메뉴 건너뛰기




Volumn 1371, Issue 1, 2016, Pages 3-14

Transcription factor EB: from master coordinator of lysosomal pathways to candidate therapeutic target in degenerative storage diseases

Author keywords

autophagy; degenerative storage diseases; degradative pathways; lysosome enhancement; proteinopathies; TFEB; transcription factor EB

Indexed keywords

MAMMALIAN TARGET OF RAPAMYCIN; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR EB; UNCLASSIFIED DRUG;

EID: 84977493534     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/nyas.13131     Document Type: Article
Times cited : (107)

References (75)
  • 1
    • 67749122634 scopus 로고    scopus 로고
    • A gene network regulating lysosomal biogenesis and function
    • Sardiello, M. et al. 2009. A gene network regulating lysosomal biogenesis and function. Science 325: 473–477.
    • (2009) Science , vol.325 , pp. 473-477
    • Sardiello, M.1
  • 2
    • 0037246761 scopus 로고    scopus 로고
    • MitoDrome: a database of Drosophila melanogaster nuclear genes encoding proteins targeted to the mitochondrion
    • Sardiello, M., F. Licciulli, D. Catalano, et al. 2003. MitoDrome: a database of Drosophila melanogaster nuclear genes encoding proteins targeted to the mitochondrion. Nucleic Acids Res. 31: 322–324.
    • (2003) Nucleic Acids Res , vol.31 , pp. 322-324
    • Sardiello, M.1    Licciulli, F.2    Catalano, D.3
  • 3
    • 13144269624 scopus 로고    scopus 로고
    • Energy biogenesis: one key for coordinating two genomes
    • Sardiello, M. et al. 2005. Energy biogenesis: one key for coordinating two genomes. Trends Genet. 21: 12–16.
    • (2005) Trends Genet , vol.21 , pp. 12-16
    • Sardiello, M.1
  • 4
    • 80052716148 scopus 로고    scopus 로고
    • Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways
    • Palmieri, M. et al. 2011. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20: 3852–3866.
    • (2011) Hum. Mol. Genet , vol.20 , pp. 3852-3866
    • Palmieri, M.1
  • 5
    • 80955177196 scopus 로고    scopus 로고
    • TFEB links autophagy to lysosomal biogenesis
    • Settembre, C. et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332: 1429–1433.
    • (2011) Science , vol.332 , pp. 1429-1433
    • Settembre, C.1
  • 6
    • 84939820927 scopus 로고    scopus 로고
    • MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5
    • Nezich, C.L., C. Wang, A.I. Fogel & R.J. Youle 2015. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J. Cell Biol. 210: 435–450.
    • (2015) J. Cell Biol , vol.210 , pp. 435-450
    • Nezich, C.L.1    Wang, C.2    Fogel, A.I.3    Youle, R.J.4
  • 7
    • 84876090708 scopus 로고    scopus 로고
    • ZKSCAN3 is a master transcriptional repressor of autophagy
    • Chauhan, S. et al. 2013. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell 50: 16–28.
    • (2013) Mol. Cell , vol.50 , pp. 16-28
    • Chauhan, S.1
  • 8
    • 84878606239 scopus 로고    scopus 로고
    • TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
    • Settembre, C. et al. 2013. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15: 647–658.
    • (2013) Nat. Cell Biol , vol.15 , pp. 647-658
    • Settembre, C.1
  • 9
    • 84877011421 scopus 로고    scopus 로고
    • TFEB regulates lysosomal proteostasis
    • Song, W. et al. 2013. TFEB regulates lysosomal proteostasis. Hum. Mol. Genet. 22: 1994–2009.
    • (2013) Hum. Mol. Genet , vol.22 , pp. 1994-2009
    • Song, W.1
  • 10
    • 84877351078 scopus 로고    scopus 로고
    • TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity
    • Decressac, M. et al. 2013. TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc. Natl. Acad. Sci. U.S.A. 110: E1817–E1826.
