메뉴 건너뛰기




Volumn 234, Issue , 2016, Pages 221-247

Adhesion GPCRs as a putative class of metabotropic mechanosensors

Author keywords

Adhesion GPCR; Mechanosensation; Mechanosensor

Indexed keywords

BINDING PROTEIN; CADHERIN; DEGENERIN SODIUM CHANNEL; G PROTEIN COUPLED RECEPTOR; INTEGRIN; IONOTROPIC RECEPTOR; LATROPHILIN; MEMBRANE PROTEIN; METABOTROPIC RECEPTOR; PIEZO1 PROTEIN; PIEZO2 PROTEIN; POTASSIUM CHANNEL; PROTEIN GPR126; PROTEIN GPR56; TRANSIENT RECEPTOR POTENTIAL CHANNEL; TRANSMEMBRANE CHANNEL LIKE 1 PROTEIN; TRANSMEMBRANE CHANNEL LIKE 2 PROTEIN; UNCLASSIFIED DRUG; CELL ADHESION MOLECULE; LIGAND; PROTEIN BINDING;

EID: 84995487480     PISSN: 01712004     EISSN: 18650325     Source Type: Book Series    
DOI: 10.1007/978-3-319-41523-9_10     Document Type: Chapter
Times cited : (51)

References (187)
  • 1
    • 79960637431 scopus 로고    scopus 로고
    • Dynamic molecular processes mediate cellular mechanotransduction
    • Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–323. doi:10.1038/nature10316
    • (2011) Nature , vol.475 , pp. 316-323
    • Hoffman, B.D.1    Grashoff, C.2    Schwartz, M.A.3
  • 2
    • 0001098317 scopus 로고    scopus 로고
    • Lateral pressures in cell membranes: A mechanism for modulation of protein function
    • Cantor RS (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem B 101:1723–1725. doi:10.1021/jp963911x
    • (1997) J Phys Chem B , vol.101 , pp. 1723-1725
    • Cantor, R.S.1
  • 3
    • 0021287115 scopus 로고
    • Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle
    • Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352:685–701
    • (1984) J Physiol , vol.352 , pp. 685-701
    • Guharay, F.1    Sachs, F.2
  • 4
    • 0021892579 scopus 로고
    • Mechanotransducer ion channels in chick skeletal muscle: The effects of extracellular pH
    • Guharay F, Sachs F (1985) Mechanotransducer ion channels in chick skeletal muscle: the effects of extracellular pH. J Physiol 363:119–134
    • (1985) J Physiol , vol.363 , pp. 119-134
    • Guharay, F.1    Sachs, F.2
  • 5
    • 0028224356 scopus 로고
    • A large-conductance mechanosensitive channel in E coli encoded by mscL alone
    • Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E coli encoded by mscL alone. Nature 368:265–268. doi:10.1038/368265a0
    • (1994) Nature , vol.368 , pp. 265-268
    • Sukharev, S.I.1    Blount, P.2    Martinac, B.3    Blattner, F.R.4    Kung, C.5
  • 6
    • 0345196593 scopus 로고    scopus 로고
    • Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: Identification of genes required for MscS activity
    • Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737. doi:10.1093/emboj/18.7.1730
    • (1999) EMBO J , vol.18 , pp. 1730-1737
    • Levina, N.1    Tötemeyer, S.2    Stokes, N.R.3    Louis, P.4    Jones, M.A.5    Booth, I.R.6
  • 7
    • 0041929590 scopus 로고    scopus 로고
    • Structure and mechanism in prokaryotic mechanosensitive channels
    • Perozo E, Rees DC (2003) Structure and mechanism in prokaryotic mechanosensitive channels. Curr Opin Struct Biol 13:432–442
    • (2003) Curr Opin Struct Biol , vol.13 , pp. 432-442
    • Perozo, E.1    Rees, D.C.2
  • 8
    • 14444277712 scopus 로고    scopus 로고
    • Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells
    • Ajouz B, Berrier C, Garrigues A, Besnard M, Ghazi A (1998) Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J Biol Chem 273:26670–26674
    • (1998) J Biol Chem , vol.273 , pp. 26670-26674
    • Ajouz, B.1    Berrier, C.2    Garrigues, A.3    Besnard, M.4    Ghazi, A.5
  • 9
    • 23644451510 scopus 로고    scopus 로고
