-
1
-
-
0037459081
-
Mitochondria: Releasing power for life and unleashing the machineries of death
-
D. D. Newmeyer and S. Ferguson-Miller, "Mitochondria: releasing power for life and unleashing the machineries of death," Cell, vol. 112, no. 4, pp. 481-490, 2003.
-
(2003)
Cell
, vol.112
, Issue.4
, pp. 481-490
-
-
Newmeyer, D.D.1
Ferguson-Miller, S.2
-
2
-
-
77955351652
-
New insights into the role of mitochondria in aging: Mitochondrial dynamics and more
-
A. Y. Seo, A. M. Joseph, D. Dutta, J. C. Hwang, J. P. Aris, and C. Leeuwenburgh, "New insights into the role of mitochondria in aging: mitochondrial dynamics and more," Journal of Cell Science, vol. 123, Part 15, pp. 2533-2542, 2010.
-
(2010)
Journal of Cell Science
, vol.123
, pp. 2533-2542
-
-
Seo, A.Y.1
Joseph, A.M.2
Dutta, D.3
Hwang, J.C.4
Aris, J.P.5
Leeuwenburgh, C.6
-
3
-
-
78650945994
-
Mitochodrial stress signals. Revise an old aging theory
-
D. K. Woo and G. S. Shadel, "Mitochodrial stress signals. Revise an old aging theory," Cell, vol. 144, no. 1, pp. 11-12, 2011.
-
(2011)
Cell
, vol.144
, Issue.1
, pp. 11-12
-
-
Woo, D.K.1
Shadel, G.S.2
-
4
-
-
84908574562
-
Mitochondrial oxidative stress in aging and healthspan
-
D. F. Dai, Y. A. Chiao, D. J. Marcinek, H. H. Szeto, and P. S. Rabinovitch, "Mitochondrial oxidative stress in aging and healthspan," Longevity & Healthspan, vol. 3, no. 1, p. 6, 2014.
-
(2014)
Longevity & Healthspan
, vol.3
, Issue.1
, pp. 6
-
-
Dai, D.F.1
Chiao, Y.A.2
Marcinek, D.J.3
Szeto, H.H.4
Rabinovitch, P.S.5
-
5
-
-
84874591240
-
The role of mitochondria in aging
-
A. Bratic and N. G. Larsson, "The role of mitochondria in aging," The Journal of Clinical Investigation, vol. 123, no. 3, pp. 951-957, 2013.
-
(2013)
The Journal of Clinical Investigation
, vol.123
, Issue.3
, pp. 951-957
-
-
Bratic, A.1
Larsson, N.G.2
-
6
-
-
84973633815
-
Mammalian autophagy: How does it work?
-
C. F. Bento, M. Renna, G. Ghislat et al., "Mammalian autophagy: how does it work?" Annual Review of Biochemistry, vol. 85, pp. 685-713, 2016.
-
(2016)
Annual Review of Biochemistry
, vol.85
, pp. 685-713
-
-
Bento, C.F.1
Renna, M.2
Ghislat, G.3
-
7
-
-
84903817207
-
Receptormediated mitophagy in yeast and mammalian systems
-
L. Liu, K. Sakakibara, Q. Chen, and K. Okamoto, "Receptormediated mitophagy in yeast and mammalian systems," Cell Research, vol. 24, no. 7, pp. 787-795, 2014.
-
(2014)
Cell Research
, vol.24
, Issue.7
, pp. 787-795
-
-
Liu, L.1
Sakakibara, K.2
Chen, Q.3
Okamoto, K.4
-
8
-
-
84904690794
-
Variants of mitochondrial autophagy:types 1 and 2 mitophagy and micromitophagy (type 3)
-
J. J. Lemasters, "Variants of mitochondrial autophagy:types 1 and 2 mitophagy and micromitophagy (type 3)," Redox Biology, vol. 2, pp. 749-754, 2014.
-
(2014)
Redox Biology
, vol.2
, pp. 749-754
-
-
Lemasters, J.J.1
-
10
-
-
84959500135
-
The mitochondrial basis of aging
-
N. Sun, R. J. Youle, and T. Finkel, "The mitochondrial basis of aging," Molecular Cell, vol. 61, no. 5, pp. 654-666, 2016.
-
(2016)
Molecular Cell
, vol.61
, Issue.5
, pp. 654-666
-
-
Sun, N.1
Youle, R.J.2
Finkel, T.3
-
11
-
-
84959065037
-
Mitochondria are required for pro-ageing features of the senescent phenotype
-
C. Correia-Meio, F. D. Marques, R. Anderson et al., "Mitochondria are required for pro-ageing features of the senescent phenotype," The EMBO Journal, vol. 35, no. 7, pp. 724-742, 2016.
-
(2016)
The EMBO Journal
, vol.35
, Issue.7
, pp. 724-742
-
-
Correia-Meio, C.1
Marques, F.D.2
Anderson, R.3
-
12
-
-
77955295515
-
Gycoxidative stress-induced mitophagy modulates mitochondrial fates
-
M. C. Lo, C. I. Lu, M. H. Chen, C. D. Chen, H. M. Lee, and S. H. Kao, "Gycoxidative stress-induced mitophagy modulates mitochondrial fates," Annals of the New York Academy of Sciences, vol. 1201, no. 1, pp. 1-7, 2010.
-
(2010)
Annals of the New York Academy of Sciences
, vol.1201
, Issue.1
, pp. 1-7
-
-
Lo, M.C.1
Lu, C.I.2
Chen, M.H.3
Chen, C.D.4
Lee, H.M.5
Kao, S.H.6
-
13
-
-
84941795152
-
Mitochondrial quality control via the PGC1alpha-TFEB signaling pathway is compromised by parkin Q311X mutation but independently restored by rapamycin
-
A. Siddiqui, D. Bhaumik, S. J. Chinta et al., "Mitochondrial quality control via the PGC1alpha-TFEB signaling pathway is compromised by Parkin Q311X mutation but independently restored by rapamycin," The Journal of Neuroscience, vol. 35, no. 37, pp. 12833-12844, 2015.
-
(2015)
The Journal of Neuroscience
, vol.35
, Issue.37
, pp. 12833-12844
-
-
Siddiqui, A.1
Bhaumik, D.2
Chinta, S.J.3
-
14
-
-
84937514081
-
Iron-starvationinduced mitophagy mediates lifespan extension upon mitochondrial stress in C. Elegans
-
A. Schiavi, S. Maglioni, K. Palikaras et al., "Iron-starvationinduced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans," Current Biology, vol. 25, no. 14, pp. 1810-1822, 2015.
-
(2015)
Current Biology
, vol.25
, Issue.14
, pp. 1810-1822
-
-
Schiavi, A.1
Maglioni, S.2
Palikaras, K.3
-
15
-
-
84978136448
-
Urolithin a induces mitophagy and prolongs lifespan in C. Elegans and increases muscle function in rodents
-
D. Ryu, D. Ryu, L. Mouchiroud et al., "Urolithin a induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents," Nature Medicine, vol. 22, no. 8, pp. 879-888, 2016.
-
(2016)
Nature Medicine
, vol.22
, Issue.8
, pp. 879-888
-
-
Ryu, D.1
Ryu, D.2
Mouchiroud, L.3
-
16
-
-
85004028301
-
Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice
-
K. F. Mills, K. F. Mills, S. Yoshida et al., "Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice," Cell Metabolism, vol. 24, no. 6, pp. 795-806, 2016.
-
(2016)
Cell Metabolism
, vol.24
, Issue.6
, pp. 795-806
-
-
Mills, K.F.1
Mills, K.F.2
Yoshida, S.3
-
17
-
-
84983440665
-
Slowing ageing by design: The rise of NAD+ and sirtuin-activating compounds
-
M. S. Bonkowski and D. A. Sinclair, "Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds," Nature Reviews. Molecular Cell Biology, vol. 17, no. 11, pp. 679-690, 2016.