    • (2013) Proc. Natl. Acad. Sci. U.S.A , vol.110 , pp. 1817-1826
    • Decressac, M.1
  • 11
    • 84858153178 scopus 로고    scopus 로고
    • Induced pluripotent stem cell lines from Huntington's disease mice undergo neuronal differentiation while showing alterations in the lysosomal pathway
    • Castiglioni, V., M. Onorati, C. Rochon & E. Cattaneo 2012. Induced pluripotent stem cell lines from Huntington's disease mice undergo neuronal differentiation while showing alterations in the lysosomal pathway. Neurobiol. Dis. 46: 30–40.
    • (2012) Neurobiol. Dis , vol.46 , pp. 30-40
    • Castiglioni, V.1    Onorati, M.2    Rochon, C.3    Cattaneo, E.4
  • 12
    • 84862883617 scopus 로고    scopus 로고
    • A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2
    • Zhang, X. et al. 2012. A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J. Neurosci. 32: 8633–8648.
    • (2012) J. Neurosci , vol.32 , pp. 8633-8648
    • Zhang, X.1
  • 13
    • 77957932108 scopus 로고    scopus 로고
    • Arsenite exposure in human lymphoblastoid cell lines induces autophagy and coordinated induction of lysosomal genes
    • Bolt, A.M., R.M. Douglas & W.T. Klimecki 2010. Arsenite exposure in human lymphoblastoid cell lines induces autophagy and coordinated induction of lysosomal genes. Toxicol. Lett. 199: 153–159.
    • (2010) Toxicol. Lett , vol.199 , pp. 153-159
    • Bolt, A.M.1    Douglas, R.M.2    Klimecki, W.T.3
  • 14
    • 84923327435 scopus 로고    scopus 로고
    • Time-dependent effects of hydrophobic amine-containing drugs on lysosome structure and biogenesis in cultured human fibroblasts
    • Logan, R., A.C. Kong & J.P. Krise 2014. Time-dependent effects of hydrophobic amine-containing drugs on lysosome structure and biogenesis in cultured human fibroblasts. J. Pharm. Sci. 103: 3287–3296.
    • (2014) J. Pharm. Sci , vol.103 , pp. 3287-3296
    • Logan, R.1    Kong, A.C.2    Krise, J.P.3
  • 15
    • 84906935699 scopus 로고    scopus 로고
    • Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae
    • Emanuel, R. et al. 2014. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arterioscler. Thromb. Vasc. Biol. 34: 1942–1952.
    • (2014) Arterioscler. Thromb. Vasc. Biol , vol.34 , pp. 1942-1952
    • Emanuel, R.1
  • 16
    • 84908432473 scopus 로고    scopus 로고
    • Ceria nanoparticles stabilized by organic surface coatings activate the lysosome–autophagy system and enhance autophagic clearance
    • Song, W. et al. 2014. Ceria nanoparticles stabilized by organic surface coatings activate the lysosome–autophagy system and enhance autophagic clearance. ACS Nano 8: 10328–10342.
    • (2014) ACS Nano , vol.8 , pp. 10328-10342
    • Song, W.1
  • 17
    • 84947813019 scopus 로고    scopus 로고
    • The autophagic response to polystyrene nanoparticles is mediated by transcription factor EB and depends on surface charge
    • Song, W. et al. 2015. The autophagic response to polystyrene nanoparticles is mediated by transcription factor EB and depends on surface charge. J. Nanobiotechnology 13: 87.
    • (2015) J. Nanobiotechnology , vol.13 , pp. 87
    • Song, W.1
  • 18
    • 84877340632 scopus 로고    scopus 로고
    • Lysosomal basification and decreased autophagic flux in oxidatively stressed trabecular meshwork cells: implications for glaucoma pathogenesis
    • Porter, K., J. Nallathambi, Y. Lin & P.B. Liton 2013. Lysosomal basification and decreased autophagic flux in oxidatively stressed trabecular meshwork cells: implications for glaucoma pathogenesis. Autophagy 9: 581–594.
    • (2013) Autophagy , vol.9 , pp. 581-594
    • Porter, K.1    Nallathambi, J.2    Lin, Y.3    Liton, P.B.4
  • 19
    • 84874046703 scopus 로고    scopus 로고
    • Cobalt protoporphyrin accelerates TFEB activation and lysosome reformation during LPS-induced septic insults in the rat heart
    • Unuma, K., T. Aki, T. Funakoshi, et al. 2013. Cobalt protoporphyrin accelerates TFEB activation and lysosome reformation during LPS-induced septic insults in the rat heart. PLoS One 8: e56526.