    • A possible unifying principle for mechanosensation
    • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654. doi:10.1038/nature03896
    • (2005) Nature , vol.436 , pp. 647-654
    • Kung, C.1
  • 10
    • 84946570196 scopus 로고    scopus 로고
    • Architecture of the mammalian mechanosensitive Piezo1 channel
    • Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P et al (2015) Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527:64–69. doi:10.1038/nature15247
    • (2015) Nature , vol.527 , pp. 64-69
    • Ge, J.1    Li, W.2    Zhao, Q.3    Li, N.4    Chen, M.5    Zhi, P.6
  • 11
    • 77957332682 scopus 로고    scopus 로고
    • Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels
    • Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60. doi:10.1126/science.1193270
    • (2010) Science , vol.330 , pp. 55-60
    • Coste, B.1    Mathur, J.2    Schmidt, M.3    Earley, T.J.4    Ranade, S.5    Petrus, M.J.6
  • 12
    • 84862777142 scopus 로고    scopus 로고
    • Piezo proteins are pore-forming subunits of mechanically activated channels
    • Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS et al (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–181. doi:10.1038/nature10812
    • (2012) Nature , vol.483 , pp. 176-181
    • Coste, B.1    Xiao, B.2    Santos, J.S.3    Syeda, R.4    Grandl, J.5    Spencer, K.S.6
  • 13
    • 84865295955 scopus 로고    scopus 로고
    • Piezo1: Properties of a cation selective mechanical channel
    • Gottlieb PA, Sachs F (2011) Piezo1: properties of a cation selective mechanical channel. Channels (Austin) 6:214–219. doi:10.4161/chan.21050
    • (2011) Channels (Austin) , vol.6 , pp. 214-219
    • Gottlieb, P.A.1    Sachs, F.2
  • 14
    • 84901680112 scopus 로고    scopus 로고
    • Piezo2 is required for Merkel-cell mechanotransduction
    • Woo SH, Ranade S, Weyer AD, Dubin AE, Baba Y (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509:622–626
    • (2014) Nature , vol.509 , pp. 622-626
    • Woo, S.H.1    Ranade, S.2    Weyer, A.D.3    Dubin, A.E.4    Baba, Y.5
  • 15
  • 16
    • 84886902675 scopus 로고    scopus 로고
    • Piezo2b regulates vertebrate light touch response
    • Faucherre A, Nargeot J, Mangoni ME, Jopling C (2013) Piezo2b regulates vertebrate light touch response. J Neurosci 33:17089–17094. doi:10.1523/JNeurosci0522-13.2013
    • (2013) J Neurosci , vol.33 , pp. 17089-17094
    • Faucherre, A.1    Nargeot, J.2    Mangoni, M.E.3    Jopling, C.4
  • 18
    • 84909618608 scopus 로고    scopus 로고
    • Piezo1 integration of vascular architecture with physiological force
    • Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ et al (2014) Piezo1 integration of vascular architecture with physiological force. Nature 515:279–282. doi:10.1038/nature13701
    • (2014) Nature , vol.515 , pp. 279-282
    • Li, J.1    Hou, B.2    Tumova, S.3    Muraki, K.4    Bruns, A.5    Ludlow, M.J.6
  • 19
    • 84904334120 scopus 로고    scopus 로고
    • Piezo1, a mechanically activated ion channel, is required for vascular development in mice
    • Ranade SS, Qiu Z, Woo SH, Hur SS (2014) Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A 111(28):10347–10352. doi:10.1073/pnas.1409233111
    • (2014) Proc Natl Acad Sci U S A , vol.111 , Issue.28 , pp. 10347-10352
    • Ranade, S.S.1    Qiu, Z.2    Woo, S.H.3    Hur, S.S.4
  • 20
    • 84862776759 scopus 로고    scopus 로고
    • The role of Drosophila Piezo in mechanical nociception
    • Kim SE, Coste B, Chadha A, Cook B, Patapoutian A (2012) The role of Drosophila Piezo in mechanical nociception. Nature 483:209–212. doi:10.1038/nature10801
    • (2012) Nature , vol.483 , pp. 209-212
