-
1
-
-
79960637431
-
Dynamic molecular processes mediate cellular mechanotransduction
-
Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–323. doi:10.1038/nature10316
-
(2011)
Nature
, vol.475
, pp. 316-323
-
-
Hoffman, B.D.1
Grashoff, C.2
Schwartz, M.A.3
-
2
-
-
0001098317
-
Lateral pressures in cell membranes: A mechanism for modulation of protein function
-
Cantor RS (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem B 101:1723–1725. doi:10.1021/jp963911x
-
(1997)
J Phys Chem B
, vol.101
, pp. 1723-1725
-
-
Cantor, R.S.1
-
3
-
-
0021287115
-
Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle
-
Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352:685–701
-
(1984)
J Physiol
, vol.352
, pp. 685-701
-
-
Guharay, F.1
Sachs, F.2
-
4
-
-
0021892579
-
Mechanotransducer ion channels in chick skeletal muscle: The effects of extracellular pH
-
Guharay F, Sachs F (1985) Mechanotransducer ion channels in chick skeletal muscle: the effects of extracellular pH. J Physiol 363:119–134
-
(1985)
J Physiol
, vol.363
, pp. 119-134
-
-
Guharay, F.1
Sachs, F.2
-
5
-
-
0028224356
-
A large-conductance mechanosensitive channel in E coli encoded by mscL alone
-
Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E coli encoded by mscL alone. Nature 368:265–268. doi:10.1038/368265a0
-
(1994)
Nature
, vol.368
, pp. 265-268
-
-
Sukharev, S.I.1
Blount, P.2
Martinac, B.3
Blattner, F.R.4
Kung, C.5
-
6
-
-
0345196593
-
Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: Identification of genes required for MscS activity
-
Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737. doi:10.1093/emboj/18.7.1730
-
(1999)
EMBO J
, vol.18
, pp. 1730-1737
-
-
Levina, N.1
Tötemeyer, S.2
Stokes, N.R.3
Louis, P.4
Jones, M.A.5
Booth, I.R.6
-
7
-
-
0041929590
-
Structure and mechanism in prokaryotic mechanosensitive channels
-
Perozo E, Rees DC (2003) Structure and mechanism in prokaryotic mechanosensitive channels. Curr Opin Struct Biol 13:432–442
-
(2003)
Curr Opin Struct Biol
, vol.13
, pp. 432-442
-
-
Perozo, E.1
Rees, D.C.2
-
8
-
-
14444277712
-
Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells
-
Ajouz B, Berrier C, Garrigues A, Besnard M, Ghazi A (1998) Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J Biol Chem 273:26670–26674
-
(1998)
J Biol Chem
, vol.273
, pp. 26670-26674
-
-
Ajouz, B.1
Berrier, C.2
Garrigues, A.3
Besnard, M.4
Ghazi, A.5
-
9
-
-
23644451510
-
A possible unifying principle for mechanosensation
-
Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654. doi:10.1038/nature03896
-
(2005)
Nature
, vol.436
, pp. 647-654
-
-
Kung, C.1
-
10
-
-
84946570196
-
Architecture of the mammalian mechanosensitive Piezo1 channel
-
Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P et al (2015) Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527:64–69. doi:10.1038/nature15247
-
(2015)
Nature
, vol.527
, pp. 64-69
-
-
Ge, J.1
Li, W.2
Zhao, Q.3
Li, N.4
Chen, M.5
Zhi, P.6
-
11
-
-
77957332682
-
Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels
-
Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60. doi:10.1126/science.1193270
-
(2010)
Science
, vol.330
, pp. 55-60
-
-
Coste, B.1
Mathur, J.2
Schmidt, M.3
Earley, T.J.4
Ranade, S.5
Petrus, M.J.6
-
12
-
-
84862777142
-
Piezo proteins are pore-forming subunits of mechanically activated channels
-
Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS et al (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–181. doi:10.1038/nature10812
-
(2012)
Nature
, vol.483
, pp. 176-181
-
-
Coste, B.1
Xiao, B.2
Santos, J.S.3
Syeda, R.4
Grandl, J.5
Spencer, K.S.6
-
13
-
-
84865295955
-
Piezo1: Properties of a cation selective mechanical channel
-
Gottlieb PA, Sachs F (2011) Piezo1: properties of a cation selective mechanical channel. Channels (Austin) 6:214–219. doi:10.4161/chan.21050
-
(2011)
Channels (Austin)
, vol.6
, pp. 214-219
-
-
Gottlieb, P.A.1
Sachs, F.2
-
14
-
-
84901680112
-
Piezo2 is required for Merkel-cell mechanotransduction
-
Woo SH, Ranade S, Weyer AD, Dubin AE, Baba Y (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509:622–626
-
(2014)
Nature
, vol.509
, pp. 622-626
-
-
Woo, S.H.1
Ranade, S.2
Weyer, A.D.3
Dubin, A.E.4
Baba, Y.5
-
15
-
-
84930226936
-
Piezo1 ion channel pore properties are dictated by C-terminal region
-
Coste B, Murthy SE, Mathur J, Schmidt M, Mechioukhi Y, Delmas P et al (2015) Piezo1 ion channel pore properties are dictated by C-terminal region. Nat Commun 6:7223. doi:10.1038/ncomms8223
-
(2015)
Nat Commun
, vol.6
, pp. 7223
-
-
Coste, B.1
Murthy, S.E.2
Mathur, J.3
Schmidt, M.4
Mechioukhi, Y.5
Delmas, P.6
-
16
-
-
84886902675
-
Piezo2b regulates vertebrate light touch response
-
Faucherre A, Nargeot J, Mangoni ME, Jopling C (2013) Piezo2b regulates vertebrate light touch response. J Neurosci 33:17089–17094. doi:10.1523/JNeurosci0522-13.2013
-
(2013)
J Neurosci
, vol.33
, pp. 17089-17094
-
-
Faucherre, A.1
Nargeot, J.2
Mangoni, M.E.3
Jopling, C.4
-
17
-
-
84892569074
-
Piezo1 plays a role in erythrocyte volume homeostasis
-
Faucherre A, Kissa K, Nargeot J, Mangoni ME, Jopling C (2014) Piezo1 plays a role in erythrocyte volume homeostasis. Haematologica 99:70–75. doi:10.3324/haematol.2013.086090
-
(2014)
Haematologica
, vol.99
, pp. 70-75
-
-
Faucherre, A.1
Kissa, K.2
Nargeot, J.3
Mangoni, M.E.4
Jopling, C.5
-
18
-
-
84909618608
-
Piezo1 integration of vascular architecture with physiological force
-
Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ et al (2014) Piezo1 integration of vascular architecture with physiological force. Nature 515:279–282. doi:10.1038/nature13701
-
(2014)
Nature
, vol.515
, pp. 279-282
-
-
Li, J.1
Hou, B.2
Tumova, S.3
Muraki, K.4
Bruns, A.5
Ludlow, M.J.6
-
19
-
-
84904334120
-
Piezo1, a mechanically activated ion channel, is required for vascular development in mice
-
Ranade SS, Qiu Z, Woo SH, Hur SS (2014) Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A 111(28):10347–10352. doi:10.1073/pnas.1409233111
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, Issue.28
, pp. 10347-10352
-
-
Ranade, S.S.1
Qiu, Z.2
Woo, S.H.3
Hur, S.S.4
-
20
-
-
84862776759
-
The role of Drosophila Piezo in mechanical nociception
-
Kim SE, Coste B, Chadha A, Cook B, Patapoutian A (2012) The role of Drosophila Piezo in mechanical nociception. Nature 483:209–212. doi:10.1038/nature10801
-
(2012)
Nature
, vol.483
, pp. 209-212
-
-
Kim, S.E.1
Coste, B.2
Chadha, A.3
Cook, B.4
Patapoutian, A.5
-
21
-
-
0027483065
-
Epithelial sodium channel related to proteins involved in neurodegeneration
-
Canessa CM, Horisberger JD, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470. doi:10.1038/361467a0
-
(1993)
Nature
, vol.361
, pp. 467-470
-
-
Canessa, C.M.1
Horisberger, J.D.2
Rossier, B.C.3
-
23
-
-
0026089774
-
The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration
-
Driscoll M, Chalfie M (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349:588–593. doi:10.1038/349588a0
-
(1991)
Nature
, vol.349
, pp. 588-593
-
-
Driscoll, M.1
Chalfie, M.2
-
25
-
-
0036307827
-
Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure
-
Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767. doi:10.1152/physrev.00007.2002
-
(2002)
Physiol Rev
, vol.82
, pp. 735-767
-
-
Kellenberger, S.1
Schild, L.2
-
26
-
-
2442629514
-
Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons
-
Askwith CC, Wemmie JA, Price MP, Rokhlina T, Welsh MJ (2004) Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J Biol Chem 279:18296–18305. doi:10.1074/jbc.M312145200
-
(2004)
J Biol Chem
, vol.279
, pp. 18296-18305
-
-
Askwith, C.C.1
Wemmie, J.A.2
Price, M.P.3
Rokhlina, T.4
Welsh, M.J.5
-
27
-
-
38949113205
-
Acid sensing ion channels in dorsal spinal cord neurons
-