-
(2016)
Nature Reviews. Molecular Cell Biology
, vol.17
, Issue.11
, pp. 679-690
-
-
Bonkowski, M.S.1
Sinclair, D.A.2
-
18
-
-
84954393355
-
Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy
-
D. Ivankovic, D. Ivankovic, K. Y. Chau, A. H. Schapira, and M. E. Gegg, "Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy," Journal of Neurochemistry, vol. 136, no. 2, pp. 388-402, 2016.
-
(2016)
Journal of Neurochemistry
, vol.136
, Issue.2
, pp. 388-402
-
-
Ivankovic, D.1
Ivankovic, D.2
Chau, K.Y.3
Schapira, A.H.4
Gegg, M.E.5
-
20
-
-
84977119521
-
MCOLN1 is a ROS sensor in lysosomes that regulates autophagy
-
X. Zhang, X. Zhang, X. Cheng et al., "MCOLN1 is a ROS sensor in lysosomes that regulates autophagy," Nature Communications, vol. 7, p. 12109, 2016.
-
(2016)
Nature Communications
, vol.7
, pp. 12109
-
-
Zhang, X.1
Zhang, X.2
Cheng, X.3
-
21
-
-
84960194831
-
Nuclear DNA damage signalling to mitochondria in ageing
-
E. F. Fang, M. Scheibye-Knudsen, K. F. Chua, M. P. Mattson, D. L. Croteau, and V. A. Bohr, "Nuclear DNA damage signalling to mitochondria in ageing," Nature Reviews. Molecular Cell Biology, vol. 17, no. 5, pp. 308-321, 2016.
-
(2016)
Nature Reviews. Molecular Cell Biology
, vol.17
, Issue.5
, pp. 308-321
-
-
Fang, E.F.1
Scheibye-Knudsen, M.2
Chua, K.F.3
Mattson, M.P.4
Croteau, D.L.5
Bohr, V.A.6
-
22
-
-
84992343671
-
NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair
-
E. F. Fang, E. F. Fang, H. Kassahun et al., "NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair," Cell Metabolism, vol. 24, no. 4, pp. 566-581, 2016.
-
(2016)
Cell Metabolism
, vol.24
, Issue.4
, pp. 566-581
-
-
Fang, E.F.1
Fang, E.F.2
Kassahun, H.3
-
23
-
-
84940858852
-
Transcriptional and epigenetic regulation of autophagy in aging
-
L. R. Lapierre, L. R. Lapierre, C. Kumsta, M. Sandri, A. Ballabio, and M. Hansen, "Transcriptional and epigenetic regulation of autophagy in aging," Autophagy, vol. 11, no. 6, pp. 867-880, 2015.
-
(2015)
Autophagy
, vol.11
, Issue.6
, pp. 867-880
-
-
Lapierre, L.R.1
Lapierre, L.R.2
Kumsta, C.3
Sandri, M.4
Ballabio, A.5
Hansen, M.6
-
24
-
-
84986540221
-
A literature review of flavonoids and lifespan in model organisms
-
K. Pallauf, N. Duckstein, and G. Rimbach, "A literature review of flavonoids and lifespan in model organisms," The Proceedings of the Nutrition Society, vol. 76, no. 2, pp. 145-162, 2016.
-
(2016)
The Proceedings of the Nutrition Society
, vol.76
, Issue.2
, pp. 145-162
-
-
Pallauf, K.1
Duckstein, N.2
Rimbach, G.3
-
25
-
-
84867385981
-
Autophagy, polyphenols and healthy ageing
-
K. Pallauf and G. Rimbach, "Autophagy, polyphenols and healthy ageing," Ageing Research Reviews, vol. 12, no. 1, pp. 237-252, 2013.
-
(2013)
Ageing Research Reviews
, vol.12
, Issue.1
, pp. 237-252
-
-
Pallauf, K.1
Rimbach, G.2
-
26
-
-
84901302351
-
Calorie restriction and dietary restriction mimetics: A strategy for improving healthy aging and longevity
-
G. Testa, G. Testa, F. Biasi, G. Poli, and E. Chiarpotto, "Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity," Current Pharmaceutical Design, vol. 20, no. 18, pp. 2950-2977, 2014.
-
(2014)
Current Pharmaceutical Design
, vol.20
, Issue.18
, pp. 2950-2977
-
-
Testa, G.1
Testa, G.2
Biasi, F.3
Poli, G.4
Chiarpotto, E.5
-
27
-
-
84893862873
-
Antiaging properties of a grape-derived antioxidant are regulated by mitochondrial balance of fusion and fission leading to mitophagy triggered by a signaling network of sirt1-sirt3-foxo3-PINK1-PARKIN
-
S. Das, S. Das, G. Mitrovsky, H. R. Vasanthi, and D. K. Das, "Antiaging properties of a grape-derived antioxidant are regulated by mitochondrial balance of fusion and fission leading to mitophagy triggered by a signaling network of Sirt1-Sirt3-Foxo3-PINK1-PARKIN," Oxidative Medicine and Cellular Longevity, vol. 2014, Article ID 345105, p. 13, 2014.
-
(2014)
Oxidative Medicine and Cellular Longevity
, vol.2014
, pp. 13
-
-
Das, S.1
Das, S.2
Mitrovsky, G.3
Vasanthi, H.R.4
Das, D.K.5
-
28
-
-
84953923591
-
Quercetin attenuates chronic ethanol-induced hepatic mitochondrial damage through enhanced mitophagy
-
X. Yu, X. Yu, Y. Xu et al., "Quercetin attenuates chronic ethanol-induced hepatic mitochondrial damage through enhanced mitophagy," Nutrients, vol. 8, no. 1, p. 27, 2016.
-
(2016)
Nutrients
, vol.8
, Issue.1
, pp. 27
-
-
Yu, X.1
Yu, X.2
Xu, Y.3
-
29
-
-
84906766691
-
Possible antioxidant mechanism of melanoidins extract from shanxi aged vinegar in mitophagy-dependent and mitophagy-independent pathways
-
L. Yang, X. Wang, and X. Yang, "Possible antioxidant mechanism of melanoidins extract from Shanxi aged vinegar in mitophagy-dependent and mitophagy-independent pathways," Journal of Agricultural and Food Chemistry, vol. 62, no. 34, pp. 8616-8622, 2014.
-
(2014)
Journal of Agricultural and Food Chemistry
, vol.62
, Issue.34
, pp. 8616-8622
-
-
Yang, L.1
Wang, X.2
Yang, X.3
-
30
-
-
84996636850
-
Curcumin targets the TFEB-lysosome pathway for induction of autophagy
-
J. Zhang, J. Zhang, J. Wang et al., "Curcumin targets the TFEB-lysosome pathway for induction of autophagy," Oncotarget, vol. 7, no. 46, pp. 75659-75671, 2016.
-
(2016)
Oncotarget
, vol.7
, Issue.46
, pp. 75659-75671
-
-
Zhang, J.1
Zhang, J.2
Wang, J.3
-
32
-
-
84963532912
-
2016: A "Mitochondria" odyssey
-
C. Cherry, B. Thompson, N. Saptarshi, J. Wu, and J. Hoh, "2016: a "Mitochondria" odyssey," Trends in Molecular Medicine, vol. 22, no. 5, pp. 391-403, 2016.
-
(2016)
Trends in Molecular Medicine
, vol.22
, Issue.5
, pp. 391-403
-
-
Cherry, C.1
Thompson, B.2
Saptarshi, N.3
Wu, J.4
Hoh, J.5
-
33
-
-
84960171872
-
Mitonuclear communication in homeostasis and stress
-
P. M. Quiros, A. Mottis, and J. Auwerx, "Mitonuclear communication in homeostasis and stress," Nature Reviews. Molecular Cell Biology, vol. 17, no. 4, pp. 213-226, 2016.
-
(2016)
Nature Reviews. Molecular Cell Biology
, vol.17
, Issue.4
, pp. 213-226
-
-
Quiros, P.M.1
Mottis, A.2
Auwerx, J.3
-
35
-
-
84934434639
-
Energy metabolism and metabolic sensors in stem cells: The metabostem crossroads of aging and cancer
-
J. A. Menendez and J. Joven, "Energy metabolism and metabolic sensors in stem cells: the metabostem crossroads of aging and cancer," Advances in Experimental Medicine and Biology, vol. 824, pp. 117-140, 2014.
