosphodiesterase inhibitors stimulate mitochondrial biogenesis and promote recovery from acute kidney injury
    • Whitaker, R. M., Wills, L. P., Stallons, L. J. & Schnellmann, R. G. cGMP-selective phosphodiesterase inhibitors stimulate mitochondrial biogenesis and promote recovery from acute kidney injury. J. Pharmacol. Exp. Ther. 347, 626-634 (2013).
    • (2013) J. Pharmacol. Exp. Ther. , vol.347 , pp. 626-634
    • Whitaker, R.M.1    Wills, L.P.2    Stallons, L.J.3    Schnellmann, R.G.4
  • 77
    • 16844366524 scopus 로고    scopus 로고
    • Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
    • Lemasters, J. J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuven. Res. 8, 3-5 (2005).
    • (2005) Rejuven. Res. , vol.8 , pp. 3-5
    • Lemasters, J.J.1
  • 78
    • 0033772264 scopus 로고    scopus 로고
    • OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28
    • Alexander, C. et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26, 211-215 (2000).
    • (2000) Nat. Genet. , vol.26 , pp. 211-215
    • Alexander, C.1
  • 79
    • 20244381365 scopus 로고    scopus 로고
    • Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy
    • Delettre, C. et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26, 207-210 (2000).
    • (2000) Nat. Genet. , vol.26 , pp. 207-210
    • Delettre, C.1
  • 81
    • 84908250304 scopus 로고    scopus 로고
    • Determinants and functions of mitochondrial behavior
    • Labbe, K., Murley, A. & Nunnari, J. Determinants and functions of mitochondrial behavior. Annu. Rev. Cell Dev. Biol. 30, 357-391 (2014).
    • (2014) Annu. Rev. Cell Dev. Biol. , vol.30 , pp. 357-391
    • Labbe, K.1    Murley, A.2    Nunnari, J.3
  • 82
    • 84869030015 scopus 로고    scopus 로고
    • Fusion and fission: Interlinked processes critical for mitochondrial health
    • Chan, D. C. Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46, 265-287 (2012).
    • (2012) Annu. Rev. Genet. , vol.46 , pp. 265-287
    • Chan, D.C.1
  • 83
    • 34247525092 scopus 로고    scopus 로고
    • A lethal defect of mitochondrial and peroxisomal fission
    • Waterham, H. R. et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356, 1736-1741 (2007).
    • (2007) N. Engl. J. Med. , vol.356 , pp. 1736-1741
    • Waterham, H.R.1
  • 84
    • 0842325793 scopus 로고    scopus 로고
    • Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells
    • Rossignol, R. et al. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res. 64, 985-993 (2004).
    • (2004) Cancer Res. , vol.64 , pp. 985-993
    • Rossignol, R.1
  • 85
    • 84897538678 scopus 로고    scopus 로고
    • Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation
    • Mishra, P., Carelli, V., Manfredi, G. & Chan, D. C. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 19, 630-641 (2014).
    • (2014) Cell Metab. , vol.19 , pp. 630-641
    • Mishra, P.1    Carelli, V.2    Manfredi, G.3    Chan, D.C.4
  • 86
    • 64649093169 scopus 로고    scopus 로고
    • Mitochondrial dynamics and neurodegeneration
    • Lu, B. Mitochondrial dynamics and neurodegeneration. Curr. Neurol. Neurosci. Rep. 9, 212-219 (2009).
    • (2009) Curr. Neurol. Neurosci. Rep. , vol.9 , pp. 212-219
    • Lu, B.1
  • 87
    • 84922903805 scopus 로고    scopus 로고
    • Mitoconfusion: Noncanonical functioning of dynamism factors in static mitochondria of the heart
    • Song, M. & Dorn, G. W. II. Mitoconfusion: noncanonical functioning of dynamism factors in static mitochondria of the heart. Cell Metab. 21, 195-205 (2015).
    • (2015) Cell Metab. , vol.21 , pp. 195-205
    • Song, M.1    Dorn, G.W.2
  • 88
    • 84922627875 scopus 로고    scopus 로고
    • Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging
    • Ziegler, D. V., Wiley, C. D. & Velarde, M. C. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell 14, 1-7 (2015).
    • (2015) Aging Cell , vol.14 , pp. 1-7
    • Ziegler, D.V.1    Wiley, C.D.2    Velarde, M.C.3
  • 89
    • 33749265862 scopus 로고    scopus 로고
    • Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1
    • Yoon, Y. S. et al. Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 209, 468-480 (2006).
    • (2006) J. Cell. Physiol. , vol.209 , pp. 468-480
    • Yoon, Y.S.1
  • 90
    • 84962821248 scopus 로고    scopus 로고
    • Mitochondrial quality control and muscle mass maintenance
    • Romanello, V. & Sandri, M. Mitochondrial quality control and muscle mass maintenance. Front. Physiol. http://dx.doi.org/10.3389/fphys.2015.00422 (2015).
    • (2015) Front. Physiol.
    • Romanello, V.1    Sandri, M.2
  • 91
    • 84924653249 scopus 로고    scopus 로고
    • Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels
    • Mourier, A. et al. Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. J. Cell Biol. 208, 429-442 (2015).
    • (2015) J. Cell Biol. , vol.208 , pp. 429-442
    • Mourier, A.1
  • 92
    • 84867032955 scopus 로고    scopus 로고
    • The intracellular redox state is a core determinant of mitochondrial fusion
    • Shutt, T., Geoffrion, M., Milne, R. & McBride, H. M. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep. 13, 909-915 (2012).
    • (2012) EMBO Rep. , vol.13 , pp. 909-915
    • Shutt, T.1    Geoffrion, M.2    Milne, R.3    McBride, H.M.4
  • 93
    • 34548313688 scopus 로고    scopus 로고
    • OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L
    • Song, Z., Chen, H., Fiket, M., Alexander, C. & Chan, D. C. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol. 178, 749-755 (2007).
    • (2007) J. Cell Biol. , vol.178 , pp. 749-755
    • Song, Z.1    Chen, H.2    Fiket, M.3    Alexander, C.4    Chan, D.C.5
  • 94
    • 84896264348 scopus 로고    scopus 로고
    • The i AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission
    • Anand, R. et al. The i AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204, 919-929 (2014).
    • (2014) J. Cell Biol. , vol.204 , pp. 919-929
    • Anand, R.1
  • 95
    • 33745699393 scopus 로고    scopus 로고
    • OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion
    • Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177-189 (2006).
    • (2006) Cell , vol.126 , pp. 177-189
    • Frezza, C.1
  • 96
    • 84903281183 scopus 로고    scopus 로고
    • Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling
    • Boissan, M. et al. Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science 344, 1510-1515 (2014).
