메뉴 건너뛰기




Volumn 116, Issue 3, 2006, Pages 615-622

PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease

Author keywords

[No Author keywords available]

Indexed keywords

PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1BETA; TRANSCRIPTION FACTOR; UNCLASSIFIED DRUG;

EID: 33644660537     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI27794     Document Type: Review
Times cited : (1192)

References (89)
  • 1
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver, P., et al. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 92:829-839.
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1
  • 2
    • 0035016566 scopus 로고    scopus 로고
    • PGC-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor-1-dependent transcription in mammalian cells
    • Andersson, U., and Scarpulla, R.C. 2001. PGC-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor-1-dependent transcription in mammalian cells. Mol. Cell. Biol. 21:3738-3749.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 3738-3749
    • Andersson, U.1    Scarpulla, R.C.2
  • 3
    • 0037127204 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor
    • Lin, J., Puigserver, P., Donovan, J., Tarr, P., and Spiegelman, B.M. 2002. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 277:1645-1648.
    • (2002) J. Biol. Chem. , vol.277 , pp. 1645-1648
    • Lin, J.1    Puigserver, P.2    Donovan, J.3    Tarr, P.4    Spiegelman, B.M.5
  • 4
    • 0037134493 scopus 로고    scopus 로고
    • The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha
    • Kressler, D., Schreiber, S.N., Knutti, D., and Kralli, A. 2002. The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J. Biol. Chem. 277:13918-13925.
    • (2002) J. Biol. Chem. , vol.277 , pp. 13918-13925
    • Kressler, D.1    Schreiber, S.N.2    Knutti, D.3    Kralli, A.4
  • 5
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
    • Wu, Z., et al. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 98:115-124.
    • (1999) Cell , vol.98 , pp. 115-124
    • Wu, Z.1
  • 6
    • 0142091356 scopus 로고    scopus 로고
    • PPARγ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity
    • Kamei, Y., et al. 2003. PPARγ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc. Natl. Acad. Sci. U. S. A. 100:12378-12383.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 12378-12383
    • Kamei, Y.1
  • 7
    • 0038036024 scopus 로고    scopus 로고
    • Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells
    • St-Pierre, J., et al. 2003. Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. J. Biol. Chem. 278:26597-26603.
    • (2003) J. Biol. Chem. , vol.278 , pp. 26597-26603
    • St-Pierre, J.1
  • 8
    • 0141645408 scopus 로고    scopus 로고
    • PGC-1-related coactivator and targets are upregulated in thyroid oncocytoma
    • Savagner, F., et al. 2003. PGC-1-related coactivator and targets are upregulated in thyroid oncocytoma. Biochem. Biophys. Res. Commun. 310:779-784.
    • (2003) Biochem. Biophys. Res. Commun. , vol.310 , pp. 779-784
    • Savagner, F.1
  • 9
    • 0032589689 scopus 로고    scopus 로고
    • Activation of PPARγ coactivator-1 through transcription factor docking
    • Puigserver, P., et al. 1999. Activation of PPARγ coactivator-1 through transcription factor docking. Science. 286:1368-1371.
    • (1999) Science , vol.286 , pp. 1368-1371
    • Puigserver, P.1
  • 10
    • 0344413490 scopus 로고    scopus 로고
    • Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1α
    • Wallberg, A.E., Yamamura, S., Malik, S., Spiegelman, B.M., and Roeder, R.G. 2003. Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1α Mol. Cell. 12:1137-1149.
    • (2003) Mol. Cell. , vol.12 , pp. 1137-1149
    • Wallberg, A.E.1    Yamamura, S.2    Malik, S.3    Spiegelman, B.M.4    Roeder, R.G.5
  • 11
    • 0033638283 scopus 로고    scopus 로고
    • Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1
    • Monsalve, M., et al. 2000. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol. Cell. 6:307-316.
    • (2000) Mol. Cell. , vol.6 , pp. 307-316
    • Monsalve, M.1
  • 12
    • 0033803048 scopus 로고    scopus 로고
    • PPARγ coactivator-1 (PGC-1) promotes cardiac mitochondrial biogenesis
    • Lehman, J.J., et al. 2000. PPARγ coactivator-1 (PGC-1) promotes cardiac mitochondrial biogenesis. J. Clin. Invest. 106:847-856.