-
(2014)
Advances in Experimental Medicine and Biology
, vol.824
, pp. 117-140
-
-
Menendez, J.A.1
Joven, J.2
-
36
-
-
78649728763
-
The mitochondrial UPR - protecting organelle protein homeostasis
-
C. M. Haynes and D. Ron, "The mitochondrial UPR - protecting organelle protein homeostasis," Journal of Cell Science, vol. 123, Part 22, pp. 3849-3855, 2010.
-
(2010)
Journal of Cell Science
, vol.123
, pp. 3849-3855
-
-
Haynes, C.M.1
Ron, D.2
-
37
-
-
84896499806
-
The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease
-
V. Jovaisaite, L. Mouchiroud, and J. Auwerx, "The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease," The Journal of Experimental Biology, vol. 217, Part 1, pp. 137-143, 2014.
-
(2014)
The Journal of Experimental Biology
, vol.217
, pp. 137-143
-
-
Jovaisaite, V.1
Mouchiroud, L.2
Auwerx, J.3
-
38
-
-
84871734834
-
Signaling the mitochondrial unfolded protein response
-
M. W. Pellegrino, A. M. Nargund, and C. M. Haynes, "Signaling the mitochondrial unfolded protein response," Biochimica et Biophysica Acta, vol. 1833, no. 2, pp. 410-416, 2013.
-
(2013)
Biochimica et Biophysica Acta
, vol.1833
, Issue.2
, pp. 410-416
-
-
Pellegrino, M.W.1
Nargund, A.M.2
Haynes, C.M.3
-
39
-
-
84930632378
-
Coordination of mitophagy and mitochondrial biogenesis during ageing in C. Elegans
-
K. Palikaras, E. Lionaki, and N. Tavernarakis, "Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans," Nature, vol. 521, no. 7553, pp. 525-528, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 525-528
-
-
Palikaras, K.1
Lionaki, E.2
Tavernarakis, N.3
-
40
-
-
84940998735
-
Coupling mitogenesis and mitophagy for longevity
-
K. Palikaras, E. Lionaki, and N. Tavernarakis, "Coupling mitogenesis and mitophagy for longevity," Autophagy, vol. 11, no. 8, pp. 1428-1430, 2015.
-
(2015)
Autophagy
, vol.11
, Issue.8
, pp. 1428-1430
-
-
Palikaras, K.1
Lionaki, E.2
Tavernarakis, N.3
-
41
-
-
84901826020
-
Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis
-
K. Palikaras and N. Tavernarakis, "Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis," Experimental Gerontology, vol. 56, pp. 182-188, 2014.
-
(2014)
Experimental Gerontology
, vol.56
, pp. 182-188
-
-
Palikaras, K.1
Tavernarakis, N.2
-
42
-
-
84948809269
-
Mitochondrial quality control as a therapeutic target
-
H. B. Suliman and C. A. Piantadosi, "Mitochondrial quality control as a therapeutic target," Pharmacological Reviews, vol. 68, no. 1, pp. 20-48, 2016.
-
(2016)
Pharmacological Reviews
, vol.68
, Issue.1
, pp. 20-48
-
-
Suliman, H.B.1
Piantadosi, C.A.2
-
43
-
-
84979998501
-
A mitochondrial-derived vesicle HOPS to endolysosomes using syntaxin-17
-
G. Juhasz, "A mitochondrial-derived vesicle HOPS to endolysosomes using Syntaxin-17," The Journal of Cell Biology, vol. 214, no. 3, pp. 241-243, 2016.
-
(2016)
The Journal of Cell Biology
, vol.214
, Issue.3
, pp. 241-243
-
-
Juhasz, G.1
-
44
-
-
84871005673
-
The pathways of mitophagy for quality control and clearance of mitochondria
-
G. Ashrafi and T. L. Schwarz, "The pathways of mitophagy for quality control and clearance of mitochondria," Cell Death and Differentiation, vol. 20, no. 1, pp. 31-42, 2013.
-
(2013)
Cell Death and Differentiation
, vol.20
, Issue.1
, pp. 31-42
-
-
Ashrafi, G.1
Schwarz, T.L.2
-
45
-
-
84903694914
-
Transcellular degradation of axonal mitochondria
-
C. H. Davis, K. Y. Kim, E. A. Bushong et al., "Transcellular degradation of axonal mitochondria," Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 26, pp. 9633-9638, 2014.
-
(2014)
Proceedings of the National Academy of Sciences of the United States of America
, vol.111
, Issue.26
, pp. 9633-9638
-
-
Davis, C.H.1
Kim, K.Y.2
Bushong, E.A.3
-
46
-
-
84964240505
-
Discovery and implications of transcellular mitophagy
-
C. H. Davis and N. Marsh-Armstrong, "Discovery and implications of transcellular mitophagy," Autophagy, vol. 10, no. 12, pp. 2383-2384, 2014.
-
(2014)
Autophagy
, vol.10
, Issue.12
, pp. 2383-2384
-
-
Davis, C.H.1
Marsh-Armstrong, N.2
-
47
-
-
84962952123
-
Mitophagy: In sickness and in health
-
K. Palikaras, E. Lionaki, and N. Tavernarakis, "Mitophagy: in sickness and in health," Molecular & Cellular Oncology, vol. 3, no. 1, article e1056332, 2016.
-
(2016)
Molecular & Cellular Oncology
, vol.3
, Issue.1
-
-
Palikaras, K.1
Lionaki, E.2
Tavernarakis, N.3
-
48
-
-
84941944128
-
Mitochondria, autophagy and age-associated neurodegenerative diseases: New insights into a complex interplay
-
E. Lionaki, E. Lionaki, M. Markaki, K. Palikaras, and N. Tavernarakis, "Mitochondria, autophagy and age-associated neurodegenerative diseases: new insights into a complex interplay," Biochimica et Biophysica Acta, vol. 1847, no. 11, pp. 1412-1423, 2015.
-
(2015)
Biochimica et Biophysica Acta
, vol.1847
, Issue.11
, pp. 1412-1423
-
-
Lionaki, E.1
Lionaki, E.2
Markaki, M.3
Palikaras, K.4
Tavernarakis, N.5
-
49
-
-
85016593508
-
Mitochondria in the pathophysiology of Alzheimer's and Parkinson's diseases
-
I. G. Onyango, S. M. Khan, and J. P. Bennett Jr., "Mitochondria in the pathophysiology of Alzheimer's and Parkinson's diseases," Frontiers in bioscience (Landmark edition), vol. 22, pp. 854-872, 2017.
-
(2017)
Frontiers in Bioscience (Landmark Edition)
, vol.22
, pp. 854-872
-
-
Onyango, I.G.1
Khan, S.M.2
Bennett, J.P.3
-
50
-
-
84977622862
-
Inducing mitophagy in diabetic platelets protects against severe oxidative stress
-
S. H. Lee, S. H. Lee, J. Du et al., "Inducing mitophagy in diabetic platelets protects against severe oxidative stress," EMBO Molecular Medicine, vol. 8, no. 7, pp. 779-795, 2016.
-
(2016)
EMBO Molecular Medicine
, vol.8
, Issue.7
, pp. 779-795
-
-
Lee, S.H.1
Lee, S.H.2
Du, J.3
-
51
-
-
84891747382
-
The machinery of macroautophagy
-
Y. Feng, Y. Feng, D. He, Z. Yao, and D. J. Klionsky, "The machinery of macroautophagy," Cell Research, vol. 24, no. 1, pp. 24-41, 2014.
-
(2014)
Cell Research
, vol.24
, Issue.1
, pp. 24-41
-
-
Feng, Y.1
Feng, Y.2
He, D.3
Yao, Z.4
Klionsky, D.J.5
-
52
-
-
80054025654
-
The role of atg proteins in autophagosome formation
-
N. Mizushima, T. Yoshimori, and Y. Ohsumi, "The role of Atg proteins in autophagosome formation," Annual Review of Cell and Developmental Biology, vol. 27, pp. 107-132, 2011.