    • (2014) Science , vol.344 , pp. 1510-1515
    • Boissan, M.1
  • 97
    • 84959516439 scopus 로고    scopus 로고
    • Metabolic regulation of mitochondrial dynamics
    • Mishra, P. & Chan, D. C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212, 379-387 (2016).
    • (2016) J. Cell Biol. , vol.212 , pp. 379-387
    • Mishra, P.1    Chan, D.C.2
  • 98
    • 49349102894 scopus 로고    scopus 로고
    • Mitochondrial fusion, fission and autophagy as a quality control axis: The bioenergetic view
    • Twig, G., Hyde, B. & Shirihai, O. S. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim. Biophys. Acta 1777, 1092-1097 (2008).
    • (2008) Biochim. Biophys. Acta , vol.1777 , pp. 1092-1097
    • Twig, G.1    Hyde, B.2    Shirihai, O.S.3
  • 99
    • 84875906572 scopus 로고    scopus 로고
    • Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
    • Liesa, M. & Shirihai, O. S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17, 491-506 (2013).
    • (2013) Cell Metab. , vol.17 , pp. 491-506
    • Liesa, M.1    Shirihai, O.S.2
  • 100
    • 78650987611 scopus 로고    scopus 로고
    • Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission
    • Mears, J. A. et al. Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 18, 20-26 (2011).
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 20-26
    • Mears, J.A.1
  • 101
    • 84875273810 scopus 로고    scopus 로고
    • New insights into the function and regulation of mitochondrial fission
    • Otera, H., Ishihara, N. & Mihara, K. New insights into the function and regulation of mitochondrial fission. Biochim. Biophys. Acta 1833, 1256-1268 (2013).
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 1256-1268
    • Otera, H.1    Ishihara, N.2    Mihara, K.3
  • 102
    • 84896739005 scopus 로고    scopus 로고
    • The mitochondrial fission receptor MiD51 requires ADP as a cofactor
    • Loson, O. C. et al. The mitochondrial fission receptor MiD51 requires ADP as a cofactor. Structure 22, 367-377 (2014).
    • (2014) Structure , vol.22 , pp. 367-377
    • Loson, O.C.1
  • 103
    • 84894080490 scopus 로고    scopus 로고
    • Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission
    • Richter, V. et al. Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission. J. Cell Biol. 204, 477-486 (2014).
    • (2014) J. Cell Biol. , vol.204 , pp. 477-486
    • Richter, V.1
  • 105
    • 77955298543 scopus 로고    scopus 로고
    • Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1
    • Chang, C. R. & Blackstone, C. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann. NY Acad. Sci. 1201, 34-39 (2010).
    • (2010) Ann. NY Acad. Sci. , vol.1201 , pp. 34-39
    • Chang, C.R.1    Blackstone, C.2
  • 106
    • 34547611925 scopus 로고    scopus 로고
    • Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology
    • Chang, C. R. & Blackstone, C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282, 21583-21587 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 21583-21587
    • Chang, C.R.1    Blackstone, C.2
  • 107
    • 84876942158 scopus 로고    scopus 로고
    • A calcineurin docking motif (LXVP) in dynamin-related protein 1 contributes to mitochondrial fragmentation and ischemic neuronal injury
    • Slupe, A. M. et al. A calcineurin docking motif (LXVP) in dynamin-related protein 1 contributes to mitochondrial fragmentation and ischemic neuronal injury. J. Biol. Chem. 288, 12353-12365 (2013).
    • (2013) J. Biol. Chem. , vol.288 , pp. 12353-12365
    • Slupe, A.M.1
  • 108
    • 57349160257 scopus 로고    scopus 로고
    • Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria
    • Cereghetti, G. M. et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl Acad. Sci. USA 105, 15803-15808 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 15803-15808
    • Cereghetti, G.M.1
  • 109
    • 84922776083 scopus 로고    scopus 로고
    • PINK1/Parkin-mediated mitophagy in mammalian cells
    • Eiyama, A. & Okamoto, K. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr. Opin. Cell Biol. 33, 95-101 (2015).
    • (2015) Curr. Opin. Cell Biol. , vol.33 , pp. 95-101
    • Eiyama, A.1    Okamoto, K.2
  • 110
    • 84859428688 scopus 로고    scopus 로고
    • Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
    • Greene, A. W. et al. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 13, 378-385 (2012).
    • (2012) EMBO Rep. , vol.13 , pp. 378-385
    • Greene, A.W.1
  • 111
    • 77951181836 scopus 로고    scopus 로고
    • PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
    • Matsuda, N. et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211-221 (2010).
    • (2010) J. Cell Biol. , vol.189 , pp. 211-221
    • Matsuda, N.1
  • 112
    • 75749156257 scopus 로고    scopus 로고
    • PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
    • Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).
    • (2010) PLoS Biol. , vol.8 , pp. e1000298
    • Narendra, D.P.1
  • 113
    • 84922794336 scopus 로고    scopus 로고
    • Phosphorylated ubiquitin chain is the genuine Parkin receptor
    • Okatsu, K. et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J. Cell Biol. 209, 111-128 (2015).
    • (2015) J. Cell Biol. , vol.209 , pp. 111-128
    • Okatsu, K.1
  • 114
    • 75949098487 scopus 로고    scopus 로고
    • PINK1 dependent recruitment of Parkin to mitochondria in mitophagy
    • Vives-Bauza, C. et al. PINK1 dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA 107, 378-383 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 378-383
    • Vives-Bauza, C.1
  • 115
    • 78650729600 scopus 로고    scopus 로고
    • Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
    • Tanaka, A. et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367-1380 (2010).
    • (2010) J. Cell Biol. , vol.191 , pp. 1367-1380
    • Tanaka, A.1
  • 117
    • 84898624312 scopus 로고    scopus 로고
    • Self and nonself: How autophagy targets mitochondria and bacteria
    • Randow, F. & Youle, R. J. Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 15, 403-411 (2014).
    • (2014) Cell Host Microbe , vol.15 , pp. 403-411
    • Randow, F.1    Youle, R.J.2
  • 118
    • 84876296881 scopus 로고    scopus 로고
    • Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
    • Sarraf, S. A. et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372-376 (2013).
    • (2013) Nature , vol.496 , pp. 372-376
    • Sarraf, S.A.1
  • 119
    • 79954520907 scopus 로고    scopus 로고
    • Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
    • Chan, N. C. et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20, 1726-1737 (2011).
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 1726-1737
    • Chan, N.C.1
  • 120
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461 (2011).
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1
  • 121
    • 84897493440 scopus 로고    scopus 로고
    • Rheb and mammalian target of rapamycin in mitochondrial homoeostasis
    • Groenewoud, M. J. & Zwartkruis, F. J. Rheb and mammalian target of rapamycin in mitochondrial homoeostasis. Open Biol. 3, 130185 (2013).