    • (2013) PLoS One , vol.8
    • Unuma, K.1    Aki, T.2    Funakoshi, T.3
  • 20
    • 84938784867 scopus 로고    scopus 로고
    • Transition metals activate TFEB in overexpressing cells
    • Pena, K.A. & K. Kiselyov 2015. Transition metals activate TFEB in overexpressing cells. Biochem. J. 470: 65–76.
    • (2015) Biochem. J , vol.470 , pp. 65-76
    • Pena, K.A.1    Kiselyov, K.2
  • 21
    • 84955174503 scopus 로고    scopus 로고
    • Acute and chronic ethanol administration differentially modulate hepatic autophagy and transcription factor EB
    • Thomes, P.G., C.S. Trambly, H.S. Fox, et al. 2015. Acute and chronic ethanol administration differentially modulate hepatic autophagy and transcription factor EB. Alcohol Clin. Exp. Res. 39: 2354–2363.
    • (2015) Alcohol Clin. Exp. Res , vol.39 , pp. 2354-2363
    • Thomes, P.G.1    Trambly, C.S.2    Fox, H.S.3
  • 22
    • 84863430906 scopus 로고    scopus 로고
    • Status of mTOR activity may phenotypically differentiate senescence and quiescence
    • Cho, S. & E.S. Hwang 2012. Status of mTOR activity may phenotypically differentiate senescence and quiescence. Mol. Cells 33: 597–604.
    • (2012) Mol. Cells , vol.33 , pp. 597-604
    • Cho, S.1    Hwang, E.S.2
  • 23
    • 84863923855 scopus 로고    scopus 로고
    • PGC-1α rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function
    • Tsunemi, T. et al. 2012. PGC-1α rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci. Transl. Med. 4: 142ra197.
    • (2012) Sci. Transl. Med , vol.4 , pp. 142ra197
    • Tsunemi, T.1
  • 24
    • 84893500088 scopus 로고    scopus 로고
    • GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy
    • Scott, I. et al. 2014. GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy. J. Biol. Chem. 289: 2864–2872.
    • (2014) J. Biol. Chem , vol.289 , pp. 2864-2872
    • Scott, I.1
  • 25
    • 84927748765 scopus 로고    scopus 로고
    • Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders
    • Ghosh, A. et al. 2015. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders. J. Biol. Chem. 290: 10309–10324.
    • (2015) J. Biol. Chem , vol.290 , pp. 10309-10324
    • Ghosh, A.1
  • 26
    • 84922968506 scopus 로고    scopus 로고
    • Transcriptional regulation of autophagy by an FXR–CREB axis
    • Seok, S. et al. 2014. Transcriptional regulation of autophagy by an FXR–CREB axis. Nature 516: 108–111.
    • (2014) Nature , vol.516 , pp. 108-111
    • Seok, S.1
  • 27
    • 80052841665 scopus 로고    scopus 로고
    • Regulation of TFEB and V-ATPases by mTORC1
    • Pena-Llopis, S. et al. 2011. Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 30: 3242–3258.
    • (2011) EMBO J , vol.30 , pp. 3242-3258
    • Pena-Llopis, S.1
  • 28
    • 84857997408 scopus 로고    scopus 로고
    • A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
    • Settembre, C. et al. 2012. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31: 1095–1108.
    • (2012) EMBO J , vol.31 , pp. 1095-1108
    • Settembre, C.1
  • 29
    • 84864874958 scopus 로고    scopus 로고
    • MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
    • Martina, J.A., Y. Chen, M. Gucek & R. Puertollano 2012. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8: 903–914.
    • (2012) Autophagy , vol.8 , pp. 903-914
    • Martina, J.A.1    Chen, Y.2    Gucek, M.3    Puertollano, R.4
  • 30
    • 84862539692 scopus 로고    scopus 로고
    • The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
    • Roczniak-Ferguson, A. et al. 2012. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5: ra42.
    • (2012) Sci. Signal , vol.5 , pp. ra42
    • Roczniak-Ferguson, A.1
  • 31
    • 84874352229 scopus 로고    scopus 로고
    • Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes
    • Martina, J.A. & R. Puertollano 2013. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 200: 475–491.