-
(2011)
Annual Review of Cell and Developmental Biology
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
Yoshimori, T.2
Ohsumi, Y.3
-
53
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
T. Hara, T. Hara, K. Nakamura et al., "Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice," Nature, vol. 441, no. 7095, pp. 885-889, 2006.
-
(2006)
Nature
, vol.441
, Issue.7095
, pp. 885-889
-
-
Hara, T.1
Hara, T.2
Nakamura, K.3
-
54
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
M. Komatsu, M. Komatsu, S. Waguri et al., "Loss of autophagy in the central nervous system causes neurodegeneration in mice," Nature, vol. 441, no. 7095, pp. 880-884, 2006.
-
(2006)
Nature
, vol.441
, Issue.7095
, pp. 880-884
-
-
Komatsu, M.1
Komatsu, M.2
Waguri, S.3
-
55
-
-
79955377420
-
Autophagydeficient mice develop multiple liver tumors
-
A. Takamura, A. Takamura, M. Komatsu et al., "Autophagydeficient mice develop multiple liver tumors," Genes & Development, vol. 25, no. 8, pp. 795-800, 2011.
-
(2011)
Genes & Development
, vol.25
, Issue.8
, pp. 795-800
-
-
Takamura, A.1
Takamura, A.2
Komatsu, M.3
-
56
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
A. Kuma, A. Kuma, M. Hatano, M. Matsui, and A. Yamamoto, "The role of autophagy during the early neonatal starvation period," Nature, vol. 432, no. 7020, pp. 1032-1036, 2004.
-
(2004)
Nature
, vol.432
, Issue.7020
, pp. 1032-1036
-
-
Kuma, A.1
Kuma, A.2
Hatano, M.3
Matsui, M.4
Yamamoto, A.5
-
57
-
-
84901815187
-
Cargo recognition and trafficking in selective autophagy
-
A. Stolz, A. Ernst, and I. Dikic, "Cargo recognition and trafficking in selective autophagy," Nature Cell Biology, vol. 16, no. 6, pp. 495-501, 2014.
-
(2014)
Nature Cell Biology
, vol.16
, Issue.6
, pp. 495-501
-
-
Stolz, A.1
Ernst, A.2
Dikic, I.3
-
58
-
-
84913554278
-
Mitochondrial dynamics and mitochondrial quality control
-
H. M. Ni, J. A. Williams, and W. X. Ding, "Mitochondrial dynamics and mitochondrial quality control," Redox Biology, vol. 4, pp. 6-13, 2015.
-
(2015)
Redox Biology
, vol.4
, pp. 6-13
-
-
Ni, H.M.1
Williams, J.A.2
Ding, W.X.3
-
59
-
-
0035166814
-
Dynamin-related protein drp1 is required for mitochondrial division in mammalian cells
-
E. Smirnova, E. Smirnova, L. Griparic, D. L. Shurland, and A. M. Van Der Bliek, "Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells," Molecular Biology of the Cell, vol. 12, no. 8, pp. 2245-2256, 2001.
-
(2001)
Molecular Biology of the Cell
, vol.12
, Issue.8
, pp. 2245-2256
-
-
Smirnova, E.1
Smirnova, E.2
Griparic, L.3
Shurland, D.L.4
Van Der-Bliek, A.M.5
-
60
-
-
0037455575
-
Mitofusins mfn1 and mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
-
H. Chen, S. A. Detmer, A. J. Ewald, E. E. Griffin, S. E. Fraser, and D. C. Chan, "Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development," The Journal of Cell Biology, vol. 160, no. 2, pp. 189-200, 2003.
-
(2003)
The Journal of Cell Biology
, vol.160
, Issue.2
, pp. 189-200
-
-
Chen, H.1
Detmer, S.A.2
Ewald, A.J.3
Griffin, E.E.4
Fraser, S.E.5
Chan, D.C.6
-
61
-
-
78649463381
-
Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
-
M. E. Gegg, J. M. Cooper, K. Y. Chau, M. Rojo, A. H. Schapira, and J. W. Taanman, "Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy," Human Molecular Genetics, vol. 19, no. 24, pp. 4861-4870, 2010.
-
(2010)
Human Molecular Genetics
, vol.19
, Issue.24
, pp. 4861-4870
-
-
Gegg, M.E.1
Cooper, J.M.2
Chau, K.Y.3
Rojo, M.4
Schapira, A.H.5
Taanman, J.W.6
-
62
-
-
79551574736
-
PINK1 cleavage at position A103 by the mitochondrial protease PARL
-
E. Deas, H. Plun-Favreau, S. Gandhi et al., "PINK1 cleavage at position A103 by the mitochondrial protease PARL," Human Molecular Genetics, vol. 20, no. 5, pp. 867-879, 2011.
-
(2011)
Human Molecular Genetics
, vol.20
, Issue.5
, pp. 867-879
-
-
Deas, E.1
Plun-Favreau, H.2
Gandhi, S.3
-
63
-
-
84859428688
-
Mitochondrial processing peptidase regulates PINK1 processing, import and parkin recruitment
-
A. W. Greene, K. Grenier, M. A. Aguileta et al., "Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment," EMBO Reports, vol. 13, no. 4, pp. 378-385, 2012.
-
(2012)
EMBO Reports
, vol.13
, Issue.4
, pp. 378-385
-
-
Greene, A.W.1
Grenier, K.2
Aguileta, M.A.3
-
64
-
-
79955667485
-
The mitochondrial intramembrane protease PARL cleaves human pink1 to regulate pink1 trafficking
-
C. Meissner, H. Lorenz, A. Weihofen, D. J. Selkoe, and M. K. Lemberg, "The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking," Journal of Neurochemistry, vol. 117, no. 5, pp. 856-867, 2011.
-
(2011)
Journal of Neurochemistry
, vol.117
, Issue.5
, pp. 856-867
-
-
Meissner, C.1
Lorenz, H.2
Weihofen, A.3
Selkoe, D.J.4
Lemberg, M.K.5
-
65
-
-
78649685455
-
Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
-
S. M. Jin, M. Lazarou, C. Wang, L. A. Kane, D. P. Narendra, and R. J. Youle, "Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL," The Journal of Cell Biology, vol. 191, no. 5, pp. 933-942, 2010.
-
(2010)
The Journal of Cell Biology
, vol.191
, Issue.5
, pp. 933-942
-
-
Jin, S.M.1
Lazarou, M.2
Wang, C.3
Kane, L.A.4
Narendra, D.P.5
Youle, R.J.6
-
66
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase parkin
-
M. Lazarou, S. M. Jin, L. A. Kane, and R. J. Youle, "Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin," Developmental Cell, vol. 22, no. 2, pp. 320-333, 2012.
-
(2012)
Developmental Cell
, vol.22
, Issue.2
, pp. 320-333
-
-
Lazarou, M.1
Jin, S.M.2
Kane, L.A.3
Youle, R.J.4
-
67
-
-
84912127688
-
Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase parkin
-
T. R. Caulfield, F. C. Fiesel, E. L. Moussaud-Lamodière, D. F. Dourado, S. C. Flores, and W. Springer, "Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin," PLoS Computational Biology, vol. 10, no. 11, article e1003935, 2014.
-
(2014)
PLoS Computational Biology
, vol.10
, Issue.11
-
-
Caulfield, T.R.1
Fiesel, F.C.2
Moussaud-Lamodière, E.L.3
Dourado, D.F.4
Flores, S.C.5
Springer, W.6
-
68
-
-
84899454281
-
Phosphorylation of parkin at serine65 is essential for activation: Elaboration of a miro1 substrate-based assay of parkin E3 ligase activity
-
A. Kazlauskaite, V. Kelly, C. Johnson et al., "Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity," Open Biology, vol. 4, no. 3, p. 130213, 2014.
-
(2014)
Open Biology
, vol.4
, Issue.3
, pp. 130213
-
-
Kazlauskaite, A.1
Kelly, V.2
Johnson, C.3
-
69
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at ser65
-
A. Kazlauskaite, C. Kondapalli, R. Gourlay et al., "Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65," The Biochemical Journal, vol. 460, no. 1, pp. 127-139, 2014.