    • (2013) Open Biol. , vol.3 , pp. 130185
    • Groenewoud, M.J.1    Zwartkruis, F.J.2
  • 122
    • 84954318420 scopus 로고    scopus 로고
    • Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress
    • Toyama, E. Q. et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275-281 (2016).
    • (2016) Science , vol.351 , pp. 275-281
    • Toyama, E.Q.1
  • 123
    • 84960899335 scopus 로고    scopus 로고
    • AMPK promotes autophagy by facilitating mitochondrial fission
    • Zhang, C. S. & Lin, S. C. AMPK promotes autophagy by facilitating mitochondrial fission. Cell Metab. 23, 399-401 (2016).
    • (2016) Cell Metab. , vol.23 , pp. 399-401
    • Zhang, C.S.1    Lin, S.C.2
  • 124
    • 84899912073 scopus 로고    scopus 로고
    • A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
    • Chen, G. et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 54, 362-377 (2014).
    • (2014) Mol. Cell , vol.54 , pp. 362-377
    • Chen, G.1
  • 125
    • 84862789618 scopus 로고    scopus 로고
    • Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
    • Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177-185 (2012).
    • (2012) Nat. Cell Biol. , vol.14 , pp. 177-185
    • Liu, L.1
  • 126
    • 74049153002 scopus 로고    scopus 로고
    • Nix is a selective autophagy receptor for mitochondrial clearance
    • Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45-51 (2010).
    • (2010) EMBO Rep. , vol.11 , pp. 45-51
    • Novak, I.1
  • 127
    • 67549101188 scopus 로고    scopus 로고
    • Role of BNIP3 and NIX in cell death, autophagy, and mitophagy
    • Zhang, J. & Ney, P. A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 16, 939-946 (2009).
    • (2009) Cell Death Differ. , vol.16 , pp. 939-946
    • Zhang, J.1    Ney, P.A.2
  • 128
    • 79960006475 scopus 로고    scopus 로고
    • Bnip3 mediated defects in oxidative phosphorylation promote mitophagy
    • Thomas, R. L., Kubli, D. A. & Gustafsson, A. B. Bnip3 mediated defects in oxidative phosphorylation promote mitophagy. Autophagy 7, 775-777 (2011).
    • (2011) Autophagy , vol.7 , pp. 775-777
    • Thomas, R.L.1    Kubli, D.A.2    Gustafsson, A.B.3
  • 129
    • 84861733247 scopus 로고    scopus 로고
    • Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy
    • Hanna, R. A. et al. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 287, 19094-19104 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 19094-19104
    • Hanna, R.A.1
  • 130
    • 77953712088 scopus 로고    scopus 로고
    • Nix, a receptor protein for mitophagy in mammals
    • Kanki, T. Nix, a receptor protein for mitophagy in mammals. Autophagy 6, 433-435 (2010).
    • (2010) Autophagy , vol.6 , pp. 433-435
    • Kanki, T.1
  • 131
    • 78650890352 scopus 로고    scopus 로고
    • Regulation of autophagy by ROS: Physiology and pathology
    • Scherz-Shouval, R. & Elazar, Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Sci. 36, 30-38 (2011).
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 30-38
    • Scherz-Shouval, R.1    Elazar, Z.2
  • 132
    • 37248999267 scopus 로고    scopus 로고
    • Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb
    • Li, Y. et al. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J. Biol. Chem. 282, 35803-35813 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 35803-35813
    • Li, Y.1
  • 133
    • 34248998801 scopus 로고    scopus 로고
    • Functional and physical interaction between Bcl X(L) and a BH3 like domain in Beclin 1
    • Maiuri, M. C. et al. Functional and physical interaction between Bcl X(L) and a BH3 like domain in Beclin 1. EMBO J. 26, 2527-2539 (2007).
    • (2007) EMBO J. , vol.26 , pp. 2527-2539
    • Maiuri, M.C.1
  • 134
    • 84881619807 scopus 로고    scopus 로고
    • Sestrin 2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury
    • Ishihara, M. et al. Sestrin 2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am. J. Physiol. Renal Physiol. 305, F495-F509 (2013).
    • (2013) Am. J. Physiol. Renal Physiol. , vol.305 , pp. F495-F509
    • Ishihara, M.1
  • 135
    • 85021977742 scopus 로고    scopus 로고
    • Mitophagy: Basic mechanism and potential role in kidney diseases
    • Tang, C., He, L., Liu, J. & Dong, Z. Mitophagy: Basic Mechanism and Potential Role in Kidney Diseases. Kidney Diseases 1, 71-79 (2015).
    • (2015) Kidney Diseases , vol.1 , pp. 71-79
    • Tang, C.1    He, L.2    Liu, J.3    Dong, Z.4
  • 136
    • 84894038619 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in the pathophysiology of renal diseases
    • Che, R., Yuan, Y., Huang, S. & Zhang, A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am. J. Physiol.-Renal Physiol. 306, F367-F378 (2014).
    • (2014) Am. J. Physiol.-Renal Physiol. , vol.306 , pp. F367-F378
    • Che, R.1    Yuan, Y.2    Huang, S.3    Zhang, A.4
  • 137
    • 84971273422 scopus 로고    scopus 로고
    • Renoprotective approaches and strategies in acute kidney injury
    • Yang, Y. et al. Renoprotective approaches and strategies in acute kidney injury. Pharmacol. Ther. 163, 58-73 (2016).
    • (2016) Pharmacol. Ther. , vol.163 , pp. 58-73
    • Yang, Y.1
  • 138
    • 0023636281 scopus 로고
    • Risk factors and outcome of hospital-acquired acute renal failure. Clinical epidemiologic study
    • Shusterman, N. et al. Risk factors and outcome of hospital-acquired acute renal failure. Clinical epidemiologic study. Am. J. Med. 83, 65-71 (1987).
    • (1987) Am. J. Med. , vol.83 , pp. 65-71
    • Shusterman, N.1
  • 140
    • 0033977753 scopus 로고    scopus 로고
    • Acute renal failure in the new millennium: Time to consider combination therapy
    • Kelly, K. J. & Molitoris, B. A. Acute renal failure in the new millennium: time to consider combination therapy. Semin. Nephrol. 20, 4-19 (2000).
    • (2000) Semin. Nephrol. , vol.20 , pp. 4-19
    • Kelly, K.J.1    Molitoris, B.A.2
  • 141
    • 79953202436 scopus 로고    scopus 로고
    • Acute kidney injury: What's the prognosis?
    • Murugan, R. & Kellum, J. A. Acute kidney injury: what's the prognosis? Nat. Rev. Nephrol. 7, 209-217 (2011).