Baron A, Voilley N, Lazdunski M, Lingueglia E (2008) Acid sensing ion channels in dorsal spinal cord neurons. J Neurosci 28:1498–1508. doi:10.1523/JNEUROSCI.4975-07.2008
-
(2008)
J Neurosci
, vol.28
, pp. 1498-1508
-
-
Baron, A.1
Voilley, N.2
Lazdunski, M.3
Lingueglia, E.4
-
28
-
-
0037133199
-
Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons
-
Benson CJ, Xie J, Wemmie JA, Price MP, Henss JM, Welsh MJ et al (2002) Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc Natl Acad Sci U S A 99:2338–2343. doi:10.1073/pnas.032678399
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 2338-2343
-
-
Benson, C.J.1
Xie, J.2
Wemmie, J.A.3
Price, M.P.4
Henss, J.M.5
Welsh, M.J.6
-
29
-
-
0019546209
-
Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans
-
Chalfie M, Sulston J (1981) Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol 82:358–370
-
(1981)
Dev Biol
, vol.82
, pp. 358-370
-
-
Chalfie, M.1
Sulston, J.2
-
30
-
-
0016766336
-
Dopaminergic neurons in the nematode Caenorhabditis elegans
-
Sulston J, Dew M, Brenner S (1975) Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 163:215–226. doi:10.1002/cne.901630207
-
(1975)
J Comp Neurol
, vol.163
, pp. 215-226
-
-
Sulston, J.1
Dew, M.2
Brenner, S.3
-
31
-
-
0024536382
-
Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons
-
Chalfie M, Au M (1989) Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243:1027–1033
-
(1989)
Science
, vol.243
, pp. 1027-1033
-
-
Chalfie, M.1
Au, M.2
-
32
-
-
0037186523
-
MEC-2 regulates C. Elegans DEG/ENaC channels needed for mechanosensation
-
Goodman MB, Ernstrom GG, Chelur DS, O’Hagan R, Yao CA, Chalfie M (2002) MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415:1039–1042. doi:10.1038/4151039a
-
(2002)
Nature
, vol.415
, pp. 1039-1042
-
-
Goodman, M.B.1
Ernstrom, G.G.2
Chelur, D.S.3
O’Hagan, R.4
Yao, C.A.5
Chalfie, M.6
-
33
-
-
7944228880
-
MEC-2 is recruited to the putative mechanosensory complex in C. Elegans touch receptor neurons through its stomatin-like domain
-
Zhang S, Árnadóttir J, Keller C, Caldwell GA, Yao CA, Chalfie M(2004) MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr Biol 14:1888–1896. doi:10.1016/j.cub.2004.10.030
-
(2004)
Curr Biol
, vol.14
, pp. 1888-1896
-
-
Zhang, S.1
Árnadóttir, J.2
Keller, C.3
Caldwell, G.A.4
Yao, C.A.5
Chalfie, M.6
-
34
-
-
0037069699
-
The mechanosensory protein MEC-6 is a subunit of the C. Elegans touch-cell degenerin channel
-
Chelur DS, Ernstrom GG, Goodman MB, Yao CA, Chen L, O’Hagan R et al (2002) The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 420:669–673. doi:10.1038/nature01205
-
(2002)
Nature
, vol.420
, pp. 669-673
-
-
Chelur, D.S.1
Ernstrom, G.G.2
Goodman, M.B.3
Yao, C.A.4
Chen, L.5
O’Hagan, R.6
-
35
-
-
0028127759
-
Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans
-
Huang M, Chalfie M (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367:467–470. doi:10.1038/367467a0
-
(1994)
Nature
, vol.367
, pp. 467-470
-
-
Huang, M.1
Chalfie, M.2
-
36
-
-
16644397827
-
The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals
-
O’Hagan R, Chalfie M, Goodman MB (2004) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8:43–50. doi:10.1038/nn1362
-
(2004)
Nat Neurosci
, vol.8
, pp. 43-50
-
-
O’Hagan, R.1
Chalfie, M.2
Goodman, M.B.3
-
37
-
-
2642570389
-
Paraoxonase, a cardioprotective enzyme: Continuing issues
-
Getz GS, Reardon CA (2004) Paraoxonase, a cardioprotective enzyme: continuing issues. Curr Opin Lipidol 15:261
-
(2004)
Curr Opin Lipidol
, vol.15
, pp. 261
-
-
Getz, G.S.1
Reardon, C.A.2
-
38
-
-
33751225687
-
Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels
-
Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A et al (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A 103:17079–17086. doi:10.1073/pnas.0607465103
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 17079-17086
-
-
Huber, T.B.1
Schermer, B.2
Muller, R.U.3
Hohne, M.4
Bartram, M.5
Calixto, A.6
-
39
-
-
0029886763
-
The Caenorhabditis elegans behavioral gene unc-24 encodes a novel bipartite protein similar to both erythrocyte band 7.2 (stomatin) and nonspecific lipid transfer protein
-
Barnes TM, Jin Y, Horvitz HR, Ruvkun G (1996) The Caenorhabditis elegans behavioral gene unc-24 encodes a novel bipartite protein similar to both erythrocyte band 7.2 (stomatin) and nonspecific lipid transfer protein. J Neurochem 67(1):46–57
-
(1996)
J Neurochem
, vol.67
, Issue.1
, pp. 46-57
-
-
Barnes, T.M.1
Jin, Y.2
Horvitz, H.R.3
Ruvkun, G.4
-
40
-
-
0347504835
-
TRP channels as cellular sensors
-
Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524. doi:10.1038/nature02196
-
(2003)
Nature
, vol.426
, pp. 517-524
-
-
Clapham, D.E.1
-
41
-
-
33644875032
-
The TRP superfamily of cation channels
-
re3
-
Montell C (2005) The TRP superfamily of cation channels. Sci Signal 2005:re3. doi:10.1126/stke.2722005re3
-
(2005)
Sci Signal
, vol.2005
-
-
Montell, C.1
-
42
-
-
34250878976
-
TRP channels in mechanosensation: Direct or indirect activation?
-
Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8:510–521. doi:10.1038/nrn2149
-
(2007)
Nat Rev Neurosci
, vol.8
, pp. 510-521
-
-
Christensen, A.P.1
Corey, D.P.2
-
43
-
-
33646008880
-
Permeation and selectivity of TRP channels
-
Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717. doi:10.1146/annurev.physiol.68.040204.101406
-
(2006)
Annu Rev Physiol
, vol.68
, pp. 685-717
-
-
Owsianik, G.1
Talavera, K.2
Voets, T.3
Nilius, B.4
-
44
-
-
57149121154
-
Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction
-
Schnitzler MMY, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K et al (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103. doi:10.1038/emboj.2008.233
-
(2008)
EMBO J
, vol.27
, pp. 3092-3103
-
-
Schnitzler, M.1
Storch, U.2
Meibers, S.3
Nurwakagari, P.4
Breit, A.5
Essin, K.6
-
45
-
-
84864204713
-
TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells
-
Quick K, Zhao J, Eijkelkamp N, Linley JE, Rugiero F, Cox JJ et al (2012) TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2:120068. doi:10.1098/rsob.120068
-
(2012)
Open Biol
, vol.2
-
-
Quick, K.1
Zhao, J.2
Eijkelkamp, N.3
Linley, J.E.4
Rugiero, F.5
Cox, J.J.6
-
46
-
-
84946429524
-
The contribution of TRPC1, TRPC3, TRPC5 and TRPC6 to touch and hearing
-
Sexton JE, Desmonds T, Quick K, Taylor R, Abramowitz J, Forge A et al (2015) The contribution of TRPC1, TRPC3, TRPC5 and TRPC6 to touch and hearing. Neurosci Lett 610:36–42. doi:10.1016/j.neulet.2015.10.052
-
(2015)
Neurosci Lett
, vol.610
, pp. 36-42
-
-
Sexton, J.E.1
Desmonds, T.2
Quick, K.3
Taylor, R.4
Abramowitz, J.5
Forge, A.6
-
47
-
-
0034663395
-
Genetically similar transduction mechanisms for touch and hearing in Drosophila
-
Eberl DF, Hardy RW, Kernan MJ (2000) Genetically similar transduction mechanisms for touch and hearing in Drosophila. J Neurosci 20:5981–5988
-
(2000)
J Neurosci
, vol.20
, pp. 5981-5988
-
-
Eberl, D.F.1
Hardy, R.W.2
Kernan, M.J.3
-
48
-
-
0034708452
-
A Drosophila mechanosensory transduction channel
-
Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234
-
(2000)
Science
, vol.287
, pp. 2229-2234
-
-
Walker, R.G.1
Willingham, A.T.2
Zuker, C.S.3
-
49
-
-
0037710542
-
Channel required for vertebrate sensory hair cell mechanotransduction
-
NompC TRP
-
Sidi S, NompC TRP (2003) Channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99. doi:10.1126/science.1084370
-
(2003)
Science
, vol.301
, pp. 96-99
-
-
Sidi, S.1
-
50
-
-
33645452380
-
A C. Elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue
-
Li W, Feng Z, Sternberg PW, Xu XZS (2006) A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440:684–687. doi:10.1038/nature04538
-
(2006)
Nature
, vol.440
, pp. 684-687
-
-
Li, W.1
Feng, Z.2
Sternberg, P.W.3
Xu, X.4
-
51
-
-
77955449679
-
Drosophila TRPN(=NOMPC) channel localizes to the distal end of mechanosensory cilia
-