    • (2000) J. Clin. Invest. , vol.106 , pp. 847-856
    • Lehman, J.J.1
  • 13
    • 0026640728 scopus 로고
    • DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein
    • Fisher, R.P., Lisowsky, T., Parisi, M.A., and Clayton, D.A. 1992. DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein. J. Biol. Chem. 267:3358-3367.
    • (1992) J. Biol. Chem. , vol.267 , pp. 3358-3367
    • Fisher, R.P.1    Lisowsky, T.2    Parisi, M.A.3    Clayton, D.A.4
  • 14
    • 0035941492 scopus 로고    scopus 로고
    • Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes
    • Garesse, R., and Vallejo, C.G. 2001. Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene. 263:1-16.
    • (2001) Gene , vol.263 , pp. 1-16
    • Garesse, R.1    Vallejo, C.G.2
  • 15
    • 0031930319 scopus 로고    scopus 로고
    • Mitochondrial transcription factor a is necessary for mtDNA maintenance and embryogenesis in mice
    • Larsson, N.-G., et al. 1998. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18:231-236.
    • (1998) Nat. Genet. , vol.18 , pp. 231-236
    • Larsson, N.-G.1
  • 16
    • 0037036115 scopus 로고    scopus 로고
    • Nuclear activators and coactivators in mammalian mitochondrial biogenesis
    • Scarpulla, R.C. 2002. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim. Biophys. Acta. 1576:1-14.
    • (2002) Biochim. Biophys. Acta , vol.1576 , pp. 1-14
    • Scarpulla, R.C.1
  • 17
    • 0027135555 scopus 로고
    • NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators
    • Virbasius, C.A., Virbasius, J.V., and Scarpulla, R.C. 1993. NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev. 7:2431-2445.
    • (1993) Genes Dev. , vol.7 , pp. 2431-2445
    • Virbasius, C.A.1    Virbasius, J.V.2    Scarpulla, R.C.3
  • 19
    • 0037326196 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptional coactivator and metabolic regulator
    • Puigserver, P., and Spiegelman, B.M. 2003. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24:78-90.
    • (2003) Endocr. Rev. , vol.24 , pp. 78-90
    • Puigserver, P.1    Spiegelman, B.M.2
  • 20
    • 0033977890 scopus 로고    scopus 로고
    • The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor γ in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
    • Vega, R.B., Huss, J.M., and Kelly, D.P. 2000. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor γ in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol. 20:1868-1876.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 1868-1876
    • Vega, R.B.1    Huss, J.M.2    Kelly, D.P.3
  • 21
    • 0037453718 scopus 로고    scopus 로고
    • Peroxisome-proliferator-activated receptor γ activates fat metabolism to prevent obesity
    • Wang, Y.-X., et al. 2003. Peroxisome-proliferator-activated receptor γ activates fat metabolism to prevent obesity. Cell. 113:159-170.
    • (2003) Cell , vol.113 , pp. 159-170
    • Wang, Y.-X.1
  • 22
    • 0034116143 scopus 로고    scopus 로고
    • A tissue-specific coactivator of steroid receptors
    • Knutti, D., Kaul, A., and Kralli, A. 2000. A tissue-specific coactivator of steroid receptors. Mol. Cell. Biol. 20:2411-2422.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 2411-2422
    • Knutti, D.1    Kaul, A.2    Kralli, A.3
  • 24
    • 0942279602 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regulates triglyceride metabolism by activation of the nuclear receptor FXR
    • Zhang, Y., Castellani, L.W., Sinal, C.J., Gonzalez, F.J., and Edwards, P.A. 2004. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev. 18:157-169.
    • (2004) Genes Dev. , vol.18 , pp. 157-169
    • Zhang, Y.1    Castellani, L.W.2    Sinal, C.J.3    Gonzalez, F.J.4    Edwards, P.A.5
  • 25
    • 7244243931 scopus 로고    scopus 로고
    • Ligand-activated pregnane X receptor interferes with HNF-4 signaling by targeting a common coactivator PGC-1α. Functional implications in hepatic cholesterol and glucose metabolism
    • Bhalla, S., Ozalp, C., Fang, S., Xiang, L., and Kemper, J.K. 2004. Ligand-activated pregnane X receptor interferes with HNF-4 signaling by targeting a common coactivator PGC-1α. Functional implications in hepatic cholesterol and glucose metabolism. J. Biol. Chem. 279:45139-45147.