-
(2014)
The Biochemical Journal
, vol.460
, Issue.1
, pp. 127-139
-
-
Kazlauskaite, A.1
Kondapalli, C.2
Gourlay, R.3
-
70
-
-
84938742614
-
Binding to serine 65-phosphorylated ubiquitin primes parkin for optimal PINK1-dependent phosphorylation and activation
-
A. Kazlauskaite, R. J. Martínez - Torres, S. Wilkie et al., "Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation," EMBO Reports, vol. 16, no. 8, pp. 939-954, 2015.
-
(2015)
EMBO Reports
, vol.16
, Issue.8
, pp. 939-954
-
-
Kazlauskaite, A.1
Martínez-Torres, R.J.2
Wilkie, S.3
-
71
-
-
77952242572
-
The parkinsonassociated protein PINK1 interacts with beclin1 and promotes autophagy
-
S. Michiorri, V. Gelmetti, E. Giarda et al., "The Parkinsonassociated protein PINK1 interacts with Beclin1 and promotes autophagy," Cell Death and Differentiation, vol. 17, no. 6, pp. 962-974, 2010.
-
(2010)
Cell Death and Differentiation
, vol.17
, Issue.6
, pp. 962-974
-
-
Michiorri, S.1
Gelmetti, V.2
Giarda, E.3
-
72
-
-
79960407069
-
Parkin interacts with ambra1 to induce mitophagy
-
C. Van Humbeeck, T. Cornelissen, H. Hofkens et al., "Parkin interacts with Ambra1 to induce mitophagy," The Journal of Neuroscience, vol. 31, no. 28, pp. 10249-10261, 2011.
-
(2011)
The Journal of Neuroscience
, vol.31
, Issue.28
, pp. 10249-10261
-
-
Van Humbeeck, C.1
Cornelissen, T.2
Hofkens, H.3
-
73
-
-
84922506220
-
AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1
-
F. Strappazzon, F. Nazio, M. Corrado et al., "AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1," Cell Death and Differentiation, vol. 22, no. 3, pp. 419-432, 2015.
-
(2015)
Cell Death and Differentiation
, vol.22
, Issue.3
, pp. 419-432
-
-
Strappazzon, F.1
Nazio, F.2
Corrado, M.3
-
74
-
-
84885176082
-
Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells
-
C. T. Chu, J. Ji, R. K. Dagda et al., "Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells," Nature Cell Biology, vol. 15, no. 10, pp. 1197-1205, 2013.
-
(2013)
Nature Cell Biology
, vol.15
, Issue.10
, pp. 1197-1205
-
-
Chu, C.T.1
Ji, J.2
Dagda, R.K.3
-
75
-
-
84953432704
-
NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy
-
V. E. Kagan, V. E. Kagan, J. Jiang et al., "NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy," Cell Death and Differentiation, vol. 23, no. 7, pp. 1140-1151, 2016.
-
(2016)
Cell Death and Differentiation
, vol.23
, Issue.7
, pp. 1140-1151
-
-
Kagan, V.E.1
Kagan, V.E.2
Jiang, J.3
-
76
-
-
84870302121
-
Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy
-
R. D. Sentelle, C. E. Senkal, W. Jiang et al., "Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy," Nature Chemical Biology, vol. 8, no. 10, pp. 831-838, 2012.
-
(2012)
Nature Chemical Biology
, vol.8
, Issue.10
, pp. 831-838
-
-
Sentelle, R.D.1
Senkal, C.E.2
Jiang, W.3
-
77
-
-
84891014899
-
The return of the nucleus: Transcriptional and epigenetic control of autophagy
-
J. Fullgrabe, D. J. Klionsky, and B. Joseph, "The return of the nucleus: transcriptional and epigenetic control of autophagy," Nature Reviews. Molecular Cell Biology, vol. 15, no. 1, pp. 65-74, 2014.
-
(2014)
Nature Reviews. Molecular Cell Biology
, vol.15
, Issue.1
, pp. 65-74
-
-
Fullgrabe, J.1
Klionsky, D.J.2
Joseph, B.3
-
78
-
-
84897414264
-
FOXO transcription factors: Key regulators of cellular quality control
-
A. E. Webb and A. Brunet, "FOXO transcription factors: key regulators of cellular quality control," Trends in Biochemical Sciences, vol. 39, no. 4, pp. 159-169, 2014.
-
(2014)
Trends in Biochemical Sciences
, vol.39
, Issue.4
, pp. 159-169
-
-
Webb, A.E.1
Brunet, A.2
-
79
-
-
84883063789
-
The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in caenorhabditis elegans
-
L. R. Lapierre, C. D. De Magalhaes Filho, M. Q. PR et al., "The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans," Nature Communications, vol. 4, article 2267, pp. 1-8, 2013.
-
(2013)
Nature Communications
, vol.4
, pp. 1-8
-
-
Lapierre, L.R.1
De Magalhaes-Filho, C.D.2
Pr, M.Q.3
-
80
-
-
0042092531
-
Genes that act downstream of DAF-16 to influence the lifespan of caenorhabditis elegans
-
C. T. Murphy, C. T. Murphy, M. C. SA et al., "Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans," Nature, vol. 424, no. 6946, pp. 277-283, 2003.
-
(2003)
Nature
, vol.424
, Issue.6946
, pp. 277-283
-
-
Murphy, C.T.1
Murphy, C.T.2
Sa, M.C.3
-
81
-
-
84899450195
-
FoxO transcription factors: Their roles in the maintenance of skeletal muscle homeostasis
-
A. M. Sanchez, R. B. Candau, and H. Bernardi, "FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis," Cellular and Molecular Life Sciences, vol. 71, no. 9, pp. 1657-1671, 2014.
-
(2014)
Cellular and Molecular Life Sciences
, vol.71
, Issue.9
, pp. 1657-1671
-
-
Sanchez, A.M.1
Candau, R.B.2
Bernardi, H.3
-
82
-
-
34848861463
-
The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor
-
E. L. Greer, P. R. Oskoui, M. R. Banko et al., "The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor," The Journal of Biological Chemistry, vol. 282, no. 41, pp. 30107-30119, 2007.
-
(2007)
The Journal of Biological Chemistry
, vol.282
, Issue.41
, pp. 30107-30119
-
-
Greer, E.L.1
Oskoui, P.R.2
Banko, M.R.3
-
83
-
-
34848850156
-
An AMPKFOXO pathway mediates longevity induced by a novel method of dietary restriction in C. Elegans
-
E. L. Greer, D. Dowlatshahi, M. R. Banko et al., "An AMPKFOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans," Current Biology, vol. 17, no. 19, pp. 1646-1656, 2007.
-
(2007)
Current Biology
, vol.17
, Issue.19
, pp. 1646-1656
-
-
Greer, E.L.1
Dowlatshahi, D.2
Banko, M.R.3
-
84
-
-
12144290563
-
Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
-
A. Brunet, L. B. Sweeney, J. F. Sturgill et al., "Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase," Science, vol. 303, no. 5666, pp. 2011-2015, 2004.
-
(2004)
Science
, vol.303
, Issue.5666
, pp. 2011-2015
-
-
Brunet, A.1
Sweeney, L.B.2
Sturgill, J.F.3
-
85
-
-
36448940798
-
FoxO3 controls autophagy in skeletal muscle in vivo
-
C. Mammucari, C. Mammucari, G. Milan et al., "FoxO3 controls autophagy in skeletal muscle in vivo," Cell Metabolism, vol. 6, no. 6, pp. 458-471, 2007.
-
(2007)
Cell Metabolism
, vol.6
, Issue.6
, pp. 458-471
-
-
Mammucari, C.1
Mammucari, C.2
Milan, G.3
-
86
-
-
43949109275
-
Downstream of akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle
-
C. Mammucari, S. Schiaffino, and M. Sandri, "Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle," Autophagy, vol. 4, no. 4, pp. 524-526, 2008.