Lee J, Moon S, Cha Y, Chung YD (2010) Drosophila TRPN(=NOMPC) channel localizes to the distal end of mechanosensory cilia. PLoS One 5(6), e11012
-
(2010)
Plos One
, vol.5
, Issue.6
-
-
Lee, J.1
Moon, S.2
Cha, Y.3
Chung, Y.D.4
-
52
-
-
77955442482
-
The role of the TRP channel NompC in Drosophila larval and adult locomotion
-
Cheng LE, Song W, Looger LL, Jan LY, Jan YN (2010) The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron 67:373–380. doi:10.1016/j.neuron.2010.07.004
-
(2010)
Neuron
, vol.67
, pp. 373-380
-
-
Cheng, L.E.1
Song, W.2
Looger, L.L.3
Jan, L.Y.4
Jan, Y.N.5
-
53
-
-
84872162892
-
-
Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y, Cheng LE et al (2013) Nature 493:221–225. doi:10.1038/nature11685
-
(2013)
Nature
, vol.493
, pp. 221-225
-
-
Yan, Z.1
Zhang, W.2
He, Y.3
Gorczyca, D.4
Xiang, Y.5
Cheng, L.E.6
-
54
-
-
84879843039
-
NOMPC is likely a key component of Drosophila mechanotransduction channels
-
Gong J, Wang Q, Wang Z (2013) NOMPC is likely a key component of Drosophila mechanotransduction channels. Eur J Neurosci 38:2057–2064. doi:10.1111/ejn.12214
-
(2013)
Eur J Neurosci
, vol.38
, pp. 2057-2064
-
-
Gong, J.1
Wang, Q.2
Wang, Z.3
-
55
-
-
84877574821
-
A NOMPC-dependent membrane-microtubule connector is a candidate for the gating spring in fly mechanoreceptors
-
Liang X, Madrid J, Gärtner R, Verbavatz J-M, Schiklenk C, Wilsch-Bräuninger M et al (2013) A NOMPC-dependent membrane-microtubule connector is a candidate for the gating spring in fly mechanoreceptors. Curr Biol 23:755–763. doi:10.1016/j.cub.2013.03.065
-
(2013)
Curr Biol
, vol.23
, pp. 755-763
-
-
Liang, X.1
Madrid, J.2
Gärtner, R.3
Verbavatz, J.-M.4
Schiklenk, C.5
Wilsch-Bräuninger, M.6
-
56
-
-
84941345970
-
Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel
-
Zhang W, Cheng LE, Kittelmann M, Li J, Petkovic M, Cheng T et al (2015) Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel. Cell 162:1391–1403. doi:10.1016/j.cell.2015.08.024
-
(2015)
Cell
, vol.162
, pp. 1391-1403
-
-
Zhang, W.1
Cheng, L.E.2
Kittelmann, M.3
Li, J.4
Petkovic, M.5
Cheng, T.6
-
57
-
-
33747585878
-
Specification of auditory sensitivity by Drosophila TRP channels
-
Göpfert MC, Albert JT, Nadrowski B, Kamikouchi A (2006) Specification of auditory sensitivity by Drosophila TRP channels. Nat Neurosci 9:999–1000. doi:10.1038/nn1735
-
(2006)
Nat Neurosci
, vol.9
, pp. 999-1000
-
-
Mc, G.1
Albert, J.T.2
Nadrowski, B.3
Kamikouchi, A.4
-
58
-
-
84872198477
-
Distinct roles of TRP channels in auditory transduction and amplification in Drosophila
-
Lehnert BP, Baker AE, Gaudry Q, Chiang A-S, Wilson RI (2013) Distinct roles of TRP channels in auditory transduction and amplification in Drosophila. Neuron 77:115–128. doi:10.1016/j.neuron.2012.11.030
-
(2013)
Neuron
, vol.77
, pp. 115-128
-
-
Lehnert, B.P.1
Baker, A.E.2
Gaudry, Q.3
Chiang, A.-S.4
Wilson, R.I.5
-
59
-
-
84929284410
-
The adhesion GPCR latrophilin/CIRL shapes mechanosensation
-
Scholz N, Gehring J, Guan C, Ljaschenko D, Fischer R, Lakshmanan V et al (2015) The adhesion GPCR latrophilin/CIRL shapes mechanosensation. Cell Rep. doi:10.1016/j.celrep.2015.04.008
-
(2015)
Cell Rep
-
-
Scholz, N.1
Gehring, J.2
Guan, C.3
Ljaschenko, D.4
Fischer, R.5
Lakshmanan, V.6
-
60
-
-
0037130468
-
Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. Elegans neurons
-
Tobin DM, Madsen DM, Kahn-Kirby A, Peckol EL (2002) Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35(2):307–318
-
(2002)
Neuron
, vol.35
, Issue.2
, pp. 307-318
-
-
Tobin, D.M.1
Madsen, D.M.2
Kahn-Kirby, A.3
Peckol, E.L.4
-
61
-
-
0027479261
-
A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans
-
Kaplan JM, Horvitz HR (1993) A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci U S A 90(6):2227–2231
-
(1993)
Proc Natl Acad Sci U S A
, vol.90
, Issue.6
, pp. 2227-2231
-
-
Kaplan, J.M.1
Horvitz, H.R.2
-
62
-
-
0030776196
-
OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans
-
Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259–8269
-
(1997)
J Neurosci
, vol.17
, pp. 8259-8269
-
-
Colbert, H.A.1
Smith, T.L.2
Bargmann, C.I.3
-
63
-
-
0038004472
-
A TRPV family ion channel required for hearing in Drosophila
-
Kim J, Chung YD, Park D-Y, Choi S, Shin DW, Soh H et al (2003) A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84. doi:10.1038/nature01733
-
(2003)
Nature
, vol.424
, pp. 81-84
-
-
Kim, J.1
Chung, Y.D.2
Park, D.-Y.3
Choi, S.4
Shin, D.W.5
Soh, H.6
-
64
-
-
5744249133
-
Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila
-
Gong Z, Son W, Chung YD, Kim J, Shin DW, McClung CA et al (2004) Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J Neurosci 24:9059–9066. doi:10.1523/JNeurosci.1645-04.2004
-
(2004)
J Neurosci
, vol.24
, pp. 9059-9066
-
-
Gong, Z.1
Son, W.2
Chung, Y.D.3
Kim, J.4
Shin, D.W.5
McClung, C.A.6
-
65
-
-
0034700483
-
Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents
-
Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L et al (2000) Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408:990–994. doi:10.1038/35050128
-
(2000)
Nature
, vol.408
, pp. 990-994
-
-
Hanaoka, K.1
Qian, F.2
Boletta, A.3
Bhunia, A.K.4
Piontek, K.5
Tsiokas, L.6
-
66
-
-
67650860463
-
Structural and molecular basis of the assembly of the TRPP2/PKD1 complex
-
Yu Y, Ulbrich MH, Li M-H, Buraei Z, Chen X-Z, Ong ACM et al (2009) Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci U S A 106:11558–11563. doi:10.1073/pnas.0903684106
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 11558-11563
-
-
Yu, Y.1
Ulbrich, M.H.2
Li, M.-H.3
Buraei, Z.4
Chen, X.-Z.5
Ong, A.6
-
67
-
-
0037317302
-
Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells
-
Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137. doi:10.1038/ng1076
-
(2003)
Nat Genet
, vol.33
, pp. 129-137
-
-
Nauli, S.M.1
Alenghat, F.J.2
Luo, Y.3
Williams, E.4
Vassilev, P.5
Li, X.6
-
68
-
-
39849099174
-
Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1
-
Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171. doi:10.1161/CIRCULATIONAHA.107.710111
-
(2008)
Circulation
, vol.117
, pp. 1161-1171
-
-
Nauli, S.M.1
Kawanabe, Y.2
Kaminski, J.J.3
Pearce, W.J.4
Ingber, D.E.5
Zhou, J.6
-
69
-
-
65249117068
-
Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades
-
AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ et al (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104:860–869. doi:10.1161/CIRCRESAHA.108.192765
-
(2009)
Circ Res
, vol.104
, pp. 860-869
-
-
Aboualaiwi, W.A.1
Takahashi, M.2
Mell, B.R.3
Jones, T.J.4
Ratnam, S.5
Kolb, R.J.6
-
70
-
-
70350346866
-
Polycystin-1 and -2 dosage regulates pressure sensing
-
Sharif-Naeini R, Folgering JHA, Bichet D, Duprat F, Lauritzen I, Arhatte M et al (2009) Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139:587–596. doi:10.1016/j.cell.2009.08.045
-
(2009)
Cell
, vol.139
, pp. 587-596
-
-
Sharif-Naeini, R.1
Folgering, J.2
Bichet, D.3
Duprat, F.4
Lauritzen, I.5
Arhatte, M.6
-
71
-
-
2942534582
-
Polycystic kidney disease: New understanding in the pathogenesis
-
Wilson PD (2004) Polycystic kidney disease: new understanding in the pathogenesis. Int J Biochem Cell Biol 36:1868–1873. doi:10.1016/j.biocel.2004.03.012
-
(2004)
Int J Biochem Cell Biol
, vol.36
, pp. 1868-1873
-
-
Wilson, P.D.1
-
72
-
-
67249091839
-
Polycystic kidney disease
-
Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337. doi:10.1146/annurev.med.60.101707.125712
-
(2009)
Annu Rev Med
, vol.60
, pp. 321-337
-
-
Harris, P.C.1
Torres, V.E.2
-
73
-
-
84995460782
-
Control of adhesion GPCR function through proteolytic processing
-
Langenhan T, Schöneberg T (eds), Springer, Heidelberg
-
Nieberler M, Kittel RJ, Petrenko AG, Lin H-H, Langenhan T (2016) Control of adhesion GPCR function through proteolytic processing. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg
-
(2016)
Adhesion G Protein-Coupled Receptors: Molecular, Physiological and Pharmacological Principles in Health and Disease
-
-
Nieberler, M.1
Kittel, R.J.2
Petrenko, A.G.3
Lin, H.-H.4
Langenhan, T.5
-
74
-
-
0035498717
-
Bending the MDCK cell primary cilium increases intracellular calcium
-
Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79
-
(2001)
J Membr Biol
, vol.184
, pp. 71-79
-
-
Praetorius, H.A.1
Spring, K.R.2
-
75
-
-
49749145631
-
TRPP2 and TRPV4 form a polymodal sensory channel complex
-
Köttgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M et al (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182:437–447. doi:10.1083/jcb.200805124
-
(2008)
J Cell Biol
, vol.182
, pp. 437-447
-
-
Köttgen, M.1
Buchholz, B.2
Garcia-Gonzalez, M.A.3
Kotsis, F.4
Fu, X.5
Doerken, M.6
-
76
-
-
84942821878
-
How ion channels sense mechanical force: Insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2
-
Brohawn SG (2015) How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann N Y Acad Sci 1352:20–32. doi:10.1111/nyas.12874
-
(2015)
Ann N Y Acad Sci
, vol.1352
, pp. 20-32
-
-
Brohawn, S.G.1
-
77
-
-
80052626686
-
Molecular regulations governing TREK and TRAAK channel functions
-
Noël J, Sandoz G, Lesage F (2014) Molecular regulations governing TREK and TRAAK channel functions. Channels (Austin) 5:402–409. doi:10.4161/chan.5.5.16469
-
(2014)
Channels (Austin)
, vol.5
, pp. 402-409
-
-
Noël, J.1
Sandoz, G.2
Lesage, F.3
-
79
-
-
77951041210
-
+ currents: Two-pore domain potassium channels
-
+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605. doi:10.1152/physrev.00029.2009
-
(2010)
Physiol Rev
, vol.90
, pp. 559-605
-
-
Enyedi, P.1
Czirják, G.2
-
82
-
-
84861166382
-
Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K2P channels
-
Peyronnet R, Sharif-Naeini R, Folgering J, Arhatte M (2012) Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K2P channels. Cell Rep 1:241–250
-
(2012)
Cell Rep
, vol.1
, pp. 241-250
-
-
Peyronnet, R.1
Sharif-Naeini, R.2
Folgering, J.3
Arhatte, M.4
-
83
-
-
33645937296
-
Two‐pore‐domain potassium channels in smooth muscles: New components of myogenic regulation
-
Sanders KM, Don KS (2006) Two‐pore‐domain potassium channels in smooth muscles: new components of myogenic regulation. J Physiol 570:37–43. doi:10.1113/jphysiol.2005.098897
-
(2006)
J Physiol
, vol.570
, pp. 37-43
-
-
Sanders, K.M.1
Don, K.S.2
-
84
-
-
0036510053
-
Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear haircell function
-
Kurima K, Peters LM, Yang Y, Riazuddin S, Ahmed ZM, Naz S et al (2002) Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear haircell function. Nat Genet 30:277–284. doi:10.1038/ng842
-
(2002)
Nat Genet
, vol.30
, pp. 277-284
-
-
Kurima, K.1
Peters, L.M.2
Yang, Y.3
Riazuddin, S.4
Ahmed, Z.M.5
Naz, S.6
-
85
-
-
84881559173
-
TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear
-
Pan B, Géléoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K et al (2013) TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79:504–515. doi:10.1016/j.neuron.2013.06.019
-
(2013)
Neuron
, vol.79
, pp. 504-515
-
-
Pan, B.1
Géléoc, G.S.2
Asai, Y.3
Horwitz, G.C.4
Kurima, K.5
Ishikawa, K.6
-
86
-
-
84941168712
-
TMC1 and TMC2 localize at the site of mechanotransduction in mammalian inner ear hair cell stereocilia
-
Kurima K, Ebrahim S, Pan B, Sedlacek M, Sengupta P, Millis BA et al (2015) TMC1 and TMC2 localize at the site of mechanotransduction in mammalian inner ear hair cell stereocilia. Cell Rep 12:1606–1617. doi:10.1016/j.celrep.2015.07.058
-
(2015)
Cell Rep
, vol.12
, pp. 1606-1617
-
-
Kurima, K.1
Ebrahim, S.2
Pan, B.3
Sedlacek, M.4
Sengupta, P.5
Millis, B.A.6
-
87
-
-
9444261862
-
TMC and EVER genes belong to a larger novel family, the TMC gene family encoding transmembrane proteins
-
Keresztes G, Mutai H, Heller S (2003) TMC and EVER genes belong to a larger novel family, the TMC gene family encoding transmembrane proteins. BMC Genomics 4:24. doi:10.1186/1471-2164-4-24
-
(2003)
BMC Genomics
, vol.4
, pp. 24
-
-
Keresztes, G.1
Mutai, H.2
Heller, S.3
-
89
-
-
84874683479
-
Tmc-1 encodes a sodiumsensitive channel required for salt chemosensation in C. Elegans
-
Chatzigeorgiou M, Bang S, Hwang SW, Schafer WR (2013) tmc-1 encodes a sodiumsensitive channel required for salt chemosensation in C. elegans. Nature 494:95–99. doi:10.1038/nature11845
-
(2013)
Nature
, vol.494
, pp. 95-99
-
-
Chatzigeorgiou, M.1
Bang, S.2
Hwang, S.W.3
Schafer, W.R.4
-
90
-
-
84055217017
-
Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes
-
Kawashima Y, Géléoc GSG, Kurima K, Labay V, Lelli A, Asai Y et al (2011) Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest 121:4796–4809. doi:10.1172/JCI60405
-
(2011)
J Clin Invest
, vol.121
, pp. 4796-4809
-
-
Kawashima, Y.1
Géléoc, G.2
Kurima, K.3
Labay, V.4
Lelli, A.5
Asai, Y.6
-
91
-
-
0036509711
-
Beethoven, a mouse model for dominant, progressive hearing loss DFNA36
-
Vreugde S, Erven A, Kros CJ, Marcotti W, Fuchs H, Kurima K et al (2002) Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nat Genet 30:257–258. doi:10.1038/ng848
-
(2002)
Nat Genet
, vol.30
, pp. 257-258
-
-
Vreugde, S.1
Erven, A.2
Kros, C.J.3
Marcotti, W.4
Fuchs, H.5
Kurima, K.6
-
92
-
-
84903792907
-
Conductance and block of hair-cell mechanotransducer channels in transmembrane channel-like protein mutants
-
Beurg M, Kim KX, Fettiplace R (2014) Conductance and block of hair-cell mechanotransducer channels in transmembrane channel-like protein mutants. J Gen Physiol 144:55–69. doi:10.1038/ng848
-
(2014)
J Gen Physiol
, vol.144
, pp. 55-69
-
-
Beurg, M.1
Kim, K.X.2
Fettiplace, R.3
-
93
-
-
0035884807
-
FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel
-
Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP (2001) FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci 21:7013–7025
-
(2001)
J Neurosci
, vol.21
, pp. 7013-7025
-
-
Gale, J.E.1
Marcotti, W.2
Kennedy, H.J.3
Kros, C.J.4
Richardson, G.P.5
-
94
-
-
24944566024
-
The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels
-
Marcotti W, Van Netten SM (2005) The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol 567:505–521
-
(2005)
J Physiol
, vol.567
, pp. 505-521
-
-
Marcotti, W.1
Van Netten, S.M.2
-
95
-
-
34548509448
-
Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells
-
Abstract
-
Kazmierczak P, Sakaguchi H, Tokita J (2007) Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449(7158):87–91. Abstract
-
(2007)
Nature
, vol.449
, Issue.7158
, pp. 87-91
-
-
Kazmierczak, P.1
Sakaguchi, H.2
Tokita, J.3
-
97
-
-
84907228023
-
Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2
-
Maeda R, Kindt KS, Mo W, Morgan CP, Erickson T, Zhao H et al (2014) Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc Natl Acad Sci U S A 111:12907–12912. doi:10.1073/pnas.1402152111
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 12907-12912
-
-
Maeda, R.1
Kindt, K.S.2
Mo, W.3
Morgan, C.P.4
Erickson, T.5
Zhao, H.6
-
98
-
-
84922251466
-
Subunit determination of the conductance of hair-cell mechanotransducer channels. 2015
-
Beurg M, Xiong W, Zhao B, Müller U (2015) Subunit determination of the conductance of hair-cell mechanotransducer channels. 2015. Proc Natl Acad Sci U S A 112(5):1589–1594. doi:10.1073/pnas.1420906112
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, Issue.5
, pp. 1589-1594
-
-
Beurg, M.1
Xiong, W.2
Zhao, B.3
Müller, U.4
-
99
-
-
0023666065
-
Integrins: A family of cell surface receptors
-
Hynes R (1987) Integrins: a family of cell surface receptors. Cell 48:549–554. doi:10.1016/0092-8674(87)90233-9
-
(1987)
Cell
, vol.48
, pp. 549-554
-
-
Hynes, R.1
-
100
-
-
0037145037
-
Integrins: Bidirectional, allosteric signaling machines
-
Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687