    • (2004) J. Biol. Chem. , vol.279 , pp. 45139-45147
    • Bhalla, S.1    Ozalp, C.2    Fang, S.3    Xiang, L.4    Kemper, J.K.5
  • 26
    • 0242349197 scopus 로고    scopus 로고
    • Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): Requirement for hepatocyte nuclear factor 4α in gluconeogenesis
    • Rhee, J., et al. 2003. Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): requirement for hepatocyte nuclear factor 4α in gluconeogenesis. Proc. Natl. Acad. Sci. U. S. A. 100:4012-4017.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 4012-4017
    • Rhee, J.1
  • 27
    • 19944430411 scopus 로고    scopus 로고
    • Hyperlipidemic effects of dietary saturated fats mediated through PGC-aβ coactivation of SREBP
    • Lin, J., et al. 2005. Hyperlipidemic effects of dietary saturated fats mediated through PGC-aβ coactivation of SREBP. Cell. 120:261-273.
    • (2005) Cell , vol.120 , pp. 261-273
    • Lin, J.1
  • 28
    • 0037174798 scopus 로고    scopus 로고
    • PGC-1α coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ
    • Huss, J.M., Kopp, R.P., and Kelly, D.P. 2002. PGC-1α coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. J. Biol. Chem. 277:40265-40274.
    • (2002) J. Biol. Chem. , vol.277 , pp. 40265-40274
    • Huss, J.M.1    Kopp, R.P.2    Kelly, D.P.3
  • 29
    • 0038660688 scopus 로고    scopus 로고
    • The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα)
    • Schreiber, S.N., Knutti, D., Brogli, K., Uhlmann, T., and Kralli, A. 2003. The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα). J. Biol. Chem. 278:9013-9018.
    • (2003) J. Biol. Chem. , vol.278 , pp. 9013-9018
    • Schreiber, S.N.1    Knutti, D.2    Brogli, K.3    Uhlmann, T.4    Kralli, A.5
  • 30
    • 0035957375 scopus 로고    scopus 로고
    • Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1
    • Michael, L.F., et al. 2001. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. U. S. A. 98:3820-3825.
    • (2001) Proc. Natl. Acad. Sci. U. S. A. , vol.98 , pp. 3820-3825
    • Michael, L.F.1
  • 31
    • 0038187621 scopus 로고    scopus 로고
    • Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction
    • Puigserver, P., et al. 2003. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature. 423:550-555.
    • (2003) Nature , vol.423 , pp. 550-555
    • Puigserver, P.1
  • 32
    • 20044369930 scopus 로고    scopus 로고
    • Transcriptional coactivator PGC-1α regulates chondrogenesis via association with Sox9
    • Kawakami, Y., et al. 2005. Transcriptional coactivator PGC-1α regulates chondrogenesis via association with Sox9. Proc. Natl. Acad. Sci. U. S. A. 102:2414-2419.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 2414-2419
    • Kawakami, Y.1
  • 33
    • 13844262924 scopus 로고    scopus 로고
    • Corepressors selectively control the transcriptional activity of PPARγ in adipocytes
    • Guan, H.-P., Ishizuka, T., Chui, P.C., Lehrke, M., and Lazar, M.A. 2005. Corepressors selectively control the transcriptional activity of PPARγ in adipocytes. Genes Dev. 19:453-461.
    • (2005) Genes Dev. , vol.19 , pp. 453-461
    • Guan, H.-P.1    Ishizuka, T.2    Chui, P.C.3    Lehrke, M.4    Lazar, M.A.5
  • 34
    • 0034596268 scopus 로고    scopus 로고
    • cDNA cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats
    • Goto, M., et al. 2000. cDNA cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochem. Biophys. Res. Commun. 274:350-354.
    • (2000) Biochem. Biophys. Res. Commun. , vol.274 , pp. 350-354
    • Goto, M.1
  • 35
    • 0036903174 scopus 로고    scopus 로고
    • Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1
    • Baar, K., et al. 2002. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 16:1879-1886.
    • (2002) FASEB J. , vol.16 , pp. 1879-1886
    • Baar, K.1
  • 36
    • 0036386911 scopus 로고    scopus 로고
    • Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle
    • Terada, S., et al. 2002. Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem. Biophys. Res. Commun. 296:350-354.