    • (2011) Nat. Rev. Nephrol. , vol.7 , pp. 209-217
    • Murugan, R.1    Kellum, J.A.2
  • 142
    • 44649128709 scopus 로고    scopus 로고
    • Diagnosis, epidemiology and outcomes of acute kidney injury
    • Waikar, S. S., Liu, K. D. & Chertow, G. M. Diagnosis, epidemiology and outcomes of acute kidney injury. Clin. J. Am. Soc. Nephrol. 3, 844-861 (2008).
    • (2008) Clin. J. Am. Soc. Nephrol. , vol.3 , pp. 844-861
    • Waikar, S.S.1    Liu, K.D.2    Chertow, G.M.3
  • 143
    • 84977098263 scopus 로고    scopus 로고
    • Acute kidney injury: Short-term and long-term effects
    • Doyle, J. F. & Forni, L. G. Acute kidney injury: short-term and long-term effects. Crit. Care 20, 188 (2016).
    • (2016) Crit. Care , vol.20 , pp. 188
    • Doyle, J.F.1    Forni, L.G.2
  • 144
    • 84896825627 scopus 로고    scopus 로고
    • Cardiovascular events after AKI: A new dimension
    • Hsu, C. & Liu, K. D. Cardiovascular events after AKI: a new dimension. J. Am. Soc. Nephrol. 25, 425-427 (2014).
    • (2014) J. Am. Soc. Nephrol. , vol.25 , pp. 425-427
    • Hsu, C.1    Liu, K.D.2
  • 146
    • 85028838223 scopus 로고    scopus 로고
    • Contrast-induced acute kidney injury in patients undergoing carotid artery stenting: An underestimated issue
    • Paraskevas, K. I. & Mikhailidis, D. P. Contrast-induced acute kidney injury in patients undergoing carotid artery stenting: an underestimated issue. Angiology http://dx.doi.org/10.1177/0003319716668934 (2016).
    • (2016) Angiology
    • Paraskevas, K.I.1    Mikhailidis, D.P.2
  • 149
    • 84983753053 scopus 로고    scopus 로고
    • Mitochondria: A therapeutic target in acute kidney injury
    • Ishimoto, Y. & Inagi, R. Mitochondria: a therapeutic target in acute kidney injury. Nephrol. Dial. Transplant. 31, 1062-1069 (2016).
    • (2016) Nephrol. Dial. Transplant. , vol.31 , pp. 1062-1069
    • Ishimoto, Y.1    Inagi, R.2
  • 150
    • 84955271606 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in inherited renal disease and acute kidney injury
    • Emma, F., Montini, G., Parikh, S. M. & Salviati, L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat. Rev. Nephrol. 12, 267-280 (2016).
    • (2016) Nat. Rev. Nephrol. , vol.12 , pp. 267-280
    • Emma, F.1    Montini, G.2    Parikh, S.M.3    Salviati, L.4
  • 151
    • 84859464827 scopus 로고    scopus 로고
    • Persistent disruption of mitochondrial homeostasis after acute kidney injury
    • Funk, J. A. & Schnellmann, R. G. Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am. J. Physiol. Renal Physiol. 302, F853-F864 (2012).
    • (2012) Am. J. Physiol. Renal Physiol. , vol.302 , pp. F853-F864
    • Funk, J.A.1    Schnellmann, R.G.2
  • 152
    • 80053402552 scopus 로고    scopus 로고
    • PGC 1a promotes recovery after acute kidney injury during systemic inflammation in mice
    • Tran, M. et al. PGC 1a promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Invest. 121, 4003-4014 (2011).
    • (2011) J. Clin. Invest. , vol.121 , pp. 4003-4014
    • Tran, M.1
  • 153
    • 84888206498 scopus 로고    scopus 로고
    • Therapeutic targeting of the mitochondrial dysfunction in septic acute kidney injury
    • Parikh, S. M. Therapeutic targeting of the mitochondrial dysfunction in septic acute kidney injury. Curr. Opin. Crit. Care 19, 554-559 (2013).
    • (2013) Curr. Opin. Crit. Care , vol.19 , pp. 554-559
    • Parikh, S.M.1
  • 154
    • 0023684184 scopus 로고
    • Fatty acid metabolism in renal ischemia
    • Ruidera, E. et al. Fatty acid metabolism in renal ischemia. Lipids 23, 882-884 (1988).
    • (1988) Lipids , vol.23 , pp. 882-884
    • Ruidera, E.1
  • 155
    • 23044471901 scopus 로고    scopus 로고
    • Triglyceride accumulation in injured renal tubular cells: Alterations in both synthetic and catabolic pathways
    • Johnson, A. C., Stahl, A. & Zager, R. A. Triglyceride accumulation in injured renal tubular cells: alterations in both synthetic and catabolic pathways. Kidney Int. 67, 2196-2209 (2005).
    • (2005) Kidney Int. , vol.67 , pp. 2196-2209
    • Johnson, A.C.1    Stahl, A.2    Zager, R.A.3
  • 156
    • 10944237672 scopus 로고    scopus 로고
    • Renal tubular triglyercide accumulation following endotoxic, toxic, and ischemic injury
    • Zager, R. A., Johnson, A. C. & Hanson, S. Y. Renal tubular triglyercide accumulation following endotoxic, toxic, and ischemic injury. Kidney Int. 67, 111-121 (2005).
    • (2005) Kidney Int. , vol.67 , pp. 111-121
    • Zager, R.A.1    Johnson, A.C.2    Hanson, S.Y.3
  • 157
    • 0033458684 scopus 로고    scopus 로고
    • Role of fatty acid beta-oxidation and calcium-independent phospholipase A2 in ischemic acute renal failure
    • Portilla, D. Role of fatty acid beta-oxidation and calcium-independent phospholipase A2 in ischemic acute renal failure. Curr. Opin. Nephrol. Hypertens. 8, 473-477 (1999).
    • (1999) Curr. Opin. Nephrol. Hypertens. , vol.8 , pp. 473-477
    • Portilla, D.1
  • 158
    • 84865096048 scopus 로고    scopus 로고
    • Stimulation of carnitine palmitoyltransferase 1 improves renal function and attenuates tissue damage after ischemia/reperfusion
    • Idrovo, J. P., Yang, W. L., Nicastro, J., Coppa, G. F. & Wang, P. Stimulation of carnitine palmitoyltransferase 1 improves renal function and attenuates tissue damage after ischemia/reperfusion. J. Surg. Res. 177, 157-164 (2012).