-
(2002)
Cell
, vol.110
, pp. 673-687
-
-
Hynes, R.O.1
-
101
-
-
0034698147
-
Ligand binding to integrins
-
Plow EF, Haas TA, Zhang L, Loftus J, Smith JW (2000) Ligand binding to integrins. J Biol Chem 275:21785–21788. doi:10.1074/jbc.R000003200
-
(2000)
J Biol Chem
, vol.275
, pp. 21785-21788
-
-
Plow, E.F.1
Haas, T.A.2
Zhang, L.3
Loftus, J.4
Smith, J.W.5
-
102
-
-
77949862490
-
The final steps of integrin activation: The end game
-
Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11:288–300. doi:10.1038/nrm2871
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 288-300
-
-
Shattil, S.J.1
Kim, C.2
Ginsberg, M.H.3
-
104
-
-
0035002155
-
Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates
-
Abstract
-
Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I et al (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472. doi:10.1038/35074532, Abstract
-
(2001)
Nat Cell Biol
, vol.3
, pp. 466-472
-
-
Balaban, N.Q.1
Schwarz, U.S.2
Riveline, D.3
Goichberg, P.4
Tzur, G.5
Sabanay, I.6
-
105
-
-
0037175402
-
The relationship between force and focal complex development
-
Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159(4):695–705
-
(2002)
J Cell Biol
, vol.159
, Issue.4
, pp. 695-705
-
-
Galbraith, C.G.1
Yamada, K.M.2
Sheetz, M.P.3
-
106
-
-
0027172919
-
Mechanotransduction across the cell surface and through the cytoskeleton
-
Wang N, Butler J, Ingber D (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127. doi:10.1126/science.7684161
-
(1993)
Science
, vol.260
, pp. 1124-1127
-
-
Wang, N.1
Butler, J.2
Ingber, D.3
-
107
-
-
0030994017
-
Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages
-
Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88(1):39–48
-
(1997)
Cell
, vol.88
, Issue.1
, pp. 39-48
-
-
Choquet, D.1
Felsenfeld, D.P.2
Sheetz, M.P.3
-
108
-
-
0034282248
-
Mechanical control of cyclic AMP signalling and gene transcription through integrins
-
Abstract
-
Meyer CJ, Alenghat FJ, Rim P, Fong JH-J, Fabry B, Ingber DE (2000) Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nat Cell Biol 2:666–668. doi:10.1038/35023621, Abstract
-
(2000)
Nat Cell Biol
, vol.2
, pp. 666-668
-
-
Meyer, C.J.1
Alenghat, F.J.2
Rim, P.3
Fong, J.-J.4
Fabry, B.5
Ingber, D.E.6
-
109
-
-
0034987580
-
Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells
-
Chen J, Fabry B, Schiffrin EL, Wang N (2001) Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am J Physiol Cell Physiol 280:C1475–C1484
-
(2001)
Am J Physiol Cell Physiol
, vol.280
, pp. C1475-C1484
-
-
Chen, J.1
Fabry, B.2
Schiffrin, E.L.3
Wang, N.4
-
110
-
-
0035844869
-
Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and rock-independent mechanism
-
Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S et al (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and rock-independent mechanism. J Cell Biol 153:1175–1186. doi:10.1083/jcb.141.2.539
-
(2001)
J Cell Biol
, vol.153
, pp. 1175-1186
-
-
Riveline, D.1
Zamir, E.2
Balaban, N.Q.3
Schwarz, U.S.4
Ishizaki, T.5
Narumiya, S.6
-
111
-
-
0033917881
-
Cell movement is guided by the rigidity of the substrate
-
Lo CM, Wang HB, Dembo M, Wang Y (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152
-
(2000)
Biophys J
, vol.79
, Issue.1
, pp. 144-152
-
-
Lo, C.M.1
Wang, H.B.2
Dembo, M.3
Wang, Y.4
-
112
-
-
0030953763
-
Geometric control of cell life and death
-
Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428
-
(1997)
Science
, vol.276
, Issue.5317
, pp. 1425-1428
-
-
Chen, C.S.1
Mrksich, M.2
Huang, S.3
Whitesides, G.M.4
Ingber, D.E.5
-
113
-
-
0032881990
-
Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates
-
Dike LE, Chen CS, Mrksich M, Tien J, Whitesides GM, Ingber DE (1999) Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. Dev Biol 35:441–448
-
(1999)
Dev Biol
, vol.35
, pp. 441-448
-
-
Dike, L.E.1
Chen, C.S.2
Mrksich, M.3
Tien, J.4
Whitesides, G.M.5
Ingber, D.E.6
-
114
-
-
0036325856
-
Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces
-
Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N, Ostuni E et al (2002) Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J 16(10):1195–1204
-
(2002)
FASEB J
, vol.16
, Issue.10
, pp. 1195-1204
-
-
Parker, K.K.1
Brock, A.L.2
Brangwynne, C.3
Mannix, R.J.4
Wang, N.5
Ostuni, E.6
-
115
-
-
72449161735
-
Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic
-
McHugh BJ, Buttery R, Lad Y, Banks S (2010) Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic. J Cell Sci 123(1):51–61. doi:10.1242/jcs.056424
-
(2010)
J Cell Sci
, vol.123
, Issue.1
, pp. 51-61
-
-
McHugh, B.J.1
Buttery, R.2
Lad, Y.3
Banks, S.4
-
116
-
-
0025239290
-
Localization of specificity determining sites in cadherin cell adhesion molecules
-
Nose A, Tsuji K, Takeichi M (1990) Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61:147–155
-
(1990)
Cell
, vol.61
, pp. 147-155
-
-
Nose, A.1
Tsuji, K.2
Takeichi, M.3
-
117
-
-
77149148479
-
Structure and biochemistry of cadherins and catenins
-
Shapiro L, Weis WI (2009) Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol 1:a003053. doi:10.1101/cshperspect.a003053
-
(2009)
Cold Spring Harb Perspect Biol
, vol.1
-
-
Shapiro, L.1
Weis, W.I.2
-
118
-
-
33750323506
-
Similarities between heterophilic and homophilic cadherin adhesion
-
Prakasam AK, Maruthamuthu V, Leckband DE (2006) Similarities between heterophilic and homophilic cadherin adhesion. Proc Natl Acad Sci U S A 103:15434–15439. doi:10.1073/pnas.0606701103
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 15434-15439
-
-
Prakasam, A.K.1
Maruthamuthu, V.2
Leckband, D.E.3
-
119
-
-
33748195976
-
Mechanism and dynamics of cadherin adhesion
-
Leckband D, Prakasam A (2006) Mechanism and dynamics of cadherin adhesion. Annu Rev Biomed Eng 8:259–287. doi:10.1146/annurev.bioeng.8.061505.095753
-
(2006)
Annu Rev Biomed Eng
, vol.8
, pp. 259-287
-
-
Leckband, D.1
Prakasam, A.2
-
120
-
-
77954351636
-
Allosteric cross talk between cadherin extracellular domains
-
Shi Q, Maruthamuthu V, Li F, Leckband D (2010) Allosteric cross talk between cadherin extracellular domains. Biophys J 99:95–104. doi:10.1016/j.bpj.2010.03.062
-
(2010)
Biophys J
, vol.99
, pp. 95-104
-
-
Shi, Q.1
Maruthamuthu, V.2
Li, F.3
Leckband, D.4
-
121
-
-
84874639502
-
Monomeric α-catenin links cadherin to the actin cytoskeleton
-
Desai R, Sarpal R, Ishiyama N, Pellikka M, Ikura M, Tepass U (2013) Monomeric α-catenin links cadherin to the actin cytoskeleton. Nature 15:261–273. doi:10.1038/ncb2685
-
(2013)
Nature
, vol.15
, pp. 261-273
-
-
Desai, R.1
Sarpal, R.2
Ishiyama, N.3
Pellikka, M.4
Ikura, M.5
Tepass, U.6
-
122
-
-
77954410997
-
Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner
-
le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D et al (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189:1107–1115. doi:10.1083/jcb.201001149
-
(2010)
J Cell Biol
, vol.189
, pp. 1107-1115
-
-
Le Duc, Q.1
Shi, Q.2
Blonk, I.3
Sonnenberg, A.4
Wang, N.5
Leckband, D.6
-
123
-
-
77953123743
-
Alpha-Catenin as a tension transducer that induces adherens junction development
-
Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) alpha-Catenin as a tension transducer that induces adherens junction development. Nature 12:533–542.doi:10.1038/ncb2055
-
(2010)
Nature
, vol.12
, pp. 533-542
-
-
Yonemura, S.1
Wada, Y.2
Watanabe, T.3
Nagafuchi, A.4
Shibata, M.5
-
124
-
-
80052830219
-
A mechanism of mechanotransduction at the cell-cell interface: Emergence of α-catenin as the center of a force-balancing mechanism for morphogenesis in multicellular organisms
-
Yonemura S (2011) A mechanism of mechanotransduction at the cell-cell interface: emergence of α-catenin as the center of a force-balancing mechanism for morphogenesis in multicellular organisms. Bioessays 33:732–736. doi:10.1002/bies.201100064
-
(2011)