    • (2002) Biochem. Biophys. Res. Commun. , vol.296 , pp. 350-354
    • Terada, S.1
  • 37
    • 0942287344 scopus 로고    scopus 로고
    • Effects of acute bouts of running and swimming exercise on PGC-1α protein expression in rat epitrochlearis and soleus muscle
    • Terada, S., and Tabata, I. 2003. Effects of acute bouts of running and swimming exercise on PGC-1α protein expression in rat epitrochlearis and soleus muscle. Am. J. Physiol. Endocrinol. Metab. 286:E208-E216.
    • (2003) Am. J. Physiol. Endocrinol. Metab. , vol.286
    • Terada, S.1    Tabata, I.2
  • 38
    • 0037322888 scopus 로고    scopus 로고
    • Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle
    • Pilegaard, H., Saltin, B., and Neufer, P.D. 2003. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J. Physiol. 546:851-858.
    • (2003) J. Physiol. , vol.546 , pp. 851-858
    • Pilegaard, H.1    Saltin, B.2    Neufer, P.D.3
  • 39
    • 0042232315 scopus 로고    scopus 로고
    • PGC-1beta in the regulation of hepatic glucose and energy metabolism
    • Lin, J., et al. 2003. PGC-1beta in the regulation of hepatic glucose and energy metabolism. J. Biol. Chem. 278:30843-30848.
    • (2003) J. Biol. Chem. , vol.278 , pp. 30843-30848
    • Lin, J.1
  • 40
    • 0037452677 scopus 로고    scopus 로고
    • Regulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and mitochondrial function by MEF2 and HDAC5
    • Czubryt, M.P., McAnally, J., Fishman, G.I., and Olson, E.N. 2003. Regulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and mitochondrial function by MEF2 and HDAC5. Proc. Natl. Acad. Sci. U. S. A. 100:1711-1716.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 1711-1716
    • Czubryt, M.P.1    McAnally, J.2    Fishman, G.I.3    Olson, E.N.4
  • 41
    • 0038810035 scopus 로고    scopus 로고
    • An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle
    • Handschin, C., Rhee, J., Lin, J., Tam, P.T., and Spiegelman, B.M. 2003. An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle. Proc. Natl. Acad. Sci. U. S. A. 100:7111-7116.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 7111-7116
    • Handschin, C.1    Rhee, J.2    Lin, J.3    Tam, P.T.4    Spiegelman, B.M.5
  • 42
    • 4544355935 scopus 로고    scopus 로고
    • Calcineurin and calcium/calmodulin-dependent protein kinase activate distinct metabolic gene regulatory programs in cardiac muscle
    • Schaeffer, P.J., et al. 2004. Calcineurin and calcium/calmodulin- dependent protein kinase activate distinct metabolic gene regulatory programs in cardiac muscle. J. Biol. Chem. 279:39593-39603.
    • (2004) J. Biol. Chem. , vol.279 , pp. 39593-39603
    • Schaeffer, P.J.1
  • 43
    • 0037058977 scopus 로고    scopus 로고
    • AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation
    • Zong, H., et al. 2002. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl. Acad. Sci. U. S. A. 99:15983-15987.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 15983-15987
    • Zong, H.1
  • 44
    • 18244399631 scopus 로고    scopus 로고
    • Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1
    • Puigserver, P., et al. 2001. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol. Cell. 8:971-982.
    • (2001) Mol. Cell. , vol.8 , pp. 971-982
    • Puigserver, P.1
  • 45
    • 0035859836 scopus 로고    scopus 로고
    • Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a corepressor
    • Knutti, D., Kressler, D., and Kralli, A. 2001. Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a corepressor. Proc. Natl. Acad. Sci. U. S. A. 98:9713-9718.
    • (2001) Proc. Natl. Acad. Sci. U. S. A. , vol.98 , pp. 9713-9718
    • Knutti, D.1    Kressler, D.2    Kralli, A.3
  • 46
    • 10744222588 scopus 로고    scopus 로고
    • Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: Modulation by p38 MAPK
    • Fan, M., et al. 2004. Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: modulation by p38 MAPK. Genes Dev. 18:278-289.
    • (2004) Genes Dev. , vol.18 , pp. 278-289
    • Fan, M.1
  • 47
    • 0347579845 scopus 로고    scopus 로고
    • Mitochondrial biogenesis in mammals: The role of endogenous nitric oxide
    • Nisoli, E., et al. 2003. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science. 299:896-899.