    • Kim, S.E.1    Coste, B.2    Chadha, A.3    Cook, B.4    Patapoutian, A.5
  • 21
    • 0027483065 scopus 로고
    • Epithelial sodium channel related to proteins involved in neurodegeneration
    • Canessa CM, Horisberger JD, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470. doi:10.1038/361467a0
    • (1993) Nature , vol.361 , pp. 467-470
    • Canessa, C.M.1    Horisberger, J.D.2    Rossier, B.C.3
  • 23
    • 0026089774 scopus 로고
    • The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration
    • Driscoll M, Chalfie M (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349:588–593. doi:10.1038/349588a0
    • (1991) Nature , vol.349 , pp. 588-593
    • Driscoll, M.1    Chalfie, M.2
  • 25
    • 0036307827 scopus 로고    scopus 로고
    • Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure
    • Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767. doi:10.1152/physrev.00007.2002
    • (2002) Physiol Rev , vol.82 , pp. 735-767
    • Kellenberger, S.1    Schild, L.2
  • 26
    • 2442629514 scopus 로고    scopus 로고
    • Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons
    • Askwith CC, Wemmie JA, Price MP, Rokhlina T, Welsh MJ (2004) Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J Biol Chem 279:18296–18305. doi:10.1074/jbc.M312145200
    • (2004) J Biol Chem , vol.279 , pp. 18296-18305
    • Askwith, C.C.1    Wemmie, J.A.2    Price, M.P.3    Rokhlina, T.4    Welsh, M.J.5
  • 27
    • 38949113205 scopus 로고    scopus 로고
    • Acid sensing ion channels in dorsal spinal cord neurons
    • Baron A, Voilley N, Lazdunski M, Lingueglia E (2008) Acid sensing ion channels in dorsal spinal cord neurons. J Neurosci 28:1498–1508. doi:10.1523/JNEUROSCI.4975-07.2008
    • (2008) J Neurosci , vol.28 , pp. 1498-1508
    • Baron, A.1    Voilley, N.2    Lazdunski, M.3    Lingueglia, E.4
  • 28
    • 0037133199 scopus 로고    scopus 로고
    • Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons
    • Benson CJ, Xie J, Wemmie JA, Price MP, Henss JM, Welsh MJ et al (2002) Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc Natl Acad Sci U S A 99:2338–2343. doi:10.1073/pnas.032678399
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 2338-2343
    • Benson, C.J.1    Xie, J.2    Wemmie, J.A.3    Price, M.P.4    Henss, J.M.5    Welsh, M.J.6
  • 29
    • 0019546209 scopus 로고
    • Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans
    • Chalfie M, Sulston J (1981) Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol 82:358–370
    • (1981) Dev Biol , vol.82 , pp. 358-370
    • Chalfie, M.1    Sulston, J.2
  • 30
    • 0016766336 scopus 로고
    • Dopaminergic neurons in the nematode Caenorhabditis elegans
    • Sulston J, Dew M, Brenner S (1975) Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 163:215–226. doi:10.1002/cne.901630207
    • (1975) J Comp Neurol , vol.163 , pp. 215-226
    • Sulston, J.1    Dew, M.2    Brenner, S.3
  • 31
    • 0024536382 scopus 로고
    • Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons
    • Chalfie M, Au M (1989) Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243:1027–1033
    • (1989) Science , vol.243 , pp. 1027-1033
    • Chalfie, M.1    Au, M.2
  • 32
    • 0037186523 scopus 로고    scopus 로고
    • MEC-2 regulates C. Elegans DEG/ENaC channels needed for mechanosensation
    • Goodman MB, Ernstrom GG, Chelur DS, O’Hagan R, Yao CA, Chalfie M (2002) MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415:1039–1042. doi:10.1038/4151039a
    • (2002) Nature , vol.415 , pp. 1039-1042
    • Goodman, M.B.1    Ernstrom, G.G.2    Chelur, D.S.3    O’Hagan, R.4    Yao, C.A.5    Chalfie, M.6