Bioessays
, vol.33
, pp. 732-736
-
-
Yonemura, S.1
-
125
-
-
84964315607
-
Cadherin adhesion and mechanotransduction
-
Leckband DE, de Rooij J (2014) Cadherin adhesion and mechanotransduction. Annu Rev Cell Dev Biol 30:291–315. doi:10.1146/annurev-cellbio-100913-013212
-
(2014)
Annu Rev Cell Dev Biol
, vol.30
, pp. 291-315
-
-
Leckband, D.E.1
de Rooij, J.2
-
126
-
-
28444491145
-
Is the mechanical activity of epithelial cells controlled by deformations or forces
-
Saez A, Buguin A, Silberzan P, Ladoux B (2005) Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J 89:L52–L54. doi:10.1529/biophysj.105.071217
-
(2005)
Biophys J
, vol.89
, pp. L52-L54
-
-
Saez, A.1
Buguin, A.2
Silberzan, P.3
Ladoux, B.4
-
127
-
-
77954853935
-
Lentiviral-mediated miRNA against liverintestine cadherin suppresses tumor growth and invasiveness of human gastric cancer
-
Liu Q-S, Zhang J, Liu M, Dong W-G (2010) Lentiviral-mediated miRNA against liverintestine cadherin suppresses tumor growth and invasiveness of human gastric cancer. Cancer Sci 101:1807–1812. doi:10.1111/j.1349-7006.2010.01600.x
-
(2010)
Cancer Sci
, vol.101
, pp. 1807-1812
-
-
Liu, Q.-S.1
Zhang, J.2
Liu, M.3
Dong, W.-G.4
-
128
-
-
84928662556
-
Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers
-
Barry AK, Wang N, Leckband DE (2015) Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers. J Cell Sci 128:1341–1351. doi:10.1242/jcs.159954
-
(2015)
J Cell Sci
, vol.128
, pp. 1341-1351
-
-
Barry, A.K.1
Wang, N.2
Leckband, D.E.3
-
129
-
-
84858074626
-
Triggering a cell shape change by exploiting preexisting actomyosin contractions
-
Roh-Johnson M, Shemer G, Higgins CD, McClellan JH, Werts AD, Tulu US et al (2012) Triggering a cell shape change by exploiting preexisting actomyosin contractions. Science 335:1232–1235. doi:10.1126/science.1217869
-
(2012)
Science
, vol.335
, pp. 1232-1235
-
-
Roh-Johnson, M.1
Shemer, G.2
Higgins, C.D.3
McClellan, J.H.4
Werts, A.D.5
Tulu, U.S.6
-
130
-
-
84880964628
-
Oscillation and polarity of E-cadherin asymmetries control actomyosin flow patterns during morphogenesis
-
Levayer R, Lecuit T (2013) Oscillation and polarity of E-cadherin asymmetries control actomyosin flow patterns during morphogenesis. Dev Cell 26:162–175. doi:10.1016/j.devcel.2013.06.020
-
(2013)
Dev Cell
, vol.26
, pp. 162-175
-
-
Levayer, R.1
Lecuit, T.2
-
131
-
-
84867845786
-
Cadherin-dependent mechanotransduction depends on ligand identity but not affinity
-
Tabdili H, Langer M, Shi Q, Poh Y-C, Wang N, Leckband D (2012) Cadherin-dependent mechanotransduction depends on ligand identity but not affinity. J Cell Sci 125:4362–4371. doi:10.1242/jcs.105775
-
(2012)
J Cell Sci
, vol.125
, pp. 4362-4371
-
-
Tabdili, H.1
Langer, M.2
Shi, Q.3
Poh, Y.-C.4
Wang, N.5
Leckband, D.6
-
132
-
-
77249089284
-
Strength dependence of cadherin-mediated adhesions
-
Ladoux B, Anon E, Lambert M, Rabodzey A, Hersen P, Buguin A et al (2010) Strength dependence of cadherin-mediated adhesions. Biophys J 98:534–542. doi:10.1016/j.bpj.2009.10.044
-
(2010)
Biophys J
, vol.98
, pp. 534-542
-
-
Ladoux, B.1
Anon, E.2
Lambert, M.3
Rabodzey, A.4
Hersen, P.5
Buguin, A.6
-
133
-
-
84883501935
-
α-Catenin, vinculin, and F-actin in strengthening E-cadherin cell–cell adhesions and mechanosensing
-
Dufour S, Mège R-M, Thiery JP (2014) α-Catenin, vinculin, and F-actin in strengthening E-cadherin cell–cell adhesions and mechanosensing. Cell Adh Migr 7:345–350. doi:10.4161/cam.25139
-
(2014)
Cell Adh Migr
, vol.7
, pp. 345-350
-
-
Dufour, S.1
Mège, R.-M.2
Thiery, J.P.3
-
134
-
-
84874071253
-
α-Catenin and vinculin cooperate to promote high E-cadherin-based adhesion strength
-
Thomas WA, Boscher C, Chu Y-S, Cuvelier D, Martinez-Rico C, Seddiki R et al (2013) α-Catenin and vinculin cooperate to promote high E-cadherin-based adhesion strength. J Biol Chem 288:4957–4969. doi:10.1074/jbc.M112.403774
-
(2013)
J Biol Chem
, vol.288
, pp. 4957-4969
-
-
Thomas, W.A.1
Boscher, C.2
Chu, Y.-S.3
Cuvelier, D.4
Martinez-Rico, C.5
Seddiki, R.6
-
135
-
-
80054019905
-
Force generation, transmission, and integration during cell and tissue morphogenesis
-
Lecuit T, Lenne P-F, Munro E (2010) Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol 27:157–184. doi:10.1146/annurevcellbio-100109-104027
-
(2010)
Annu Rev Cell Dev Biol
, vol.27
, pp. 157-184
-
-
Lecuit, T.1
Lenne, P.-F.2
Munro, E.3
-
136
-
-
84880652745
-
Three functions of cadherins in cell adhesion
-
Maıˆtre J-L, Heisenberg C-P (2013) Three functions of cadherins in cell adhesion. Curr Biol 23:R626–R633. doi:10.1016/j.cub.2013.06.019
-
(2013)
Curr Biol
, vol.23
, pp. R626-R633
-
-
Maıˆtre, J.-L.1
Heisenberg, C.-P.2
-
137
-
-
75749108910
-
T-cadherin modulates endothelial barrier function
-
Andreeva AV, Han J, Kutuzov MA, Profirovic J, Tkachuk VA, Voyno-Yasenetskaya TA (2010) T-cadherin modulates endothelial barrier function. J Cell Physiol 223:94–102. doi:10.1002/jcp.22014
-
(2010)
J Cell Physiol
, vol.223
, pp. 94-102
-
-
Andreeva, A.V.1
Han, J.2
Kutuzov, M.A.3
Profirovic, J.4
Tkachuk, V.A.5
Voyno-Yasenetskaya, T.A.6
-
138
-
-
67649216750
-
Intestinal barrier function: Molecular regulation and disease pathogenesis
-
Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124:3–20. doi:10.1016/j.jaci.2009.05.038,quiz 21–2
-
(2009)
J Allergy Clin Immunol
, vol.124
, pp. 3-20
-
-
Groschwitz, K.R.1
Hogan, S.P.2
-
139
-
-
23144442645
-
Regulation of cadherin-mediated adhesion in morphogenesis
-
Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634. doi:10.1038/nrm1699
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, pp. 622-634
-
-
Gumbiner, B.M.1
-
140
-
-
0033118334
-
Molecular tinkering of G protein-coupled receptors: An evolutionary success
-
Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18:1723–1729. doi:10.1093/emboj/18.7.1723
-
(1999)
EMBO J
, vol.18
, pp. 1723-1729
-
-
Bockaert, J.1
Pin, J.P.2
-
142
-
-
2942751868
-
Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II
-
Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T et al (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506. doi:10.1038/ncb1137
-
(2004)
Nat Cell Biol
, vol.6
, pp. 499-506
-
-
Zou, Y.1
Akazawa, H.2
Qin, Y.3
Sano, M.4
Takano, H.5
Minamino, T.6
-
143
-
-
0036889864
-
Role of phospholipase C in development of myogenic tone in rat posterior cerebral arteries
-
Jarajapu YPR, Knot HJ (2002) Role of phospholipase C in development of myogenic tone in rat posterior cerebral arteries. Am J Physiol Heart Circ Physiol 283:H2234–H2238. doi:10.1152/ajpheart.00624.2002
-
(2002)
Am J Physiol Heart Circ Physiol
, vol.283
, pp. H2234-H2238
-
-
Jarajapu, Y.1
Knot, H.J.2
-
144
-
-
0027177730
-
KelleyM(1993) Myogenic tone is coupled to phospholipase C and G protein activation in small cerebral arteries
-
Osol G, Laher I, KelleyM(1993) Myogenic tone is coupled to phospholipase C and G protein activation in small cerebral arteries. Am J Physiol Heart Circ Physiol 265:H415–H420
-
Am J Physiol Heart Circ Physiol
, vol.265
, pp. H415-H420
-
-
Osol, G.1
Laher, I.2
-
145
-
-
0029907599
-
Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin
-
Farrens DL, Altenbach C, Yang K, Hubbell WL (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274(5288):768–770
-
(1996)
Science
, vol.274
, Issue.5288
, pp. 768-770
-
-
Farrens, D.L.1
Altenbach, C.2
Yang, K.3
Hubbell, W.L.4
-
146
-
-
0242696218
-
Activation of G-protein-coupled receptors: A common molecular mechanism
-
Karnik S, Gogonea C, Patil S, Saad Y, Takezako T (2003) Activation of G-protein-coupled receptors: a common molecular mechanism. Trends Endocrinol Metab 14:431–437. doi:10.1016/j.tem.2003.09.007
-
(2003)
Trends Endocrinol Metab
, vol.14
, pp. 431-437
-
-
Karnik, S.1
Gogonea, C.2
Patil, S.3
Saad, Y.4
Takezako, T.5
-
147
-
-
38949137039
-
Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation
-
Yasuda N, Miura S-I, Akazawa H, Tanaka T, Qin Y, Kiya Y et al (2008) Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep 9:179–186. doi:10.1038/sj.embor.7401157
-
(2008)
EMBO Rep
, vol.9
, pp. 179-186
-
-
Yasuda, N.1
Miura, S.-I.2
Akazawa, H.3
Tanaka, T.4
Qin, Y.5
Kiya, Y.6
-
149
-
-
33750366860
-
G protein-coupled receptors sense fluid shear stress in endothelial cells
-
Chachisvilis M, Zhang Y-L, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A 103:15463–15468. doi:10.1073/pnas.0607224103
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 15463-15468
-
-
Chachisvilis, M.1
Zhang, Y.-L.2
Frangos, J.A.3
-
150
-
-
0032735547
-
Receptors for PTH and PTHrP: Their biological importance and functional properties
-
Mannstadt M, Jüppner H, Gardella TJ (1999) Receptors for PTH and PTHrP: their biological importance and functional properties. Am J Physiol 277:F665–F675
-
(1999)
Am J Physiol
, vol.277
, pp. F665-F675
-
-
Mannstadt, M.1
Jüppner, H.2
Gardella, T.J.3
-
151
-
-
66749151000
-
Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells
-
Zhang Y-L, Frangos JA, Chachisvilis M (2009) Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells. Am J Physiol Cell Physiol 296:C1391–C1399. doi:10.1152/ajpcell.00549.2008
-
(2009)
Am J Physiol Cell Physiol
, vol.296
, pp. C1391-C1399
-
-
Zhang, Y.-L.1
Frangos, J.A.2
Chachisvilis, M.3
-
152
-
-
80051469652
-
Dopamine receptor type 5 in the primary cilia has dual chemo- and mechano-sensory roles
-
Abdul-Majeed S, Nauli SM (2011) Dopamine receptor type 5 in the primary cilia has dual chemo- and mechano-sensory roles. Hypertension 58:325–331
-
(2011)
Hypertension
, vol.58
, pp. 325-331
-
-
Abdul-Majeed, S.1
Nauli, S.M.2
-
153
-
-
33744909355
-
G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils
-
Makino A, Prossnitz ER, Bunemann M, Wang JM, Yao WJ, Schmid-Schoenbein GW (2006) G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am J Physiol Cell Physiol 290:C1633–C1639. doi:10.1152/ajpcell.00576.2005
-
(2006)
Am J Physiol Cell Physiol
, vol.290
, pp. C1633-C1639
-
-
Makino, A.1
Prossnitz, E.R.2
Bunemann, M.3
Wang, J.M.4
Yao, W.J.5
Schmid-Schoenbein, G.W.6
-
154
-
-
84878318013
-
Sticky signaling-adhesion class G protein-coupled receptors take the stage
-
re3
-
Langenhan T, Aust G, Hamann J (2013) Sticky signaling-adhesion class G protein-coupled receptors take the stage. Sci Signal 6:re3. doi:10.1126/scisignal.2003825
-
(2013)
Sci Signal
, vol.6
-
-
Langenhan, T.1
Aust, G.2
Hamann, J.3
-
155
-
-
84925434794
-
The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211
-
Petersen SC, Luo R, Liebscher I, Giera S, Jeong S-J, Mogha A et al (2015) The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. Neuron 85:755–769. doi:10.1016/j.neuron.2014.12.057
-
(2015)
Neuron
, vol.85
, pp. 755-769
-
-
Petersen, S.C.1
Luo, R.2
Liebscher, I.3
Giera, S.4
Jeong, S.-J.5
Mogha, A.6
-
156
-
-
84914701249
-
G proteincoupled receptor 56 regulates mechanical overload-induced muscle hypertrophy
-
White JP, Wrann CD, Rao RR, Nair SK, Jedrychowski MP, You JS et al (2014) G proteincoupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1417898111
-
(2014)
Proc Natl Acad Sci U S A
-
-
White, J.P.1
Wrann, C.D.2
Rao, R.R.3
Nair, S.K.4
Jedrychowski, M.P.5
You, J.S.6
-
157
-
-
84995404823
-
Tethered agonism: A common activation mechanism of adhesion GPCRs
-
Langenhan T, Schöneberg T (eds), Springer, Heidelberg
-
Liebscher I, Schöneberg T (2016) Tethered agonism: a common activation mechanism of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg
-
(2016)
Adhesion G Protein-Coupled Receptors: Molecular, Physiological and Pharmacological Principles in Health and Disease
-
-
Liebscher, I.1
Schöneberg, T.2
-
158
-
-
84995378102
-
Versatile signaling activity of adhesion GPCRs
-
Langenhan T, Schöneberg T (eds), Springer, Heidelberg
-
Kishore A, Hall RA (2016) Versatile signaling activity of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg
-
(2016)
Adhesion G Protein-Coupled Receptors: Molecular, Physiological and Pharmacological Principles in Health and Disease
-
-
Kishore, A.1
Hall, R.A.2
-
159
-
-
84995422294
-
Understanding the structural basis of adhesion GPCR functions
-
Langenhan T, Schöneberg T (eds), Springer, Heidelberg
-
Arac¸ D, Sträter N, Seiradake E (2016) Understanding the structural basis of adhesion GPCR functions. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg
-
(2016)
Adhesion G Protein-Coupled Receptors: Molecular, Physiological and Pharmacological Principles in Health and Disease
-
-
Arac¸, D.1
Sträter, N.2
Seiradake, E.3
-
160
-
-
3843101589
-
Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif
-
Lin H-H, Chang G-W, Davies JQ, Stacey M, Harris J, Gordon S (2004) Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem 279:31823–31832. doi:10.1074/jbc.M402974200
-
(2004)
J Biol Chem
, vol.279
, pp. 31823-31832
-
-
Lin, H.-H.1
Chang, G.-W.2
Davies, J.Q.3
Stacey, M.4
Harris, J.5
Gordon, S.6
-
161
-
-
0031006123
-
Alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal Gprotein- coupled receptor
-
Krasnoperov VG, Bittner MA, Beavis R, Kuang YN, Salnikow KV, Chepurny OG et al (1997) alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal Gprotein- coupled receptor. Neuron 18:925–937. doi:10.1016/S0896-6273(00)80332-3
-
(1997)
Neuron
, vol.18
, pp. 925-937
-
-
Krasnoperov, V.G.1
Bittner, M.A.2
Beavis, R.3
Kuang, Y.N.4
Salnikow, K.V.5
Chepurny, O.G.6
-
162
-
-
84858792464
-
A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis
-
Arac¸ D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM, Südhof TC et al (2012) A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J 31:1364–1378. doi:10.1038/emboj.2012.26
-
(2012)
EMBO J
, vol.31
, pp. 1364-1378
-
-
Arac¸, D.1
Boucard, A.A.2
Bolliger, M.F.3
Nguyen, J.4
Soltis, S.M.5
Südhof, T.C.6
-
163
-
-
84919876223
-
A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133
-
Liebscher I, Schön J, Petersen SC, Fischer L, Auerbach N, Demberg LM et al (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep 9:2018–2026. doi:10.1016/j.celrep.2014.11.036
-
(2014)
Cell Rep
, vol.9
, pp. 2018-2026
-
-
Liebscher, I.1
Schön, J.2
Petersen, S.C.3
Fischer, L.4
Auerbach, N.5
Demberg, L.M.6
-
164
-
-
84929208101
-
Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist
-
Stoveken HM, Hajduczok AG, Xu L, Tall GG (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1421785112
-
(2015)
Proc Natl Acad Sci U S A
-
-
Stoveken, H.M.1
Hajduczok, A.G.2
Xu, L.3
Tall, G.G.4
-
165
-
-
84938751168
-
Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2
-
Demberg LM, Rothemund S, Schöneberg T, Liebscher I (2015) Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochem Biophys Res Commun 464:743–747. doi:10.1016/j.bbrc.2015.07.020
-
(2015)
Biochem Biophys Res Commun
, vol.464
, pp. 743-747
-
-
Demberg, L.M.1
Rothemund, S.2
Schöneberg, T.3
Liebscher, I.4
-
166
-
-
84958778198
-
The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist
-
Wilde C, Fischer L, Lede V, Kirchberger J, Rothemund S, Schöneberg T et al (2015) The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J. doi:10.1096/fj.15-276220
-
(2015)
FASEB J
-
-
Wilde, C.1
Fischer, L.2
Lede, V.3
Kirchberger, J.4
Rothemund, S.5
Schöneberg, T.6
-
167
-
-
84995410554
-
Adhesion G protein-coupled receptors in the nervous system: From synapse and dendrite morphogenesis to myelination
-
Langenhan T, Schöneberg T (eds), Springer, Heidelberg
-
Sigoillot SM, Monk KR, Piao X, Selimi F, Harty BL (2016) Adhesion G protein-coupled receptors in the nervous system: from synapse and dendrite morphogenesis to myelination. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg
-
(2016)
Adhesion G Protein-Coupled Receptors: Molecular, Physiological and Pharmacological Principles in Health and Disease