    • (2003) Science , vol.299 , pp. 896-899
    • Nisoli, E.1
  • 48
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
    • Rodgers, J.T., et al. 2005. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature. 434:113-118.
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1
  • 49
    • 22344440666 scopus 로고    scopus 로고
    • Activation of nuclear receptor coactivator PGC-1α by arginine methylation
    • Teyssier, C., Ma, H., Emter, R., Kralli, A., and Stallcup, M.R. 2005. Activation of nuclear receptor coactivator PGC-1α by arginine methylation. Genes Dev. 19:1466-1473.
    • (2005) Genes Dev. , vol.19 , pp. 1466-1473
    • Teyssier, C.1    Ma, H.2    Emter, R.3    Kralli, A.4    Stallcup, M.R.5
  • 50
    • 0035855905 scopus 로고    scopus 로고
    • CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
    • Herzig, S., et al. 2001. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 413:179-183.
    • (2001) Nature , vol.413 , pp. 179-183
    • Herzig, S.1
  • 51
    • 0037342151 scopus 로고    scopus 로고
    • Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR
    • Daitoku, H., Yamagata, K., Matsuzaki, H., Hatta, M., and Fukamizu, A. 2003. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes. 52:642-649.
    • (2003) Diabetes , vol.52 , pp. 642-649
    • Daitoku, H.1    Yamagata, K.2    Matsuzaki, H.3    Hatta, M.4    Fukamizu, A.5
  • 52
    • 5344252327 scopus 로고    scopus 로고
    • Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice
    • Lin, J., et al. 2004. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell. 119:121-135.
    • (2004) Cell , vol.119 , pp. 121-135
    • Lin, J.1
  • 53
    • 21144446106 scopus 로고    scopus 로고
    • PGC-1α deficient mice exhibit multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control, and hepatic steatosis
    • Leone, T.C., et al. 2005. PGC-1α deficient mice exhibit multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control, and hepatic steatosis. PLoS Biol. 3:672-687.
    • (2005) PLoS Biol. , vol.3 , pp. 672-687
    • Leone, T.C.1
  • 54
    • 10744224439 scopus 로고    scopus 로고
    • Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria
    • Mootha, V.K., et al. 2003. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 115:629-640.
    • (2003) Cell , vol.115 , pp. 629-640
    • Mootha, V.K.1
  • 55
    • 4644231528 scopus 로고    scopus 로고
    • Nuclear receptor signaling and cardiac energetics
    • Huss, J.M., and Kelly, D.P. 2004. Nuclear receptor signaling and cardiac energetics. Circ. Res. 95:568-578.
    • (2004) Circ. Res. , vol.95 , pp. 568-578
    • Huss, J.M.1    Kelly, D.P.2
  • 56
    • 12144286554 scopus 로고    scopus 로고
    • Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner
    • Russell, L.K., et al. 2004. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ. Res. 94:525-533.
    • (2004) Circ. Res. , vol.94 , pp. 525-533
    • Russell, L.K.1
  • 57
    • 22144434964 scopus 로고    scopus 로고
    • Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle
    • Arany, Z., et al. 2005. Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab. 1:259-271.
    • (2005) Cell Metab. , vol.1 , pp. 259-271
    • Arany, Z.1
  • 58
    • 0036284578 scopus 로고    scopus 로고
    • Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth
    • Lehman, J.J., and Kelly, D.P. 2002. Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Fail. Rev. 7:175-185.
    • (2002) Heart Fail. Rev. , vol.7 , pp. 175-185
    • Lehman, J.J.1    Kelly, D.P.2
  • 59
    • 0036118922 scopus 로고    scopus 로고
    • Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart
    • Lehman, J.J., and Kelly, D.P. 2002. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin. Exp. Pharmacol. Physiol. 29:339-345.
    • (2002) Clin. Exp. Pharmacol. Physiol. , vol.29 , pp. 339-345
    • Lehman, J.J.1    Kelly, D.P.2
  • 60
    • 0038463519 scopus 로고    scopus 로고
    • Regulatory networks controlling mitochondrial energy production in the developing, hypertrophied, and diabetic heart
    • B. Stillman and D.J. Stewart, editors. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York, USA
    • Finck, B., Lehman, J.J., Barger, P.M., and Kelly, D.P. 2002. Regulatory networks controlling mitochondrial energy production in the developing, hypertrophied, and diabetic heart. In The cardiovascular system. B. Stillman and D.J. Stewart, editors. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York, USA. 371-382.