    • (2013) J. Cell Biol , vol.200 , pp. 475-491
    • Martina, J.A.1    Puertollano, R.2
  • 32
    • 84876408458 scopus 로고    scopus 로고
    • Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome–lysosome fusion
    • Zhou, J. et al. 2013. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome–lysosome fusion. Cell Res. 23: 508–523.
    • (2013) Cell Res , vol.23 , pp. 508-523
    • Zhou, J.1
  • 33
    • 84868687820 scopus 로고    scopus 로고
    • Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein
    • Parr, C. et al. 2012. Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein. Mol. Cell. Biol. 32: 4410–4418.
    • (2012) Mol. Cell. Biol , vol.32 , pp. 4410-4418
    • Parr, C.1
  • 34
    • 84923762495 scopus 로고    scopus 로고
    • Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells
    • Marchand, B., D. Arsenault, A. Raymond-Fleury, et al. 2015. Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells. J. Biol. Chem. 290: 5592–5605.
    • (2015) J. Biol. Chem , vol.290 , pp. 5592-5605
    • Marchand, B.1    Arsenault, D.2    Raymond-Fleury, A.3
  • 35
    • 84868588684 scopus 로고    scopus 로고
    • + salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition
    • + salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood 120: 3519–3529.
    • (2012) Blood , vol.120 , pp. 3519-3529
    • Cea, M.1
  • 36
    • 84871712573 scopus 로고    scopus 로고
    • GDC-0941 enhances the lysosomal compartment via TFEB and primes glioblastoma cells to lysosomal membrane permeabilization and cell death
    • Enzenmuller, S., P. Gonzalez, G. Karpel-Massler, et al. 2013. GDC-0941 enhances the lysosomal compartment via TFEB and primes glioblastoma cells to lysosomal membrane permeabilization and cell death. Cancer Lett. 329: 27–36.
    • (2013) Cancer Lett , vol.329 , pp. 27-36
    • Enzenmuller, S.1    Gonzalez, P.2    Karpel-Massler, G.3
  • 37
    • 84898073840 scopus 로고    scopus 로고
    • 2-Hydroxypropyl-β-cyclodextrin promotes transcription factor EB-mediated activation of autophagy: implications for therapy
    • Song, W., F. Wang, P. Lotfi, et al. 2014. 2-Hydroxypropyl-β-cyclodextrin promotes transcription factor EB-mediated activation of autophagy: implications for therapy. J. Biol. Chem. 289: 10211–10222.
    • (2014) J. Biol. Chem , vol.289 , pp. 10211-10222
    • Song, W.1    Wang, F.2    Lotfi, P.3
  • 38
    • 84902531880 scopus 로고    scopus 로고
    • The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation
    • Moskot, M. et al. 2014. The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation. J. Biol. Chem. 289: 17054–17069.
    • (2014) J. Biol. Chem , vol.289 , pp. 17054-17069
    • Moskot, M.1
  • 39
    • 84949117662 scopus 로고    scopus 로고
    • ROS-dependent prostate apoptosis response-4 (Par-4) up-regulation and ceramide generation are the prime signaling events associated with curcumin-induced autophagic cell death in human malignant glioma
    • Thayyullathil, F., A. Rahman, S. Pallichankandy, et al. 2014. ROS-dependent prostate apoptosis response-4 (Par-4) up-regulation and ceramide generation are the prime signaling events associated with curcumin-induced autophagic cell death in human malignant glioma. FEBS Open Bio 4: 763–776.
    • (2014) FEBS Open Bio , vol.4 , pp. 763-776
    • Thayyullathil, F.1    Rahman, A.2    Pallichankandy, S.3
  • 40
    • 84923820926 scopus 로고    scopus 로고
    • Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB
    • Medina, D.L. et al. 2015. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 17: 288–299.
    • (2015) Nat. Cell Biol , vol.17 , pp. 288-299
    • Medina, D.L.1
  • 41
    • 84876920718 scopus 로고    scopus 로고
    • A RANKL–PKCβ–TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts
    • Ferron, M. et al. 2013. A RANKL–PKCβ–TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Genes Dev. 27: 955–969.