-
-
Sigoillot, S.M.1
Monk, K.R.2
Piao, X.3
Selimi, F.4
Harty, B.L.5
-
168
-
-
70249105005
-
A G protein-coupled receptor is essential for Schwann cells to initiate myelination
-
Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C et al (2009) A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325:1402–1405. doi:10.1126/science.1173474
-
(2009)
Science
, vol.325
, pp. 1402-1405
-
-
Monk, K.R.1
Naylor, S.G.2
Glenn, T.D.3
Mercurio, S.4
Perlin, J.R.5
Dominguez, C.6
-
169
-
-
79958164659
-
Gpr126 is essential for peripheral nerve development and myelination in mammals
-
Monk KR, Oshima K, Jörs S, Heller S, Talbot WS (2011) Gpr126 is essential for peripheral nerve development and myelination in mammals. Development 138:2673–2680. doi:10.1242/dev.062224
-
(2011)
Development
, vol.138
, pp. 2673-2680
-
-
Monk, K.R.1
Oshima, K.2
Jörs, S.3
Heller, S.4
Talbot, W.S.5
-
170
-
-
84880286306
-
Analysis of Gpr126 function defines distinct mechanisms controlling the initiation and maturation of myelin
-
Glenn TD, Talbot WS (2013) Analysis of Gpr126 function defines distinct mechanisms controlling the initiation and maturation of myelin. Development 140:3167–3175. doi:10.1242/dev.093401
-
(2013)
Development
, vol.140
, pp. 3167-3175
-
-
Glenn, T.D.1
Talbot, W.S.2
-
171
-
-
84887359255
-
Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation
-
Mogha A, Benesh AE, Patra C, Engel FB, Schöneberg T, Liebscher I et al (2013) Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation. J Neurosci 33:17976–17985. doi:10.1523/JNEUROSCI.1809-13.2013
-
(2013)
J Neurosci
, vol.33
, pp. 17976-17985
-
-
Mogha, A.1
Benesh, A.E.2
Patra, C.3
Engel, F.B.4
Schöneberg, T.5
Liebscher, I.6
-
172
-
-
22144492671
-
Laminins and their receptors in Schwann cells and hereditary neuropathies
-
Feltri ML, Wrabetz L (2005) Laminins and their receptors in Schwann cells and hereditary neuropathies. J Peripher Nerv Syst 10:128–143. doi:10.1111/j.1085-9489.2005.0010204.x
-
(2005)
J Peripher Nerv Syst
, vol.10
, pp. 128-143
-
-
Feltri, M.L.1
Wrabetz, L.2
-
173
-
-
84930868020
-
New insights on Schwann cell development
-
Monk KR, Feltri ML, Taveggia C (2015) New insights on Schwann cell development. Glia 63:1376–1393. doi:10.1002/glia.22852
-
(2015)
Glia
, vol.63
, pp. 1376-1393
-
-
Monk, K.R.1
Feltri, M.L.2
Taveggia, C.3
-
174
-
-
0033581703
-
The laminin alpha2 expressed by dystrophic dy(2J) mice is defective in its ability to form polymers
-
Colognato H, Yurchenco PD (1999) The laminin alpha2 expressed by dystrophic dy(2J) mice is defective in its ability to form polymers. Curr Biol 9:1327–1330
-
(1999)
Curr Biol
, vol.9
, pp. 1327-1330
-
-
Colognato, H.1
Yurchenco, P.D.2
-
175
-
-
13944280196
-
Coordinate control of axon defasciculation and myelination by laminin-2 and -8
-
Yang D (2005) Coordinate control of axon defasciculation and myelination by laminin-2 and -8. J Cell Biol 168:655–666. doi:10.1083/jcb.200411158
-
(2005)
J Cell Biol
, vol.168
, pp. 655-666
-
-
Yang, D.1
-
176
-
-
0028334735
-
Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse
-
Xu H, Christmas P, Wu XR, Wewer UM, Engvall E (1994) Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc Natl Acad Sci U S A 91:5572–5576
-
(1994)
Proc Natl Acad Sci U S A
, vol.91
, pp. 5572-5576
-
-
Xu, H.1
Christmas, P.2
Wu, X.R.3
Wewer, U.M.4
Engvall, E.5
-
177
-
-
0033178530
-
Feeling the vibes: Chordotonal mechanisms in insect hearing
-
Eberl DF (1999) Feeling the vibes: chordotonal mechanisms in insect hearing. Curr Opin Neurobiol 9:389–393. doi:10.1016/S0959-4388(99)80058-0
-
(1999)
Curr Opin Neurobiol
, vol.9
, pp. 389-393
-
-
Eberl, D.F.1
-
179
-
-
84936948939
-
Physical biology of human brain development
-
Budday S, Steinmann P, Kuhl E (2015) Physical biology of human brain development. Front Cell Neurosci 9:257. doi:10.3389/fncel.2015.00257
-
(2015)
Front Cell Neurosci
, vol.9
, pp. 257
-
-
Budday, S.1
Steinmann, P.2
Kuhl, E.3
-
180
-
-
80052163282
-
Specific expression of GPR56 by human cytotoxic lymphocytes
-
Peng Y-M, van de Garde MDB, Cheng K-F, Baars PA, Remmerswaal EBM, van Lier RAW et al (2011) Specific expression of GPR56 by human cytotoxic lymphocytes. J Leukoc Biol 90:735–740. doi:10.1189/jlb.0211092
-
(2011)
J Leukoc Biol
, vol.90
, pp. 735-740
-
-
Peng, Y.-M.1
van de Garde, M.2
Cheng, K.-F.3
Baars, P.A.4
Remmerswaal, E.5
van Lier, R.6
-
181
-
-
84959017087
-
Vibratory urticaria associated with a missense variant in ADGRE2
-
Boyden SE, Desai MS, Cruse G, Young ML, Bolan HC, Scott LM et al (2016) Vibratory urticaria associated with a missense variant in ADGRE2. N Engl J Med 374(7):656–663. doi:10.1056/NEJMoa1500611
-
(2016)
N Engl J Med
, vol.374
, Issue.7
, pp. 656-663
-
-
Boyden, S.E.1
Desai, M.S.2
Cruse, G.3
Young, M.L.4
Bolan, H.C.5
Scott, L.M.6
-
182
-
-
84880839405
-
Orphan G proteincoupled receptor GPR116 regulates pulmonary surfactant pool size
-
Bridges JP, Ludwig M-G, Mueller M, Kinzel B, Sato A, Xu Y et al (2013) Orphan G proteincoupled receptor GPR116 regulates pulmonary surfactant pool size. Am J Respir Cell Mol Biol 49:348–357. doi:10.1165/rcmb.2012-0439OC
-
(2013)
Am J Respir Cell Mol Biol
, vol.49
, pp. 348-357
-
-
Bridges, J.P.1
Ludwig, M.-G.2
Mueller, M.3
Kinzel, B.4
Sato, A.5
Xu, Y.6
-
183
-
-
84878589406
-
Essential regulation of lung surfactant homeostasis by the orphan G protein-coupled receptor GPR116
-
Yang MY, Hilton MB, Seaman S, Haines DC, Nagashima K, Burks CM et al (2013) Essential regulation of lung surfactant homeostasis by the orphan G protein-coupled receptor GPR116. Cell Rep 3:1457–1464. doi:10.1016/j.celrep.2013.04.019
-
(2013)
Cell Rep
, vol.3
, pp. 1457-1464
-
-
Yang, M.Y.1
Hilton, M.B.2
Seaman, S.3
Haines, D.C.4
Nagashima, K.5
Burks, C.M.6
-
184
-
-
84880794212
-
Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D
-
Fukuzawa T, Ishida J, Kato A, Ichinose T, Ariestanti DM, Takahashi T et al (2013) Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D. PLoS One 8:e69451. doi:10.1371/journal.pone.0069451
-
(2013)
Plos One
, vol.8
-
-
Fukuzawa, T.1
Ishida, J.2
Kato, A.3
Ichinose, T.4
Ariestanti, D.M.5
Takahashi, T.6
-
185
-
-
84995376306
-
Adhesion GPCR function in pulmonary development and disease
-
Langenhan T, Schöneberg T (eds), Springer, Heidelberg
-
Ludwig M-G, Seuwen K, Bridges JP (2016) Adhesion GPCR function in pulmonary development and disease. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg
-
(2016)
Adhesion G Protein-Coupled Receptors: Molecular, Physiological and Pharmacological Principles in Health and Disease
-
-
Ludwig, M.-G.1
Seuwen, K.2
Bridges, J.P.3
-
186
-
-
0037016757
-
Very large G proteincoupled receptor-1, the largest known cell surface protein, is highly expressed in the developing central nervous system
-
McMillan DR, Kayes-Wandover KM, Richardson JA, White PC (2002) Very large G proteincoupled receptor-1, the largest known cell surface protein, is highly expressed in the developing central nervous system. J Biol Chem 277:785–792. doi:10.1074/jbc.M108929200
-
(2002)
J Biol Chem
, vol.277
, pp. 785-792
-
-
McMillan, D.R.1
Kayes-Wandover, K.M.2
Richardson, J.A.3
White, P.C.4
-
187
-
-
33745787321
-
The very large G-protein-coupled receptor VLGR1: A component of the ankle link complex required for the normal development of auditory hair bundles
-
McGee J, Goodyear RJ, McMillan DR, Stauffer EA, Holt JR, Locke KG et al (2006) The very large G-protein-coupled receptor VLGR1: a component of the ankle link complex required for the normal development of auditory hair bundles. J Neurosci 26:6543–6553. doi:10.1523/JNEUROSCI.0693-06.2006
-
(2006)
J Neurosci
, vol.26
, pp. 6543-6553
-
-
McGee, J.1
Goodyear, R.J.2
McMillan, D.R.3
Stauffer, E.A.4
Holt, J.R.5
Locke, K.G.6
|