-
(2008)
Autophagy
, vol.4
, Issue.4
, pp. 524-526
-
-
Mammucari, C.1
Schiaffino, S.2
Sandri, M.3
-
87
-
-
36448968532
-
FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
-
J. Zhao, J. J. Brault, A. Schild et al., "FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells," Cell Metabolism, vol. 6, no. 6, pp. 472-483, 2007.
-
(2007)
Cell Metabolism
, vol.6
, Issue.6
, pp. 472-483
-
-
Zhao, J.1
Brault, J.J.2
Schild, A.3
-
88
-
-
84892989225
-
SirT3 regulates the mitochondrial unfolded protein response
-
L. Papa and D. Germain, "SirT3 regulates the mitochondrial unfolded protein response," Molecular and Cellular Biology, vol. 34, no. 4, pp. 699-710, 2014.
-
(2014)
Molecular and Cellular Biology
, vol.34
, Issue.4
, pp. 699-710
-
-
Papa, L.1
Germain, D.2
-
89
-
-
85020774876
-
Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of foxo3a-parkin-mediated mitophagy
-
In press
-
W. Yu, B. Gao, N. Li et al., "Sirt3 deficiency exacerbates diabetic cardiac dysfunction: role of Foxo3A-Parkin-mediated mitophagy," Biochimica et Biophysica Acta, 2016, In press.
-
(2016)
Biochimica et Biophysica Acta
-
-
Yu, W.1
Gao, B.2
Li, N.3
-
90
-
-
67749122634
-
A gene network regulating lysosomal biogenesis and function
-
M. Sardiello, M. Sardiello, M. Palmieri et al., "A gene network regulating lysosomal biogenesis and function," Science, vol. 325, no. 5939, pp. 473-477, 2009.
-
(2009)
Science
, vol.325
, Issue.5939
, pp. 473-477
-
-
Sardiello, M.1
Sardiello, M.2
Palmieri, M.3
-
91
-
-
80052716148
-
Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways
-
M. Palmieri, M. Palmieri, S. Impey et al., "Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways," Human Molecular Genetics, vol. 20, no. 19, pp. 3852-3866, 2011.
-
(2011)
Human Molecular Genetics
, vol.20
, Issue.19
, pp. 3852-3866
-
-
Palmieri, M.1
Palmieri, M.2
Impey, S.3
-
92
-
-
84977493534
-
Transcription factor EB: From master coordinator of lysosomal pathways to candidate therapeutic target in degenerative storage diseases
-
M. Sardiello, "Transcription factor EB: from master coordinator of lysosomal pathways to candidate therapeutic target in degenerative storage diseases," Annals of the New York Academy of Sciences, vol. 1371, no. 1, pp. 3-14, 2016.
-
(2016)
Annals of the New York Academy of Sciences
, vol.1371
, Issue.1
, pp. 3-14
-
-
Sardiello, M.1
-
93
-
-
77951768486
-
Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Y. Sancak, L. Bar-Peled, R. Zoncu, A. L. Markhard, S. Nada, and D. M. Sabatini, "Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids," Cell, vol. 141, no. 2, pp. 290-303, 2010.
-
(2010)
Cell
, vol.141
, Issue.2
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
94
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
R. Zoncu, L. Bar-Peled, A. Efeyan, S. Wang, Y. Sancak, and D. M. Sabatini, "mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase," Science, vol. 334, no. 6056, pp. 678-683, 2011.
-
(2011)
Science
, vol.334
, Issue.6056
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
95
-
-
84862539692
-
The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
-
A. Roczniak-Ferguson, C. S. Petit, F. Froehlich et al., "The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis," Science Signaling, vol. 5, no. 228, p. ra42, 2012.
-
(2012)
Science Signaling
, vol.5
, Issue.228
, pp. ra42
-
-
Roczniak-Ferguson, A.1
Petit, C.S.2
Froehlich, F.3
-
96
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
C. Settembre, C. Di Malta, V. A. Polito et al., "TFEB links autophagy to lysosomal biogenesis," Science, vol. 332, no. 6036, pp. 1429-1433, 2011.
-
(2011)
Science
, vol.332
, Issue.6036
, pp. 1429-1433
-
-
Settembre, C.1
Di Malta, C.2
Polito, V.A.3
-
97
-
-
84923820926
-
Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB
-
D. L. Medina, S. Di Paola, I. Peluso et al., "Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB," Nature Cell Biology, vol. 17, no. 3, pp. 288-299, 2015.
-
(2015)
Nature Cell Biology
, vol.17
, Issue.3
, pp. 288-299
-
-
Medina, D.L.1
Di Paola, S.2
Peluso, I.3
-
98
-
-
84939820927
-
MiT/TFE transcription factors are activated during mitophagy downstream of parkin and atg5
-
C. L. Nezich, C. Wang, A. I. Fogel, and R. J. Youle, "MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5," The Journal of Cell Biology, vol. 210, no. 3, pp. 435-450, 2015.
-
(2015)
The Journal of Cell Biology
, vol.210
, Issue.3
, pp. 435-450
-
-
Nezich, C.L.1
Wang, C.2
Fogel, A.I.3
Youle, R.J.4
-
99
-
-
85010461607
-
PINK1 primes parkin-mediated ubiquitination of Paris in dopaminergic neuronal survival
-
Y. Lee, D. A. Stevens, S. U. Kang et al., "PINK1 primes Parkin-mediated ubiquitination of PARIS in dopaminergic neuronal survival," Cell Reports, vol. 18, no. 4, pp. 918-932, 2017.
-
(2017)
Cell Reports
, vol.18
, Issue.4
, pp. 918-932
-
-
Lee, Y.1
Stevens, D.A.2
Kang, S.U.3
-
100
-
-
0025669051
-
Role of secondary metabolites in chemical defence mechanisms in plants
-
discussion 135-9
-
J. B. Harborne, "Role of secondary metabolites in chemical defence mechanisms in plants," Ciba Foundation Symposium, vol. 154, pp. 126-134, 1990, discussion 135-9.
-
(1990)
Ciba Foundation Symposium
, vol.154
, pp. 126-134
-
-
Harborne, J.B.1
-
101
-
-
84906791148
-
Polyphenols and mitochondria: An update on their increasingly emerging ROS-scavenging independent actions
-
C. Sandoval-Acuna, J. Ferreira, and H. Speisky, "Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions," Archives of Biochemistry and Biophysics, vol. 559, pp. 75-90, 2014.
-
(2014)
Archives of Biochemistry and Biophysics
, vol.559
, pp. 75-90
-
-
Sandoval-Acuna, C.1
Ferreira, J.2
Speisky, H.3
-
102
-
-
84962886227
-
The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a down syndrome mouse model
-
D. Valenti, L. de Bari, D. de Rasmo et al., "The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model," Biochimica et Biophysica Acta, vol. 1862, no. 6, pp. 1093-1104, 2016.
-
(2016)
Biochimica et Biophysica Acta
, vol.1862
, Issue.6
, pp. 1093-1104
-
-
Valenti, D.1
De Bari, L.2
De Rasmo, D.3
-
103
-
-
85009881987
-
Low dose resveratrol ameliorates mitochondrial respiratory dysfunction and enhances cellular reprogramming
-
Y. Mizuguchi, H. Hatakeyama, K. Sueoka, M. Tanaka, and Y. I. Goto, "Low dose resveratrol ameliorates mitochondrial respiratory dysfunction and enhances cellular reprogramming," Mitochondrion, 2017.
-
(2017)
Mitochondrion
-
-
Mizuguchi, Y.1
Hatakeyama, H.2
Sueoka, K.3
Tanaka, M.4
Goto, Y.I.5
-
104
-
-
85018450906
-
Rosmarinic acid mediates mitochondrial biogenesis in insulin resistant skeletal muscle through activation of AMPK
-
G. Jayanthy, V. Roshana Devi, K. Ilango, and S. P. Subramanian, "Rosmarinic acid mediates mitochondrial biogenesis in insulin resistant skeletal muscle through activation of AMPK," Journal of Cellular Biochemistry, vol. 118, no. 7, pp. 1839-1848, 2017.