    • (2013) Genes Dev , vol.27 , pp. 955-969
    • Ferron, M.1
  • 42
    • 84924235659 scopus 로고    scopus 로고
    • Loss of hepatic chaperone-mediated autophagy accelerates proteostasis failure in aging
    • Schneider, J.L. et al. 2015. Loss of hepatic chaperone-mediated autophagy accelerates proteostasis failure in aging. Aging Cell 14: 249–264.
    • (2015) Aging Cell , vol.14 , pp. 249-264
    • Schneider, J.L.1
  • 43
    • 0028062014 scopus 로고
    • Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family
    • Hemesath, T.J. et al. 1994. Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 8: 2770–2780.
    • (1994) Genes Dev , vol.8 , pp. 2770-2780
    • Hemesath, T.J.1
  • 44
    • 33748301944 scopus 로고    scopus 로고
    • Microphthalmia-associated transcription factor interactions with 14-3-3 modulate differentiation of committed myeloid precursors
    • Bronisz, A. et al. 2006. Microphthalmia-associated transcription factor interactions with 14-3-3 modulate differentiation of committed myeloid precursors. Mol. Biol. Cell 17: 3897–3906.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 3897-3906
    • Bronisz, A.1
  • 45
    • 4344598183 scopus 로고    scopus 로고
    • Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization
    • Jin, J. et al. 2004. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr. Biol. 14: 1436–1450.
    • (2004) Curr. Biol , vol.14 , pp. 1436-1450
    • Jin, J.1
  • 46
    • 84893055506 scopus 로고    scopus 로고
    • The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris
    • Martina, J.A. et al. 2014. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal. 7: ra9.
    • (2014) Sci. Signal , vol.7 , pp. ra9
    • Martina, J.A.1
  • 47
    • 84922311449 scopus 로고    scopus 로고
    • MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells
    • Ploper, D. et al. 2015. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc. Natl. Acad. Sci. U.S.A. 112: E420–E429.
    • (2015) Proc. Natl. Acad. Sci. U.S.A , vol.112 , pp. 420-429
    • Ploper, D.1
  • 48
    • 84921946984 scopus 로고    scopus 로고
    • TFE3 is a bHLH-ZIP-type transcription factor that regulates the mammalian Golgi stress response
    • Taniguchi, M. et al. 2015. TFE3 is a bHLH-ZIP-type transcription factor that regulates the mammalian Golgi stress response. Cell Struct. Funct. 40: 13–30.
    • (2015) Cell Struct. Funct , vol.40 , pp. 13-30
    • Taniguchi, M.1
  • 49
    • 84932611086 scopus 로고    scopus 로고
    • Transcription factor Tfe3 directly regulates Pgc-1alpha in muscle
    • Salma, N., J.S. Song, Z. Arany & D.E. Fisher 2015. Transcription factor Tfe3 directly regulates Pgc-1alpha in muscle. J. Cell. Physiol. 230: 2330–2336.
    • (2015) J. Cell. Physiol , vol.230 , pp. 2330-2336
    • Salma, N.1    Song, J.S.2    Arany, Z.3    Fisher, D.E.4
  • 50
    • 84959331848 scopus 로고    scopus 로고
    • TFEB and TFE3 are novel components of the integrated stress response
    • Martina, J.A., H.I. Diab, O.A. Brady & R. Puertollano 2016. TFEB and TFE3 are novel components of the integrated stress response. EMBO J. 35: 479–495.
    • (2016) EMBO J , vol.35 , pp. 479-495
    • Martina, J.A.1    Diab, H.I.2    Brady, O.A.3    Puertollano, R.4
  • 51
    • 84878533962 scopus 로고    scopus 로고
    • MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability
    • O'Rourke, E.J. & G. Ruvkun 2013. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 15: 668–676.
    • (2013) Nat. Cell Biol , vol.15 , pp. 668-676
    • O'Rourke, E.J.1    Ruvkun, G.2
  • 52
    • 84962670306 scopus 로고    scopus 로고
    • Drosophila Mitf regulates the V-ATPase and the lysosomal–autophagic pathway
    • Bouche, V. et al. 2016. Drosophila Mitf regulates the V-ATPase and the lysosomal–autophagic pathway. Autophagy 12: 484–498.