    • (2002) The Cardiovascular System , pp. 371-382
    • Finck, B.1    Lehman, J.J.2    Barger, P.M.3    Kelly, D.P.4
  • 61
    • 0036851825 scopus 로고    scopus 로고
    • Activation and function of cyclin T-Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy
    • Sano, M., et al. 2002. Activation and function of cyclin T-Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy. Nat. Med. 8:1310-1317.
    • (2002) Nat. Med. , vol.8 , pp. 1310-1317
    • Sano, M.1
  • 62
    • 4644231687 scopus 로고    scopus 로고
    • Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure
    • Sano, M., et al. 2004. Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure. EMBO J. 23:3559-3569.
    • (2004) EMBO J. , vol.23 , pp. 3559-3569
    • Sano, M.1
  • 63
    • 14644425217 scopus 로고    scopus 로고
    • Mitochondrial energy metabolism in heart failure: A question of balance
    • doi:10.1172/JCI200524405
    • Huss, J.M., and Kelly, D.P. 2005. Mitochondrial energy metabolism in heart failure: a question of balance. J. Clin. Invest. 115:547-555. doi:10.1172/JCI200524405.
    • (2005) J. Clin. Invest. , vol.115 , pp. 547-555
    • Huss, J.M.1    Kelly, D.P.2
  • 64
    • 18444389754 scopus 로고    scopus 로고
    • Effects of high-intensity intermittent swimming on PGC-1α protein expression in rat skeletal muscle
    • Terada, S., Kawanaka, K., Goto, M., Shimokawa, T., and Tabata, I. 2005. Effects of high-intensity intermittent swimming on PGC-1α protein expression in rat skeletal muscle. Acta Physiol. Scand. 184:59-65.
    • (2005) Acta Physiol. Scand. , vol.184 , pp. 59-65
    • Terada, S.1    Kawanaka, K.2    Goto, M.3    Shimokawa, T.4    Tabata, I.5
  • 65
    • 33644654397 scopus 로고    scopus 로고
    • Endurance training increases skeletal muscle LKB1 and PGC-1α protein abundance: Effects of time and intensity
    • Taylor, E.B., et al. 2005. Endurance training increases skeletal muscle LKB1 and PGC-1α protein abundance: effects of time and intensity. Am. J. Physiol. Endocrinol. Metab. 289:E960-E968.
    • (2005) Am. J. Physiol. Endocrinol. Metab. , vol.289
    • Taylor, E.B.1
  • 66
    • 10744228606 scopus 로고    scopus 로고
    • Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-γ coactivator-1 and peroxisome proliferator-activated receptor-α in skeletal muscle
    • Russell, A.P., et al. 2003. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-γ coactivator-1 and peroxisome proliferator-activated receptor-α in skeletal muscle. Diabetes. 52:2874-2881.
    • (2003) Diabetes , vol.52 , pp. 2874-2881
    • Russell, A.P.1
  • 67
    • 21244477127 scopus 로고    scopus 로고
    • Exercise stimulates PGC-1α transcription in skeletal muscle through activation of the p38 MAPK pathway
    • Akimoto, T., et al. 2005. Exercise stimulates PGC-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J. Biol. Chem. 280:19587-19593.
    • (2005) J. Biol. Chem. , vol.280 , pp. 19587-19593
    • Akimoto, T.1
  • 68
    • 0037102256 scopus 로고    scopus 로고
    • Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibers
    • Lin, J., et al. 2002. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibers. Nature. 418:797-801.
    • (2002) Nature , vol.418 , pp. 797-801
    • Lin, J.1
  • 69
    • 28544438180 scopus 로고    scopus 로고
    • PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: A mechanism for transcriptional control of muscle glucose metabolism
    • Wende, A.R., Huss, J.M., Schaeffer, P.J., Giguère, V., and Kelly, D.P. 2005. PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism. Mol. Cell. Biol. 25:10684-10694.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 10684-10694
    • Wende, A.R.1    Huss, J.M.2    Schaeffer, P.J.3    Giguère, V.4    Kelly, D.P.5
  • 70
    • 0035855858 scopus 로고    scopus 로고
    • Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
    • Yoon, J.C., et al. 2001. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 413:131-138.