-
(2017)
Journal of Cellular Biochemistry
, vol.118
, Issue.7
, pp. 1839-1848
-
-
Jayanthy, G.1
Roshana Devi, V.2
Ilango, K.3
Subramanian, S.P.4
-
105
-
-
84860912859
-
(-)-epicatechin maintains endurance training adaptation in mice after 14 days of detraining
-
M. Huttemann, I. Lee, and M. H. Malek, "(-)-Epicatechin maintains endurance training adaptation in mice after 14 days of detraining," The FASEB Journal, vol. 26, no. 4, pp. 1413-1422, 2012.
-
(2012)
The FASEB Journal
, vol.26
, Issue.4
, pp. 1413-1422
-
-
Huttemann, M.1
Lee, I.2
Malek, M.H.3
-
106
-
-
84874684795
-
(-)-epicatechin is associated with increased angiogenic and mitochondrial signalling in the hindlimb of rats selectively bred for innate low running capacity
-
M. Huttemann, I. Lee, G. A. Perkins, S. L. Britton, L. G. Koch, and M. H. Malek, "(-)-Epicatechin is associated with increased angiogenic and mitochondrial signalling in the hindlimb of rats selectively bred for innate low running capacity," Clinical Science (London, England), vol. 124, no. 11, pp. 663-674, 2013.
-
(2013)
Clinical Science (London, England)
, vol.124
, Issue.11
, pp. 663-674
-
-
Huttemann, M.1
Lee, I.2
Perkins, G.A.3
Britton, S.L.4
Koch, L.G.5
Malek, M.H.6
-
107
-
-
84926467838
-
(-)-epicatechin combined with 8 weeks of treadmill exercise is associated with increased angiogenic and mitochondrial signaling in mice
-
I. Lee, M. Hüttemann, A. Kruger, A. Bollig-Fischer, and M. H. Malek, "(-)-Epicatechin combined with 8 weeks of treadmill exercise is associated with increased angiogenic and mitochondrial signaling in mice," Frontiers in Pharmacology, vol. 6, article 43, pp. 1-10, 2015.
-
(2015)
Frontiers in Pharmacology
, vol.6
, pp. 1-10
-
-
Lee, I.1
Hüttemann, M.2
Kruger, A.3
Bollig-Fischer, A.4
Malek, M.H.5
-
108
-
-
84879689589
-
Effects of (-)-epicatechin and derivatives on nitric oxide mediated induction of mitochondrial proteins
-
A. Moreno-Ulloa, A. Cid, I. Rubio-Gayosso, G. Ceballos, F. Villarreal, and I. Ramirez-Sanchez, "Effects of (-)-epicatechin and derivatives on nitric oxide mediated induction of mitochondrial proteins," Bioorganic & Medicinal Chemistry Letters, vol. 23, no. 15, pp. 4441-4446, 2013.
-
(2013)
Bioorganic & Medicinal Chemistry Letters
, vol.23
, Issue.15
, pp. 4441-4446
-
-
Moreno-Ulloa, A.1
Cid, A.2
Rubio-Gayosso, I.3
Ceballos, G.4
Villarreal, F.5
Ramirez-Sanchez, I.6
-
109
-
-
84946548000
-
Recovery of indicators of mitochondrial biogenesis, oxidative stress, and aging with (-)-epicatechin in senile mice
-
A. Moreno-Ulloa, L. Nogueira, A. Rodriguez et al., "Recovery of indicators of mitochondrial biogenesis, oxidative stress, and aging with (-)-epicatechin in senile mice," The Journals of Gerontology. Series a, Biological Sciences and Medical Sciences, vol. 70, no. 11, pp. 1370-1378, 2015.
-
(2015)
The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences
, vol.70
, Issue.11
, pp. 1370-1378
-
-
Moreno-Ulloa, A.1
Nogueira, L.2
Rodriguez, A.3
-
110
-
-
80052793189
-
(-)-epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle
-
L. Nogueira, I. Ramirez - Sanchez, G. A. Perkins et al., "(-)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle," The Journal of Physiology, vol. 589, Part 18, pp. 4615-4631, 2011.
-
(2011)
The Journal of Physiology
, vol.589
, pp. 4615-4631
-
-
Nogueira, L.1
Ramirez-Sanchez, I.2
Perkins, G.A.3
-
111
-
-
84870063237
-
Stimulatory effects of the flavanol (-)-epicatechin on cardiac angiogenesis: Additive effects with exercise
-
I. Ramirez-Sanchez, L. Nogueira, A. Moreno et al., "Stimulatory effects of the flavanol (-)-epicatechin on cardiac angiogenesis: additive effects with exercise," Journal of Cardiovascular Pharmacology, vol. 60, no. 5, pp. 429-438, 2012.
-
(2012)
Journal of Cardiovascular Pharmacology
, vol.60
, Issue.5
, pp. 429-438
-
-
Ramirez-Sanchez, I.1
Nogueira, L.2
Moreno, A.3
-
112
-
-
84964323832
-
(-)-epicatechin-induced recovery of mitochondria from simulated diabetes: Potential role of endothelial nitric oxide synthase
-
I. Ramirez-Sanchez, A. Rodríguez, A. Moreno-Ulloa, G. Ceballos, and F. Villarreal, "(-)-Epicatechin-induced recovery of mitochondria from simulated diabetes: potential role of endothelial nitric oxide synthase," Diabetes & Vascular Disease Research, vol. 13, no. 3, pp. 201-210, 2016.
-
(2016)
Diabetes & Vascular Disease Research
, vol.13
, Issue.3
, pp. 201-210
-
-
Ramirez-Sanchez, I.1
Rodríguez, A.2
Moreno-Ulloa, A.3
Ceballos, G.4
Villarreal, F.5
-
113
-
-
84904254220
-
Intravenous (-)-epicatechin reduces myocardial ischemic injury by protecting mitochondrial function
-
K. G. Yamazaki, A. Y. Andreyev, P. Ortiz-Vilchis et al., "Intravenous (-)-epicatechin reduces myocardial ischemic injury by protecting mitochondrial function," International Journal of Cardiology, vol. 175, no. 2, pp. 297-306, 2014.
-
(2014)
International Journal of Cardiology
, vol.175
, Issue.2
, pp. 297-306
-
-
Yamazaki, K.G.1
Andreyev, A.Y.2
Ortiz-Vilchis, P.3
-
114
-
-
84975260030
-
Amla enhances mitochondrial spare respiratory capacity by increasing mitochondrial biogenesis and antioxidant systems in a murine skeletal muscle cell line
-
H. Yamamoto, K. Morino, L. Mengistu et al., "Amla enhances mitochondrial spare respiratory capacity by increasing mitochondrial biogenesis and antioxidant systems in a murine skeletal muscle cell line," Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 1735841, p. 11, 2016.
-
(2016)
Oxidative Medicine and Cellular Longevity
, vol.2016
, pp. 11
-
-
Yamamoto, H.1
Morino, K.2
Mengistu, L.3
-
115
-
-
65249108225
-
FOXO3a-dependent regulation of pink1 (Park6) mediates survival signaling in response to cytokine deprivation
-
Y. Mei, Y. Zhang, K. Yamamoto, W. Xie, T. W. Mak, and H. You, "FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation," Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5153-5158, 2009.
-
(2009)
Proceedings of the National Academy of Sciences of the United States of America
, vol.106
, Issue.13
, pp. 5153-5158
-
-
Mei, Y.1
Zhang, Y.2
Yamamoto, K.3
Xie, W.4
Mak, T.W.5
You, H.6
-
116
-
-
84941741215
-
Interdependence of parkin-mediated mitophagy and mitochondrial fission in adult mouse hearts
-
M. Song, G. Gong, Y. Burelle et al., "Interdependence of Parkin-mediated mitophagy and mitochondrial fission in adult mouse hearts," Circulation Research, vol. 117, no. 4, pp. 346-351, 2015.