  • 33
    • 7944228880 scopus 로고    scopus 로고
    • MEC-2 is recruited to the putative mechanosensory complex in C. Elegans touch receptor neurons through its stomatin-like domain
    • Zhang S, Árnadóttir J, Keller C, Caldwell GA, Yao CA, Chalfie M(2004) MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr Biol 14:1888–1896. doi:10.1016/j.cub.2004.10.030
    • (2004) Curr Biol , vol.14 , pp. 1888-1896
    • Zhang, S.1    Árnadóttir, J.2    Keller, C.3    Caldwell, G.A.4    Yao, C.A.5    Chalfie, M.6
  • 34
    • 0037069699 scopus 로고    scopus 로고
    • The mechanosensory protein MEC-6 is a subunit of the C. Elegans touch-cell degenerin channel
    • Chelur DS, Ernstrom GG, Goodman MB, Yao CA, Chen L, O’Hagan R et al (2002) The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 420:669–673. doi:10.1038/nature01205
    • (2002) Nature , vol.420 , pp. 669-673
    • Chelur, D.S.1    Ernstrom, G.G.2    Goodman, M.B.3    Yao, C.A.4    Chen, L.5    O’Hagan, R.6
  • 35
    • 0028127759 scopus 로고
    • Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans
    • Huang M, Chalfie M (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367:467–470. doi:10.1038/367467a0
    • (1994) Nature , vol.367 , pp. 467-470
    • Huang, M.1    Chalfie, M.2
  • 36
    • 16644397827 scopus 로고    scopus 로고
    • The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals
    • O’Hagan R, Chalfie M, Goodman MB (2004) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8:43–50. doi:10.1038/nn1362
    • (2004) Nat Neurosci , vol.8 , pp. 43-50
    • O’Hagan, R.1    Chalfie, M.2    Goodman, M.B.3
  • 37
    • 2642570389 scopus 로고    scopus 로고
    • Paraoxonase, a cardioprotective enzyme: Continuing issues
    • Getz GS, Reardon CA (2004) Paraoxonase, a cardioprotective enzyme: continuing issues. Curr Opin Lipidol 15:261
    • (2004) Curr Opin Lipidol , vol.15 , pp. 261
    • Getz, G.S.1    Reardon, C.A.2
  • 38
    • 33751225687 scopus 로고    scopus 로고
    • Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels
    • Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A et al (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A 103:17079–17086. doi:10.1073/pnas.0607465103
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 17079-17086
    • Huber, T.B.1    Schermer, B.2    Muller, R.U.3    Hohne, M.4    Bartram, M.5    Calixto, A.6
  • 39
    • 0029886763 scopus 로고    scopus 로고
    • The Caenorhabditis elegans behavioral gene unc-24 encodes a novel bipartite protein similar to both erythrocyte band 7.2 (stomatin) and nonspecific lipid transfer protein
    • Barnes TM, Jin Y, Horvitz HR, Ruvkun G (1996) The Caenorhabditis elegans behavioral gene unc-24 encodes a novel bipartite protein similar to both erythrocyte band 7.2 (stomatin) and nonspecific lipid transfer protein. J Neurochem 67(1):46–57
    • (1996) J Neurochem , vol.67 , Issue.1 , pp. 46-57
    • Barnes, T.M.1    Jin, Y.2    Horvitz, H.R.3    Ruvkun, G.4
  • 40
    • 0347504835 scopus 로고    scopus 로고
    • TRP channels as cellular sensors
    • Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524. doi:10.1038/nature02196
    • (2003) Nature , vol.426 , pp. 517-524
    • Clapham, D.E.1
  • 41
    • 33644875032 scopus 로고    scopus 로고
    • The TRP superfamily of cation channels
    • re3
    • Montell C (2005) The TRP superfamily of cation channels. Sci Signal 2005:re3. doi:10.1126/stke.2722005re3
    • (2005) Sci Signal , vol.2005
    • Montell, C.1
  • 42
    • 34250878976 scopus 로고    scopus 로고
    • TRP channels in mechanosensation: Direct or indirect activation?
    • Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8:510–521. doi:10.1038/nrn2149
    • (2007) Nat Rev Neurosci , vol.8 , pp. 510-521
    • Christensen, A.P.1    Corey, D.P.2
  • 43
    • 33646008880 scopus 로고    scopus 로고
    • Permeation and selectivity of TRP channels
    • Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717. doi:10.1146/annurev.physiol.68.040204.101406
    • (2006) Annu Rev Physiol , vol.68 , pp. 685-717
    • Owsianik, G.1    Talavera, K.2    Voets, T.3    Nilius, B.4
  • 44
    • 57149121154 scopus 로고    scopus 로고
    • Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction
    • Schnitzler MMY, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K et al (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103. doi:10.1038/emboj.2008.233
    • (2008) EMBO J , vol.27 , pp. 3092-3103
    • Schnitzler, M.1    Storch, U.2    Meibers, S.3    Nurwakagari, P.4    Breit, A.5    Essin, K.6
  • 45
    • 84864204713 scopus 로고    scopus 로고
    • TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells
    • Quick K, Zhao J, Eijkelkamp N, Linley JE, Rugiero F, Cox JJ et al (2012) TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2:120068. doi:10.1098/rsob.120068
    • (2012) Open Biol , vol.2
    • Quick, K.1    Zhao, J.2    Eijkelkamp, N.3    Linley, J.E.4    Rugiero, F.5    Cox, J.J.6
  • 46
    • 84946429524 scopus 로고    scopus 로고
    • The contribution of TRPC1, TRPC3, TRPC5 and TRPC6 to touch and hearing
    • Sexton JE, Desmonds T, Quick K, Taylor R, Abramowitz J, Forge A et al (2015) The contribution of TRPC1, TRPC3, TRPC5 and TRPC6 to touch and hearing. Neurosci Lett 610:36–42. doi:10.1016/j.neulet.2015.10.052
    • (2015) Neurosci Lett , vol.610 , pp. 36-42
    • Sexton, J.E.1    Desmonds, T.2    Quick, K.3    Taylor, R.4    Abramowitz, J.5    Forge, A.6
  • 47
    • 0034663395 scopus 로고    scopus 로고
    • Genetically similar transduction mechanisms for touch and hearing in Drosophila
    • Eberl DF, Hardy RW, Kernan MJ (2000) Genetically similar transduction mechanisms for touch and hearing in Drosophila. J Neurosci 20:5981–5988
    • (2000) J Neurosci , vol.20 , pp. 5981-5988
    • Eberl, D.F.1    Hardy, R.W.2    Kernan, M.J.3
  • 48
    • 0034708452 scopus 로고    scopus 로고
    • A Drosophila mechanosensory transduction channel
    • Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234
    • (2000) Science , vol.287 , pp. 2229-2234
    • Walker, R.G.1    Willingham, A.T.2    Zuker, C.S.3
  • 49
    • 0037710542 scopus 로고    scopus 로고
    • Channel required for vertebrate sensory hair cell mechanotransduction
    • NompC TRP
    • Sidi S, NompC TRP (2003) Channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99. doi:10.1126/science.1084370
    • (2003) Science , vol.301 , pp. 96-99
    • Sidi, S.1
  • 50
    • 33645452380 scopus 로고    scopus 로고
    • A C. Elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue
    • Li W, Feng Z, Sternberg PW, Xu XZS (2006) A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440:684–687. doi:10.1038/nature04538
    • (2006) Nature , vol.440 , pp. 684-687
    • Li, W.1    Feng, Z.2    Sternberg, P.W.3    Xu, X.4
  • 51
    • 77955449679 scopus 로고    scopus 로고
    • Drosophila TRPN(=NOMPC) channel localizes to the distal end of mechanosensory cilia
    • Lee J, Moon S, Cha Y, Chung YD (2010) Drosophila TRPN(=NOMPC) channel localizes to the distal end of mechanosensory cilia. PLoS One 5(6), e11012
    • (2010) Plos One , vol.5 , Issue.6
    • Lee, J.1    Moon, S.2    Cha, Y.3    Chung, Y.D.4
  • 52
    • 77955442482 scopus 로고    scopus 로고
    • The role of the TRP channel NompC in Drosophila larval and adult locomotion
    • Cheng LE, Song W, Looger LL, Jan LY, Jan YN (2010) The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron 67:373–380. doi:10.1016/j.neuron.2010.07.004
    • (2010) Neuron , vol.67 , pp. 373-380
    • Cheng, L.E.1    Song, W.2    Looger, L.L.3    Jan, L.Y.4    Jan, Y.N.5
  • 54
    • 84879843039 scopus 로고    scopus 로고
    • NOMPC is likely a key component of Drosophila mechanotransduction channels
    • Gong J, Wang Q, Wang Z (2013) NOMPC is likely a key component of Drosophila mechanotransduction channels. Eur J Neurosci 38:2057–2064. doi:10.1111/ejn.12214