    • (2001) Nature , vol.413 , pp. 131-138
    • Yoon, J.C.1
  • 71
    • 2442701392 scopus 로고    scopus 로고
    • PGC-1 promotes insulin resistance in liver through PPARα-dependent induction of TRB-3
    • Koo, S.H., et al. 2004. PGC-1 promotes insulin resistance in liver through PPARα-dependent induction of TRB-3. Nat. Med. 10:530-534.
    • (2004) Nat. Med. , vol.10 , pp. 530-534
    • Koo, S.H.1
  • 72
    • 0042967650 scopus 로고    scopus 로고
    • Dexamethasone induction of hypertension and diabetes is PPAR-α dependent in LDL receptor-null mice
    • Bernal-Mizrachi, C., et al. 2003. Dexamethasone induction of hypertension and diabetes is PPAR-α dependent in LDL receptor-null mice. Nat. Med. 9:1069-1075.
    • (2003) Nat. Med. , vol.9 , pp. 1069-1075
    • Bernal-Mizrachi, C.1
  • 73
    • 23944476164 scopus 로고    scopus 로고
    • Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α
    • Handschin, C., et al. 2005. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α. Cell. 122:505-515.
    • (2005) Cell , vol.122 , pp. 505-515
    • Handschin, C.1
  • 74
    • 12944308811 scopus 로고    scopus 로고
    • Common polymorphisms of the PPAR-γ2 (Pro12A1a) and PGC-1α (Gly482Ser) genes are associated with the conversion from impaired glucose tolerance to type 2 diabetes in the STOP-NIDDM trial
    • Andrulionyte, L., Zacharova, J., Chiasson, J.L., and Laakso, M. 2004. Common polymorphisms of the PPAR-γ2 (Pro12A1a) and PGC-1α (Gly482Ser) genes are associated with the conversion from impaired glucose tolerance to type 2 diabetes in the STOP-NIDDM trial. Diabetologia. 47:2176-2184.
    • (2004) Diabetologia , vol.47 , pp. 2176-2184
    • Andrulionyte, L.1    Zacharova, J.2    Chiasson, J.L.3    Laakso, M.4
  • 75
    • 0035676129 scopus 로고    scopus 로고
    • Mutation analysis of peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to type II diabetes mellitus
    • Ek, J., et al. 2001. Mutation analysis of peroxisome proliferator- activated receptor-γ coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to type II diabetes mellitus. Diabetologia. 44:2220-2226.
    • (2001) Diabetologia , vol.44 , pp. 2220-2226
    • Ek, J.1
  • 76
    • 0035985096 scopus 로고    scopus 로고
    • A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to type II diabetes
    • Hara, K., et al. 2002. A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to type II diabetes. Diabetologia. 45:740-743.
    • (2002) Diabetologia , vol.45 , pp. 740-743
    • Hara, K.1
  • 77
    • 23944504923 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor γ coactivator 1α promoter polymorphisms are associated with early-onset type 2 diabetes mellitus in the Korean population
    • Kim, J.H., et al. 2005. Peroxisome proliferator-activated receptor γ coactivator 1α promoter polymorphisms are associated with early-onset type 2 diabetes mellitus in the Korean population. Diabetologia. 48:1323-1330.
    • (2005) Diabetologia , vol.48 , pp. 1323-1330
    • Kim, J.H.1
  • 78
    • 9144251642 scopus 로고    scopus 로고
    • A Gly482Ser polymorphism of the peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) gene is associated with type 2 diabetes in Caucasians
    • Kunej, T., Globocnik Petrovic, M., Dovc, P., Peterlin, B., and Petrovic, D. 2004. A Gly482Ser polymorphism of the peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) gene is associated with type 2 diabetes in Caucasians. Folia Biol. (Praha). 50:157-158.
    • (2004) Folia Biol. (Praha) , vol.50 , pp. 157-158
    • Kunej, T.1    Globocnik Petrovic, M.2    Dovc, P.3    Peterlin, B.4    Petrovic, D.5
  • 79
    • 0037340930 scopus 로고    scopus 로고
    • A Gly482Ser missense mutation in the peroxisome proliferator-activated receptor γ coactivator-1 is associated with altered lipid oxidation and early insulin secretion in Pima Indians
    • Muller, Y.L., Bogardus, C., Pedersen, O., and Baier, L. 2003. A Gly482Ser missense mutation in the peroxisome proliferator-activated receptor γ coactivator-1 is associated with altered lipid oxidation and early insulin secretion in Pima Indians. Diabetes. 52:895-898.