-
(2015)
Circulation Research
, vol.117
, Issue.4
, pp. 346-351
-
-
Song, M.1
Gong, G.2
Burelle, Y.3
-
117
-
-
84862807211
-
Quercetin prevents ethanolinduced dyslipidemia and mitochondrial oxidative damage
-
Y. Tang, C. Gao, M. Xing et al., "Quercetin prevents ethanolinduced dyslipidemia and mitochondrial oxidative damage," Food and Chemical Toxicology, vol. 50, no. 5, pp. 1194-1200, 2012.
-
(2012)
Food and Chemical Toxicology
, vol.50
, Issue.5
, pp. 1194-1200
-
-
Tang, Y.1
Gao, C.2
Xing, M.3
-
118
-
-
84955466128
-
Betulin alleviated ethanolinduced alcoholic liver injury via SIRT1/AMPK signaling pathway
-
T. Bai, Y. Yang, Y. L. Yao et al., "Betulin alleviated ethanolinduced alcoholic liver injury via SIRT1/AMPK signaling pathway," Pharmacological Research, vol. 105, pp. 1-12, 2016.
-
(2016)
Pharmacological Research
, vol.105
, pp. 1-12
-
-
Bai, T.1
Yang, Y.2
Yao, Y.L.3
-
119
-
-
84908431088
-
Delphinidin-3-glucoside protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury by autophagy upregulation via the AMPK/SIRT1 signaling pathway
-
X. Jin, M. Chen, L. Yi et al., "Delphinidin-3-glucoside protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury by autophagy upregulation via the AMPK/SIRT1 signaling pathway," Molecular Nutrition & Food Research, vol. 58, no. 10, pp. 1941-1951, 2014.
-
(2014)
Molecular Nutrition & Food Research
, vol.58
, Issue.10
, pp. 1941-1951
-
-
Jin, X.1
Chen, M.2
Yi, L.3
-
120
-
-
41549138483
-
A role for the NADdependent deacetylase sirt1 in the regulation of autophagy
-
I. H. Lee, L. Cao, R. Mostoslavsky et al., "A role for the NADdependent deacetylase Sirt1 in the regulation of autophagy," Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3374-3379, 2008.
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.9
, pp. 3374-3379
-
-
Lee, I.H.1
Cao, L.2
Mostoslavsky, R.3
-
121
-
-
84976541097
-
A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition
-
J. X. Song, Y. R. Sun, I. Peluso et al., "A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition," Autophagy, vol. 12, no. 8, pp. 1372-1389, 2016.
-
(2016)
Autophagy
, vol.12
, Issue.8
, pp. 1372-1389
-
-
Song, J.X.1
Sun, Y.R.2
Peluso, I.3
-
122
-
-
84884819157
-
Autophagosome formation-The role of ULK1 and beclin1-PI3KC3 complexes in setting the stage
-
M. Wirth, J. Joachim, and S. A. Tooze, "Autophagosome formation-the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage," Seminars in Cancer Biology, vol. 23, no. 5, pp. 301-309, 2013.
-
(2013)
Seminars in Cancer Biology
, vol.23
, Issue.5
, pp. 301-309
-
-
Wirth, M.1
Joachim, J.2
Tooze, S.A.3
-
123
-
-
84923147814
-
Regulation of the transcription factor EB-PGC1alpha axis by beclin-1 controls mitochondrial quality and cardiomyocyte death under stress
-
X. Ma, H. Liu, J. T. Murphy et al., "Regulation of the transcription factor EB-PGC1alpha axis by beclin-1 controls mitochondrial quality and cardiomyocyte death under stress," Molecular and Cellular Biology, vol. 35, no. 6, pp. 956-976, 2015.
-
(2015)
Molecular and Cellular Biology
, vol.35
, Issue.6
, pp. 956-976
-
-
Ma, X.1
Liu, H.2
Murphy, J.T.3
-
124
-
-
43949096967
-
Impaired autophagy: A mechanism of mitochondrial dysfunction in anoxic rat hepatocytes
-
J. S. Kim, T. Nitta, D. Mohuczy et al., "Impaired autophagy: a mechanism of mitochondrial dysfunction in anoxic rat hepatocytes," Hepatology, vol. 47, no. 5, pp. 1725-1736, 2008.
-
(2008)
Hepatology
, vol.47
, Issue.5
, pp. 1725-1736
-
-
Kim, J.S.1
Nitta, T.2
Mohuczy, D.3
-
125
-
-
84856821006
-
Signal transduction by mitochondrial oxidants
-
T. Finkel, "Signal transduction by mitochondrial oxidants," The Journal of Biological Chemistry, vol. 287, no. 7, pp. 4434-4440, 2012.
-
(2012)
The Journal of Biological Chemistry
, vol.287
, Issue.7
, pp. 4434-4440
-
-
Finkel, T.1
-
126
-
-
79960286223
-
Signal transduction by reactive oxygen species
-
T. Finkel, "Signal transduction by reactive oxygen species," The Journal of Cell Biology, vol. 194, no. 1, pp. 7-15, 2011.
-
(2011)
The Journal of Cell Biology
, vol.194
, Issue.1
, pp. 7-15
-
-
Finkel, T.1
-
127
-
-
84948953210
-
Mitochondrial dysfunction and longevity in animals: Untangling the knot
-
Y. Wang and S. Hekimi, "Mitochondrial dysfunction and longevity in animals: untangling the knot," Science, vol. 350, no. 6265, pp. 1204-1207, 2015.
-
(2015)
Science
, vol.350
, Issue.6265
, pp. 1204-1207
-
-
Wang, Y.1
Hekimi, S.2
-
128
-
-
84975755192
-
Mitochondrial ROS signaling in organismal homeostasis
-
G. S. Shadel and T. L. Horvath, "Mitochondrial ROS signaling in organismal homeostasis," Cell, vol. 163, no. 3, pp. 560-569, 2015.
-
(2015)
Cell
, vol.163
, Issue.3
, pp. 560-569
-
-
Shadel, G.S.1
Horvath, T.L.2
-
129
-
-
84900295547
-
Mitohormesis
-
J. Yun and T. Finkel, "Mitohormesis," Cell Metabolism, vol. 19, no. 5, pp. 757-766, 2014.
-
(2014)
Cell Metabolism
, vol.19
, Issue.5
, pp. 757-766
-
-
Yun, J.1
Finkel, T.2
-
130
-
-
48349140474
-
Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies?
-
B. Halliwell, "Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies?" Archives of Biochemistry and Biophysics, vol. 476, no. 2, pp. 107-112, 2008.
-
(2008)
Archives of Biochemistry and Biophysics
, vol.476
, Issue.2
, pp. 107-112
-
-
Halliwell, B.1
-
131
-
-
84868026885
-
Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins
-
F. Pietrocola, G. Mariño, D. Lissa et al., "Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins," Cell Cycle, vol. 11, no. 20, pp. 3851-3860, 2012.
-
(2012)
Cell Cycle
, vol.11
, Issue.20
, pp. 3851-3860
-
-
Pietrocola, F.1
Mariño, G.2
Lissa, D.3
-
132
-
-
84948825234
-
Defects in calcium homeostasis and mitochondria can be reversed in pompe disease
-
J. A. Lim, L. Li, O. Kakhlon, R. Myerowitz, and N. Raben, "Defects in calcium homeostasis and mitochondria can be reversed in Pompe disease," Autophagy, vol. 11, no. 2, pp. 385-402, 2015.
-
(2015)
Autophagy
, vol.11
, Issue.2
, pp. 385-402
-
-
Lim, J.A.1
Li, L.2
Kakhlon, O.3
Myerowitz, R.4
Raben, N.5
-
133
-
-
84965107551
-
Loss of mitochondrial function impairs lysosomes
-
J. Demers-Lamarche, G. Guillebaud, M. Tlili et al., "Loss of mitochondrial function impairs lysosomes," The Journal of Biological Chemistry, vol. 291, no. 19, pp. 10263-10276, 2016.
-
(2016)
The Journal of Biological Chemistry
, vol.291
, Issue.19
, pp. 10263-10276
-
-
Demers-Lamarche, J.1
Guillebaud, G.2
Tlili, M.3
|