    • (2016) Autophagy , vol.12 , pp. 484-498
    • Bouche, V.1
  • 53
    • 84883063789 scopus 로고    scopus 로고
    • The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans
    • Lapierre, L.R. et al. 2013. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat. Commun. 4: 2267.
    • (2013) Nat. Commun , vol.4 , pp. 2267
    • Lapierre, L.R.1
  • 54
    • 68149123529 scopus 로고    scopus 로고
    • Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions
    • Chu, Y., H. Dodiya, P. Aebischer, et al. 2009. Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions. Neurobiol. Dis. 35: 385–398.
    • (2009) Neurobiol. Dis , vol.35 , pp. 385-398
    • Chu, Y.1    Dodiya, H.2    Aebischer, P.3
  • 55
    • 33847203593 scopus 로고    scopus 로고
    • Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus
    • Lukiw, W.J. 2007. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport 18: 297–300.
    • (2007) Neuroreport , vol.18 , pp. 297-300
    • Lukiw, W.J.1
  • 56
    • 84887243168 scopus 로고    scopus 로고
    • miR128 up-regulation correlates with impaired amyloid β(1–42) degradation in monocytes from patients with sporadic Alzheimer's disease
    • Tiribuzi, R. et al. 2014. miR128 up-regulation correlates with impaired amyloid β(1–42) degradation in monocytes from patients with sporadic Alzheimer's disease. Neurobiol. Aging 35: 345–356.
    • (2014) Neurobiol. Aging , vol.35 , pp. 345-356
    • Tiribuzi, R.1
  • 57
    • 84894051822 scopus 로고    scopus 로고
    • Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy
    • Chua, J.P. et al. 2014. Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy. Hum. Mol. Genet. 23: 1376–1386.
    • (2014) Hum. Mol. Genet , vol.23 , pp. 1376-1386
    • Chua, J.P.1
  • 58
    • 84902354701 scopus 로고    scopus 로고
    • Paeoniflorin eliminates a mutant AR via NF-YA-dependent proteolysis in spinal and bulbar muscular atrophy
    • Tohnai, G. et al. 2014. Paeoniflorin eliminates a mutant AR via NF-YA-dependent proteolysis in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 23: 3552–3565.
    • (2014) Hum. Mol. Genet , vol.23 , pp. 3552-3565
    • Tohnai, G.1
  • 59
    • 84906674973 scopus 로고    scopus 로고
    • Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA
    • Cortes, C.J. et al. 2014. Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nat. Neurosci. 17: 1180–1189.
    • (2014) Nat. Neurosci , vol.17 , pp. 1180-1189
    • Cortes, C.J.1
  • 60
    • 84960337720 scopus 로고    scopus 로고
    • Dysregulation of nutrient sensing and CLEARance in presenilin deficiency
    • Reddy, K. et al. 2016. Dysregulation of nutrient sensing and CLEARance in presenilin deficiency. Cell Rep. 14: 2166–2179.
    • (2016) Cell Rep , vol.14 , pp. 2166-2179
    • Reddy, K.1
  • 61
    • 0042309581 scopus 로고    scopus 로고
    • Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution
    • Kuiper, R.P. et al. 2003. Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. Hum. Mol. Genet. 12: 1661–1669.
    • (2003) Hum. Mol. Genet , vol.12 , pp. 1661-1669
    • Kuiper, R.P.1
  • 62
    • 84886871016 scopus 로고    scopus 로고
    • Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases
    • Petit, C.S., A. Roczniak-Ferguson & S.M. Ferguson. 2013. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J. Cell Biol. 202: 1107–1122.
    • (2013) J. Cell Biol , vol.202 , pp. 1107-1122
    • Petit, C.S.1    Roczniak-Ferguson, A.2    Ferguson, S.M.3
  • 63
    • 84939787271 scopus 로고    scopus 로고
    • Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism
    • Perera, R.M. et al. 2015. Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism. Nature 524: 361–365.
    • (2015) Nature , vol.524 , pp. 361-365
    • Perera, R.M.1
  • 64
    • 84939533247 scopus 로고    scopus 로고
    • Angiotensin II induces skeletal muscle atrophy by activating TFEB-mediated MuRF1 expression
    • Du Bois, P. et al. 2015. Angiotensin II induces skeletal muscle atrophy by activating TFEB-mediated MuRF1 expression. Circ. Res. 117: 424–436.