    • (2012) J. Surg. Res. , vol.177 , pp. 157-164
    • Idrovo, J.P.1    Yang, W.L.2    Nicastro, J.3    Coppa, G.F.4    Wang, P.5
  • 159
    • 84906062856 scopus 로고    scopus 로고
    • Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury
    • Smith, J. A., Stallons, L. J. & Schnellmann, R. G. Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 307, F435-F444 (2014).
    • (2014) Am. J. Physiol. Renal Physiol. , vol.307 , pp. F435-F444
    • Smith, J.A.1    Stallons, L.J.2    Schnellmann, R.G.3
  • 160
    • 84904110427 scopus 로고    scopus 로고
    • Renal cortical pyruvate depletion during AKI
    • Zager, R. A., Johnson, A. C. & Becker, K. Renal cortical pyruvate depletion during AKI. J. Am. Soc. Nephrol. 25, 998-1012 (2014).
    • (2014) J. Am. Soc. Nephrol. , vol.25 , pp. 998-1012
    • Zager, R.A.1    Johnson, A.C.2    Becker, K.3
  • 161
    • 84994638475 scopus 로고    scopus 로고
    • Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI
    • Lan, R. et al. Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J. Am. Soc. Nephrol. 27, 3356-3367 (2016).
    • (2016) J. Am. Soc. Nephrol. , vol.27 , pp. 3356-3367
    • Lan, R.1
  • 162
    • 84938931511 scopus 로고    scopus 로고
    • Failed tubule recovery, AKI-CKD transition, and kidney disease progression
    • Venkatachalam, M. A., Weinberg, J. M., Kriz, W. & Bidani, A. K. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J. Am. Soc. Nephrol. 26, 1765-1776 (2015).
    • (2015) J. Am. Soc. Nephrol. , vol.26 , pp. 1765-1776
    • Venkatachalam, M.A.1    Weinberg, J.M.2    Kriz, W.3    Bidani, A.K.4
  • 163
    • 0025941814 scopus 로고
    • Interstitial lactate, inosine and hypoxanthine in rat kidney during normothermic ischaemia and recirculation
    • Eklund, T., Wahlberg, J., Ungerstedt, U. & Hillered, L. Interstitial lactate, inosine and hypoxanthine in rat kidney during normothermic ischaemia and recirculation. Acta Physiol. Scand. 143, 279-286 (1991).
    • (1991) Acta Physiol. Scand. , vol.143 , pp. 279-286
    • Eklund, T.1    Wahlberg, J.2    Ungerstedt, U.3    Hillered, L.4
  • 164
    • 84875753723 scopus 로고    scopus 로고
    • Mitochondrial dynamics: Regulatory mechanisms and emerging role in renal pathophysiology
    • Zhan, M., Brooks, C., Liu, F., Sun, L. & Dong, Z. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int. 83, 568-581 (2013).
    • (2013) Kidney Int. , vol.83 , pp. 568-581
    • Zhan, M.1    Brooks, C.2    Liu, F.3    Sun, L.4    Dong, Z.5
  • 165
    • 66449121454 scopus 로고    scopus 로고
    • Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models
    • Brooks, C., Wei, Q., Cho, S. G. & Dong, Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest. 119, 1275-1285 (2009).
    • (2009) J. Clin. Invest. , vol.119 , pp. 1275-1285
    • Brooks, C.1    Wei, Q.2    Cho, S.G.3    Dong, Z.4
  • 166
    • 77953854247 scopus 로고    scopus 로고
    • Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis
    • Cho, S. G., Du, Q., Huang, S. & Dong, Z. Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis. Am. J. Physiol. Renal Physiol. 299, F199-F206 (2010).
    • (2010) Am. J. Physiol. Renal Physiol. , vol.299 , pp. F199-F206
    • Cho, S.G.1    Du, Q.2    Huang, S.3    Dong, Z.4
  • 167
    • 84870580153 scopus 로고    scopus 로고
    • Autophagy in proximal tubules protects against acute kidney injury
    • Jiang, M. et al. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 82, 1271-1283 (2012).
    • (2012) Kidney Int. , vol.82 , pp. 1271-1283
    • Jiang, M.1
  • 168
    • 84862635122 scopus 로고    scopus 로고
    • Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury
    • Liu, S. et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8, 826-837 (2012).
    • (2012) Autophagy , vol.8 , pp. 826-837
    • Liu, S.1
  • 169
    • 79955626606 scopus 로고    scopus 로고
    • Autophagy protects the proximal tubule from degeneration and acute ischemic injury
    • Kimura, T. et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J. Am. Soc. Nephrol. 22, 902-913 (2011).
    • (2011) J. Am. Soc. Nephrol. , vol.22 , pp. 902-913
    • Kimura, T.1
  • 170
    • 84965026127 scopus 로고    scopus 로고
    • Autophagy, innate immunity and tissue repair in acute kidney injury
    • Duann, P., Lianos, E. A., Ma, J. & Lin, P. H. Autophagy, innate immunity and tissue repair in acute kidney injury. Int. J. Mol. Sci. 17, 662 (2016).
    • (2016) Int. J. Mol. Sci. , vol.17 , pp. 662
    • Duann, P.1    Lianos, E.A.2    Ma, J.3    Lin, P.H.4
  • 171
    • 84879684865 scopus 로고    scopus 로고
    • Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models
    • Wei, Q., Dong, G., Chen, J. K., Ramesh, G. & Dong, Z. Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models. Kidney Int. 84, 138-148 (2013).
    • (2013) Kidney Int. , vol.84 , pp. 138-148
    • Wei, Q.1    Dong, G.2    Chen, J.K.3    Ramesh, G.4    Dong, Z.5
  • 172
    • 84890230244 scopus 로고    scopus 로고
    • Suppressed mitochondrial biogenesis in folic acid-induced acute kidney injury and early fibrosis
    • Stallons, L. J., Whitaker, R. M. & Schnellmann, R. G. Suppressed mitochondrial biogenesis in folic acid-induced acute kidney injury and early fibrosis. Toxicol. Lett. 224, 326-332 (2014).
    • (2014) Toxicol. Lett. , vol.224 , pp. 326-332
    • Stallons, L.J.1    Whitaker, R.M.2    Schnellmann, R.G.3
  • 173
    • 84961724213 scopus 로고    scopus 로고
    • PGC1a dependent NAD biosynthesis links oxidative metabolism to renal protection
    • Tran, M. T. et al. PGC1a dependent NAD biosynthesis links oxidative metabolism to renal protection. Nature 531, 528-532 (2016).
    • (2016) Nature , vol.531 , pp. 528-532
    • Tran, M.T.1
  • 174
    • 84904969665 scopus 로고    scopus 로고
    • Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury
    • Jesinkey, S. R. et al. Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury. J. Am. Soc. Nephrol. 25, 1157-1162 (2014).