    • (2003) Diabetes , vol.52 , pp. 895-898
    • Muller, Y.L.1    Bogardus, C.2    Pedersen, O.3    Baier, L.4
  • 80
    • 24644464176 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) gene polymorphisms and their relationship to type 2 diabetes in Asian Indians
    • Vimaleswaran, K.S., et al. 2005. Peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) gene polymorphisms and their relationship to type 2 diabetes in Asian Indians. Diabet. Med. 22:1516-1521.
    • (2005) Diabet. Med. , vol.22 , pp. 1516-1521
    • Vimaleswaran, K.S.1
  • 81
    • 2342625303 scopus 로고    scopus 로고
    • Complex haplotypes of the PGC-1α gene are associated with carbohydrate metabolism and type 2 diabetes
    • Oberkofler, H., et al. 2004. Complex haplotypes of the PGC-1α gene are associated with carbohydrate metabolism and type 2 diabetes. Diabetes. 53:1385-1393.
    • (2004) Diabetes , vol.53 , pp. 1385-1393
    • Oberkofler, H.1
  • 82
    • 0036094896 scopus 로고    scopus 로고
    • No association between the G482S polymorphism of the proliferator- activated receptor-gamma coactivator-1 (PGC-1) gene and type II diabetes in French Caucasians
    • Lacquemant, C., Chikri, M., Boutin, P., Samson, C., and Froguel, P. 2002. No association between the G482S polymorphism of the proliferator-activated receptor-gamma coactivator-1 (PGC-1) gene and type II diabetes in French Caucasians. Diabetologia. 45:602-603.
    • (2002) Diabetologia , vol.45 , pp. 602-603
    • Lacquemant, C.1    Chikri, M.2    Boutin, P.3    Samson, C.4    Froguel, P.5
  • 83
    • 2542434277 scopus 로고    scopus 로고
    • The Gly482Ser variant in the peroxisome proliferator-activated receptor gamma coactivator-1 is not associated with diabetes-related traits in non-diabetic German and Dutch populations
    • Stumvoll, M., et al. 2004. The Gly482Ser variant in the peroxisome proliferator-activated receptor gamma coactivator-1 is not associated with diabetes-related traits in non-diabetic German and Dutch populations. Exp. Clin. Endocrinol. Diabetes. 112:253-257.
    • (2004) Exp. Clin. Endocrinol. Diabetes , vol.112 , pp. 253-257
    • Stumvoll, M.1
  • 84
    • 0038686576 scopus 로고    scopus 로고
    • Suppression of β cell energy metabolism and insulin release by PGC-1α
    • Yoon, J.C., et al. 2003. Suppression of β cell energy metabolism and insulin release by PGC-1α. Dev. Cell. 5:73-83.
    • (2003) Dev. Cell. , vol.5 , pp. 73-83
    • Yoon, J.C.1
  • 85
    • 8444228909 scopus 로고    scopus 로고
    • A cluster of metabolic defects caused by mutation in a mitochondrial tRNA
    • Wilson, F.H., et al. 2004. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science. 306:1190-1194.
    • (2004) Science , vol.306 , pp. 1190-1194
    • Wilson, F.H.1
  • 86
    • 0038419818 scopus 로고    scopus 로고
    • PGC-1α at the crossroads of type 2 diabetes
    • Attie, A.D., and Kendziorski, C.M. 2003. PGC-1α at the crossroads of type 2 diabetes. Nat. Genet. 34:244-245.
    • (2003) Nat. Genet. , vol.34 , pp. 244-245
    • Attie, A.D.1    Kendziorski, C.M.2
  • 87
    • 0038054341 scopus 로고    scopus 로고
    • PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
    • Mootha, V.K., et al. 2003. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34:267-273.
    • (2003) Nat. Genet. , vol.34 , pp. 267-273
    • Mootha, V.K.1
  • 88
    • 0037477855 scopus 로고    scopus 로고
    • Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1
    • Patti, M.E., et al. 2003. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl. Acad. Sci. U. S. A. 100:8466-8471.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 8466-8471
    • Patti, M.E.1
  • 89
    • 31044433308 scopus 로고    scopus 로고
    • Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents
    • doi:10.1172/JCI25151
    • Morino, K., et al. 2005. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J. Clin. Invest. 115:3587-3593. doi:10.1172/JCI25151.
    • (2005) J. Clin. Invest. , vol.115 , pp. 3587-3593
    • Morino, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.