    • (2015) Circ. Res , vol.117 , pp. 424-436
    • Du Bois, P.1
  • 65
    • 77956855813 scopus 로고    scopus 로고
    • Pathogenic lysosomal depletion in Parkinson's disease
    • Dehay, B. et al. 2010. Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 30: 12535–12544.
    • (2010) J. Neurosci , vol.30 , pp. 12535-12544
    • Dehay, B.1
  • 66
    • 80052729465 scopus 로고    scopus 로고
    • Transcriptional activation of lysosomal exocytosis promotes cellular clearance
    • Medina, D.L. et al. 2011. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 21: 421–430.
    • (2011) Dev. Cell , vol.21 , pp. 421-430
    • Medina, D.L.1
  • 67
    • 84877601173 scopus 로고    scopus 로고
    • Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease
    • Spampanato, C. et al. 2013. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol. Med. 5: 691–706.
    • (2013) EMBO Mol. Med , vol.5 , pp. 691-706
    • Spampanato, C.1
  • 68
    • 84916928995 scopus 로고    scopus 로고
    • Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB
    • Polito, V.A. et al. 2014. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol. Med. 6: 1142–1160.
    • (2014) EMBO Mol. Med , vol.6 , pp. 1142-1160
    • Polito, V.A.1
  • 69
    • 84904354536 scopus 로고    scopus 로고
    • Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis
    • Xiao, Q. et al. 2014. Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. J. Neurosci. 34: 9607–9620.
    • (2014) J. Neurosci , vol.34 , pp. 9607-9620
    • Xiao, Q.1
  • 70
    • 84940937112 scopus 로고    scopus 로고
    • Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Aβ generation and amyloid plaque pathogenesis
    • Xiao, Q. et al. 2015. Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Aβ generation and amyloid plaque pathogenesis. J. Neurosci. 35: 12137–12151.
    • (2015) J. Neurosci , vol.35 , pp. 12137-12151
    • Xiao, Q.1
  • 71
    • 84874712704 scopus 로고    scopus 로고
    • Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-anti-trypsin deficiency
    • Pastore, N. et al. 2013. Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-anti-trypsin deficiency. EMBO Mol. Med. 5: 397–412.
    • (2013) EMBO Mol. Med , vol.5 , pp. 397-412
    • Pastore, N.1
  • 72
    • 84949648966 scopus 로고    scopus 로고
    • Enhancing autophagy with drugs or lung-directed gene therapy reverses the pathological effects of respiratory epithelial cell proteinopathy
    • Hidvegi, T. et al. 2015. Enhancing autophagy with drugs or lung-directed gene therapy reverses the pathological effects of respiratory epithelial cell proteinopathy. J. Biol. Chem. 290: 29742–29757.
    • (2015) J. Biol. Chem , vol.290 , pp. 29742-29757
    • Hidvegi, T.1
  • 73
    • 84859151396 scopus 로고    scopus 로고
    • Enhancing lysosome biogenesis attenuates BNIP3-induced cardiomyocyte death
    • Ma, X., R.J. Godar, H. Liu & A. Diwan 2012. Enhancing lysosome biogenesis attenuates BNIP3-induced cardiomyocyte death. Autophagy 8: 297–309.
    • (2012) Autophagy , vol.8 , pp. 297-309
    • Ma, X.1    Godar, R.J.2    Liu, H.3    Diwan, A.4
  • 74
    • 84923147814 scopus 로고    scopus 로고
    • Regulation of the transcription factor EB–PGC1α axis by beclin-1 controls mitochondrial quality and cardiomyocyte death under stress
    • Ma, X. et al. 2015. Regulation of the transcription factor EB–PGC1α axis by beclin-1 controls mitochondrial quality and cardiomyocyte death under stress. Mol. Cell. Biol. 35: 956–976.
    • (2015) Mol. Cell. Biol , vol.35 , pp. 956-976
    • Ma, X.1
  • 75
    • 84910678527 scopus 로고    scopus 로고
    • Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chain-mediated cardiotoxicity
    • Guan, J. et al. 2014. Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chain-mediated cardiotoxicity. EMBO Mol. Med. 6: 1493–1507.
    • (2014) EMBO Mol. Med , vol.6 , pp. 1493-1507
    • Guan, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.