    • (2014) J. Am. Soc. Nephrol. , vol.25 , pp. 1157-1162
    • Jesinkey, S.R.1
  • 175
    • 84905058536 scopus 로고    scopus 로고
    • Agonism of the 5 hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury
    • Garrett, S. M., Whitaker, R. M., Beeson, C. C. & Schnellmann, R. G. Agonism of the 5 hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury. J. Pharmacol. Exp. Ther. 350, 257-264 (2014).
    • (2014) J. Pharmacol. Exp. Ther. , vol.350 , pp. 257-264
    • Garrett, S.M.1    Whitaker, R.M.2    Beeson, C.C.3    Schnellmann, R.G.4
  • 176
    • 84978044209 scopus 로고    scopus 로고
    • Mitochondrial sirtuin 3 and renal diseases
    • Perico, L., Morigi, M. & Benigni, A. Mitochondrial sirtuin 3 and renal diseases. Nephron 134, 14-19 (2016).
    • (2016) Nephron , vol.134 , pp. 14-19
    • Perico, L.1    Morigi, M.2    Benigni, A.3
  • 177
    • 33749545733 scopus 로고    scopus 로고
    • Mortality and renal disease in type 1 diabetes mellitus-progress made, more to be done
    • Maahs, D. M. & Rewers, M. Mortality and renal disease in type 1 diabetes mellitus-progress made, more to be done. J. Clin. Endocrinol. Metab. 91, 3757-3759 (2006).
    • (2006) J. Clin. Endocrinol. Metab. , vol.91 , pp. 3757-3759
    • Maahs, D.M.1    Rewers, M.2
  • 178
    • 83755170799 scopus 로고    scopus 로고
    • US Renal Data System 2011 annual data report
    • Collins, A. J. et al. US Renal Data System 2011 annual data report. Am. J. Kidney Dis. 59, A7 (2012).
    • (2012) Am. J. Kidney Dis. , vol.59 , pp. A7
    • Collins, A.J.1
  • 180
    • 84983781432 scopus 로고    scopus 로고
    • Tapping into mitochondria to find novel targets for diabetes complications
    • Flemming, N. B., Gallo, L. A., Ward, M. S. & Forbes, J. M. Tapping into mitochondria to find novel targets for diabetes complications. Curr. Drug Targets 17, 1341-1349 (2016).
    • (2016) Curr. Drug Targets , vol.17 , pp. 1341-1349
    • Flemming, N.B.1    Gallo, L.A.2    Ward, M.S.3    Forbes, J.M.4
  • 181
    • 84973558774 scopus 로고    scopus 로고
    • Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes
    • Coughlan, M. T. et al. Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes. Clin. Sci. (Lond.) 130, 711-720 (2016).
    • (2016) Clin. Sci. (Lond.) , vol.130 , pp. 711-720
    • Coughlan, M.T.1
  • 182
    • 84897380527 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and mitophagy: The beginning and end to diabetic nephropathy?
    • Higgins, G. C. & Coughlan, M. T. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br. J. Pharmacol. 171, 1917-1942 (2014).
    • (2014) Br. J. Pharmacol. , vol.171 , pp. 1917-1942
    • Higgins, G.C.1    Coughlan, M.T.2
  • 183
    • 84992489196 scopus 로고    scopus 로고
    • Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease
    • Coughlan, M. T. & Sharma, K. Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease. Kidney Int. 90, 272-279 (2016).
    • (2016) Kidney Int. , vol.90 , pp. 272-279
    • Coughlan, M.T.1    Sharma, K.2
  • 184
    • 78349297565 scopus 로고    scopus 로고
    • Oxidative stress and diabetic complications
    • Giacco, F. & Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 107, 1058-1070 (2010).
    • (2010) Circ. Res. , vol.107 , pp. 1058-1070
    • Giacco, F.1    Brownlee, M.2
  • 185
    • 0035856980 scopus 로고    scopus 로고
    • Biochemistry and molecular cell biology of diabetic complications
    • Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813-820 (2001).
    • (2001) Nature , vol.414 , pp. 813-820
    • Brownlee, M.1
  • 186
    • 20044383911 scopus 로고    scopus 로고
    • Effects of long-term Vitamin E supplementation on cardiovascular events and cancer: A randomized controlled trial
    • Lonn, E. et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 293, 1338-1347 (2005).
    • (2005) JAMA , vol.293 , pp. 1338-1347
    • Lonn, E.1
  • 187
    • 84966348914 scopus 로고    scopus 로고
    • The role of mitochondria in diabetic kidney disease
    • Hallan, S. & Sharma, K. The role of mitochondria in diabetic kidney disease. Curr. Diab. Rep. 16, 61 (2016).
    • (2016) Curr. Diab. Rep. , vol.16 , pp. 61
    • Hallan, S.1    Sharma, K.2
  • 188
    • 0019217651 scopus 로고
    • Metabolic effects of large fructose loads in different parts of the rat nephron
    • Burch, H. B. et al. Metabolic effects of large fructose loads in different parts of the rat nephron. J. Biol. Chem. 255, 8239-8244 (1980).
    • (1980) J. Biol. Chem. , vol.255 , pp. 8239-8244
    • Burch, H.B.1
  • 189
    • 84908075908 scopus 로고    scopus 로고
    • Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy
    • Lanaspa, M. A. et al. Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy. J. Am. Soc. Nephrol. 25, 2526-2538 (2014).
    • (2014) J. Am. Soc. Nephrol. , vol.25 , pp. 2526-2538
    • Lanaspa, M.A.1
  • 190
    • 69249216656 scopus 로고    scopus 로고
    • Ketohexokinase: Expression and localization of the principal fructose-metabolizing enzyme
    • Diggle, C. P. et al. Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme. J. Histochem. Cytochem. 57, 763-774 (2009).
    • (2009) J. Histochem. Cytochem. , vol.57 , pp. 763-774
    • Diggle, C.P.1
  • 191
    • 84958850926 scopus 로고    scopus 로고
    • Mitochondrial dynamics and metabolic regulation
    • Wai, T. & Langer, T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27, 105-117 (2016).
    • (2016) Trends Endocrinol. Metab. , vol.27 , pp. 105-117
    • Wai, T.1    Langer, T.2
  • 192
    • 84863023552 scopus 로고    scopus 로고
    • Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells
    • Wang, W. et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 15, 186-200 (2012).
    • (2012) Cell Metab. , vol.15 , pp. 186-200
    • Wang, W.1
  • 193
    • 84862691443 scopus 로고    scopus 로고
    • Early protective effect of mitofusion 2 overexpression in STZ-induced diabetic rat kidney
    • Tang, W. X., Wu, W. H., Zeng, X. X., Bo, H. & Huang, S. M. Early protective effect of mitofusion 2 overexpression in STZ-induced diabetic rat kidney. Endocr 41, 236-247 (2012).
    • (2012) Endocr , vol.41 , pp. 236-247
    • Tang, W.X.1    Wu, W.H.2    Zeng, X.X.3    Bo, H.4    Huang, S.M.5
  • 194
    • 84911862896 scopus 로고    scopus 로고
    • IHG 1 increases mitochondrial fusion and bioenergetic function
    • Hickey, F. B. et al. IHG 1 increases mitochondrial fusion and bioenergetic function. Diabetes 63, 4314-4325 (2014).
    • (2014) Diabetes , vol.63 , pp. 4314-4325
    • Hickey, F.B.1
  • 195
    • 79960951730 scopus 로고    scopus 로고
    • IHG 1 promotes mitochondrial biogenesis by stabilizing PGC 1a
    • Hickey, F. B. et al. IHG 1 promotes mitochondrial biogenesis by stabilizing PGC 1a. J. Am. Soc. Nephrol. 22, 1475-1485 (2011).
    • (2011) J. Am. Soc. Nephrol. , vol.22 , pp. 1475-1485
    • Hickey, F.B.1
  • 196
    • 84929492282 scopus 로고    scopus 로고
    • Protective role of PGC 1a in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling
    • Guo, K. et al. Protective role of PGC 1a in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS ONE 10, e0125176 (2015).
    • (2015) PLoS ONE , vol.10 , pp. e0125176
    • Guo, K.1
  • 197
    • 85009804125 scopus 로고    scopus 로고
    • High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy
    • Imasawa, T. et al. High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy. FASEB J. 31, 294-307 (2017).
    • (2017) FASEB J. , vol.31 , pp. 294-307
    • Imasawa, T.1
  • 198
    • 85018371570 scopus 로고    scopus 로고
    • Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction
    • Qi, W. et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat. Med. 23, 753-762 (2017).
    • (2017) Nat. Med. , vol.23 , pp. 753-762
    • Qi, W.1
  • 199
    • 84994165720 scopus 로고    scopus 로고
    • Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury
    • Szeto, H. H. et al. Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury. Kidney Int. 90, 997-1011 (2016).
    • (2016) Kidney Int. , vol.90 , pp. 997-1011
    • Szeto, H.H.1
  • 200
    • 84863228208 scopus 로고    scopus 로고
    • AMPK activator AICAR ameliorates ischaemia reperfusion injury in the rat kidney
    • Lempiainen, J., Finckenberg, P., Levijoki, J. & Mervaala, E. AMPK activator AICAR ameliorates ischaemia reperfusion injury in the rat kidney. Br. J. Pharmacol. 166, 1905-1915 (2012).
    • (2012) Br. J. Pharmacol. , vol.166 , pp. 1905-1915
    • Lempiainen, J.1    Finckenberg, P.2    Levijoki, J.3    Mervaala, E.4
  • 202
    • 84887466140 scopus 로고    scopus 로고
    • AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function
    • Dugan, L. L. et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Invest. 123, 4888-4899 (2013).
    • (2013) J. Clin. Invest. , vol.123 , pp. 4888-4899
    • Dugan, L.L.1
  • 203
    • 77449120223 scopus 로고    scopus 로고
    • Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3 LKB1 AMP-activated kinase pathway
    • Pillai, V. B. et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3 LKB1 AMP-activated kinase pathway. J. Biol. Chem. 285, 3133-3144 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 3133-3144
    • Pillai, V.B.1
  • 204
    • 77952940043 scopus 로고    scopus 로고
    • Diet and exercise signals regulate SIRT3 and activate AMPK and PGC 1a in skeletal muscle
    • Palacios, O. M. et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC 1a in skeletal muscle. Aging (Albany NY) 1, 771-783 (2009).
    • (2009) Aging (Albany NY) , vol.1 , pp. 771-783
    • Palacios, O.M.1
  • 205
    • 84864062918 scopus 로고    scopus 로고
    • Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism
    • Nogueiras, R. et al. Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol. Rev. 92, 1479-1514 (2012)
    • (2012) Physiol. Rev. , vol.92 , pp. 1479-1514
    • Nogueiras, R.1
  • 206
    • 84961291233 scopus 로고    scopus 로고
    • Sirtuin 3 dependent mitochondrial dynamic improvements protect against acute kidney injury
    • Morigi, M. et al. Sirtuin 3 dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Invest. 125, 715-726 (2015).
    • (2015) J. Clin. Invest. , vol.125 , pp. 715-726
    • Morigi, M.1
  • 207
    • 84900558337 scopus 로고    scopus 로고
    • Explicit role of peroxisome proliferator-activated receptor γ in gallic acid-mediated protection against ischemia-reperfusion-induced acute kidney injury in rats
    • Singh, J. P., Singh, A. P. & Bhatti, R. Explicit role of peroxisome proliferator-activated receptor γ in gallic acid-mediated protection against ischemia-reperfusion-induced acute kidney injury in rats. J. Surg. Res. 187, 631-639 (2014).
    • (2014) J. Surg. Res. , vol.187 , pp. 631-639
    • Singh, J.P.1    Singh, A.P.2    Bhatti, R.3
  • 208
    • 28544436514 scopus 로고    scopus 로고
    • Protective effect of peroxisome proliferator activated receptor γ agonists on diabetic and non-diabetic renal diseases
    • Chung, B. H. et al. Protective effect of peroxisome proliferator activated receptor γ agonists on diabetic and non-diabetic renal diseases. Nephrol. (Carlton, Vic.) 10 (Suppl.), S40-S43 (2005).
    • (2005) Nephrol. (Carlton, Vic.) , vol.10 , pp. S40-S43
    • Chung, B.H.1
  • 209
    • 0043074737 scopus 로고    scopus 로고
    • Agonists of peroxisome-proliferator activated receptor-γ reduce renal ischemia/reperfusion injury
    • Sivarajah, A. et al. Agonists of peroxisome-proliferator activated receptor-γ reduce renal ischemia/reperfusion injury. Am. J. Nephrol. 23, 267-276 (2003).
    • (2003) Am. J. Nephrol. , vol.23 , pp. 267-276
    • Sivarajah, A.1
  • 210
    • 0032506273 scopus 로고    scopus 로고
    • Mechanism of action of fibrates on lipid and lipoprotein metabolism
    • Staels, B. et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98, 2088-2093 (1998).
    • (1998) Circulation , vol.98 , pp. 2088-2093
    • Staels, B.1
  • 211
    • 79955763790 scopus 로고    scopus 로고
    • Bardoxolone methyl (BARD) ameliorates ischemic AKI and increases expression of protective genes Nrf2, PPARγ, and HO 1
    • Wu, Q. Q. et al. Bardoxolone methyl (BARD) ameliorates ischemic AKI and increases expression of protective genes Nrf2, PPARγ, and HO 1. Am. J. Physiol. Renal Physiol. 300, F1180-F1192 (2011).
    • (2011) Am. J. Physiol. Renal Physiol. , vol.300 , pp. F1180-F1192
    • Wu, Q.Q.1
  • 212
    • 84890946148 scopus 로고    scopus 로고
    • Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease
    • de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492-2503 (2013).
    • (2013) N. Engl. J. Med. , vol.369 , pp. 2492-2503
    • De Zeeuw, D.1
  • 213
    • 33646508121 scopus 로고    scopus 로고
    • PPARa agonist fenofibrate improves diabetic nephropathy in db/db mice
    • Park, C. W. et al. PPARa agonist fenofibrate improves diabetic nephropathy in db/db mice. Kidney Int. 69, 1511-1517 (2006).
    • (2006) Kidney Int. , vol.69 , pp. 1511-1517
    • Park, C.W.1
  • 214
    • 84929000506 scopus 로고    scopus 로고
    • The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease
    • Stadler, K., Goldberg, I. J. & Susztak, K. The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease. Curr. Diabetes Rep. 15, 40 (2015).
    • (2015) Curr. Diabetes Rep. , vol.15 , pp. 40
    • Stadler, K.1    Goldberg, I.J.2    Susztak, K.3
  • 215
    • 84962439016 scopus 로고    scopus 로고
    • Fenofibrate attenuates diabetic nephropathy in experimental diabetic rat's model via suppression of augmented TGF β1/Smad3 signaling pathway
    • Al Rasheed, N. M. et al. Fenofibrate attenuates diabetic nephropathy in experimental diabetic rat's model via suppression of augmented TGF β1/Smad3 signaling pathway. Arch. Physiol. Biochem. 122, 186-194 (2016).
    • (2016) Arch. Physiol. Biochem. , vol.122 , pp. 186-194
    • Al Rasheed, N.M.1
  • 216
    • 84900387354 scopus 로고    scopus 로고
    • Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC 1a in db/db mice
    • Hong, Y. A. et al. Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC 1a in db/db mice. PLoS ONE 9, e96147 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e96147
    • Hong, Y.A.1
  • 218
    • 84939988400 scopus 로고    scopus 로고
    • Serendipity and the discovery of novel compounds that restore mitochondrial plasticity
    • Szeto, H. H. & Birk, A. V. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin. Pharmacol. Ther. 96, 672-683 (2014).
    • (2014) Clin. Pharmacol. Ther. , vol.96 , pp. 672-683
    • Szeto, H.H.1    Birk, A.V.2
  • 219
    • 84856011942 scopus 로고    scopus 로고
    • Conformational properties of cardiolipin-bound cytochrome c
    • Hanske, J. et al. Conformational properties of cardiolipin-bound cytochrome c. Proc. Natl Acad. Sci. USA 109, 125-130 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 125-130
    • Hanske, J.1
  • 220
    • 33947386195 scopus 로고    scopus 로고
    • Cardiolipin switch in mitochondria: Shutting off the reduction of cytochrome c and turning on the peroxidase activity
    • Basova, L. V. et al. Cardiolipin switch in mitochondria: shutting off the reduction of cytochrome c and turning on the peroxidase activity. Biochemistry 46, 3423-3434 (2007).
    • (2007) Biochemistry , vol.46 , pp. 3423-3434
    • Basova, L.V.1
  • 221
    • 37249013214 scopus 로고    scopus 로고
    • US National Library of Medicine.
    • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02436447 (2015).
    • (2015) ClinicalTrials.gov
  • 222
    • 84885054027 scopus 로고    scopus 로고
    • NADPH oxidases, reactive oxygen species, and the kidney: Friend and foe
    • Sedeek, M., Nasrallah, R., Touyz, R. M. & Hebert, R. L. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J. Am. Soc. Nephrol. 24, 1512-1518 (2013).
    • (2013) J. Am. Soc. Nephrol. , vol.24 , pp. 1512-1518
    • Sedeek, M.1    Nasrallah, R.2    Touyz, R.M.3    Hebert, R.L.4
  • 223
    • 0035039772 scopus 로고    scopus 로고
    • Mitochondrial catalase and oxidative injury
    • Bai, J. & Cederbaum, A. I. Mitochondrial catalase and oxidative injury. Biol. Signals Recept. 10, 189-199 (2001).
    • (2001) Biol. Signals Recept. , vol.10 , pp. 189-199
    • Bai, J.1    Cederbaum, A.I.2
  • 224
    • 42049114034 scopus 로고    scopus 로고
    • Transcriptional paradigms in mammalian mitochondrial biogenesis and function
    • Scarpulla, R. C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 88, 611-638 (2008).
    • (2008) Physiol. Rev. , vol.88 , pp. 611-638
    • Scarpulla, R.C.1
  • 225
    • 34548495323 scopus 로고    scopus 로고
    • The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures
    • Kaufman, B. A. et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol. Biol. Cell 18, 3225-3236 (2007).
    • (2007) Mol. Biol. Cell , vol.18 , pp. 3225-3236
    • Kaufman, B.A.1
  • 226
    • 0028011017 scopus 로고
    • Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: A potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis
    • Virbasius, J. V. & Scarpulla, R. C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl Acad. Sci. USA 91, 1309-1313 (1994).
    • (1994) Proc. Natl Acad. Sci. USA , vol.91 , pp. 1309-1313
    • Virbasius, J.V.1    Scarpulla, R.C.2
  • 227
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC 1
    • Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC 1. Cell 98, 115-124 (1999).
    • (1999) Cell , vol.98 , pp. 115-124
    • Wu, Z.1
  • 228
    • 0036289911 scopus 로고    scopus 로고
    • Acute and chronic treatment of ob/ob and db/db mice with AICAR decreases blood glucose concentrations
    • Halseth, A. E., Ensor, N. J., White, T. A., Ross, S. A. & Gulve, E. A. Acute and chronic treatment of ob/ob and db/db mice with AICAR decreases blood glucose concentrations. Biochem. Biophys. Res. Commun. 294, 798-805 (2002).
    • (2002) Biochem. Biophys. Res. Commun. , vol.294 , pp. 798-805
    • Halseth, A.E.1    Ensor, N.J.2    White, T.A.3    Ross, S.A.4    Gulve, E.A.5
  • 229
    • 28044452217 scopus 로고    scopus 로고
    • Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial
    • Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366, 1849-1861 (2005).
    • (2005) Lancet , vol.366 , pp. 1849-1861
    • Keech, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.