    • (2013) Eur J Neurosci , vol.38 , pp. 2057-2064
    • Gong, J.1    Wang, Q.2    Wang, Z.3
  • 55
    • 84877574821 scopus 로고    scopus 로고
    • A NOMPC-dependent membrane-microtubule connector is a candidate for the gating spring in fly mechanoreceptors
    • Liang X, Madrid J, Gärtner R, Verbavatz J-M, Schiklenk C, Wilsch-Bräuninger M et al (2013) A NOMPC-dependent membrane-microtubule connector is a candidate for the gating spring in fly mechanoreceptors. Curr Biol 23:755–763. doi:10.1016/j.cub.2013.03.065
    • (2013) Curr Biol , vol.23 , pp. 755-763
    • Liang, X.1    Madrid, J.2    Gärtner, R.3    Verbavatz, J.-M.4    Schiklenk, C.5    Wilsch-Bräuninger, M.6
  • 56
    • 84941345970 scopus 로고    scopus 로고
    • Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel
    • Zhang W, Cheng LE, Kittelmann M, Li J, Petkovic M, Cheng T et al (2015) Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel. Cell 162:1391–1403. doi:10.1016/j.cell.2015.08.024
    • (2015) Cell , vol.162 , pp. 1391-1403
    • Zhang, W.1    Cheng, L.E.2    Kittelmann, M.3    Li, J.4    Petkovic, M.5    Cheng, T.6
  • 57
    • 33747585878 scopus 로고    scopus 로고
    • Specification of auditory sensitivity by Drosophila TRP channels
    • Göpfert MC, Albert JT, Nadrowski B, Kamikouchi A (2006) Specification of auditory sensitivity by Drosophila TRP channels. Nat Neurosci 9:999–1000. doi:10.1038/nn1735
    • (2006) Nat Neurosci , vol.9 , pp. 999-1000
    • Mc, G.1    Albert, J.T.2    Nadrowski, B.3    Kamikouchi, A.4
  • 58
    • 84872198477 scopus 로고    scopus 로고
    • Distinct roles of TRP channels in auditory transduction and amplification in Drosophila
    • Lehnert BP, Baker AE, Gaudry Q, Chiang A-S, Wilson RI (2013) Distinct roles of TRP channels in auditory transduction and amplification in Drosophila. Neuron 77:115–128. doi:10.1016/j.neuron.2012.11.030
    • (2013) Neuron , vol.77 , pp. 115-128
    • Lehnert, B.P.1    Baker, A.E.2    Gaudry, Q.3    Chiang, A.-S.4    Wilson, R.I.5
  • 60
    • 0037130468 scopus 로고    scopus 로고
    • Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. Elegans neurons
    • Tobin DM, Madsen DM, Kahn-Kirby A, Peckol EL (2002) Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35(2):307–318
    • (2002) Neuron , vol.35 , Issue.2 , pp. 307-318
    • Tobin, D.M.1    Madsen, D.M.2    Kahn-Kirby, A.3    Peckol, E.L.4
  • 61
    • 0027479261 scopus 로고
    • A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans
    • Kaplan JM, Horvitz HR (1993) A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci U S A 90(6):2227–2231
    • (1993) Proc Natl Acad Sci U S A , vol.90 , Issue.6 , pp. 2227-2231
    • Kaplan, J.M.1    Horvitz, H.R.2
  • 62
    • 0030776196 scopus 로고    scopus 로고
    • OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans
    • Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259–8269
    • (1997) J Neurosci , vol.17 , pp. 8259-8269
    • Colbert, H.A.1    Smith, T.L.2    Bargmann, C.I.3
  • 63
    • 0038004472 scopus 로고    scopus 로고
    • A TRPV family ion channel required for hearing in Drosophila
    • Kim J, Chung YD, Park D-Y, Choi S, Shin DW, Soh H et al (2003) A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84. doi:10.1038/nature01733
    • (2003) Nature , vol.424 , pp. 81-84
    • Kim, J.1    Chung, Y.D.2    Park, D.-Y.3    Choi, S.4    Shin, D.W.5    Soh, H.6
  • 64
    • 5744249133 scopus 로고    scopus 로고
    • Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila
    • Gong Z, Son W, Chung YD, Kim J, Shin DW, McClung CA et al (2004) Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J Neurosci 24:9059–9066. doi:10.1523/JNeurosci.1645-04.2004
    • (2004) J Neurosci , vol.24 , pp. 9059-9066
    • Gong, Z.1    Son, W.2    Chung, Y.D.3    Kim, J.4    Shin, D.W.5    McClung, C.A.6
  • 65
    • 0034700483 scopus 로고    scopus 로고
    • Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents
    • Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L et al (2000) Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408:990–994. doi:10.1038/35050128
    • (2000) Nature , vol.408 , pp. 990-994
    • Hanaoka, K.1    Qian, F.2    Boletta, A.3    Bhunia, A.K.4    Piontek, K.5    Tsiokas, L.6
  • 66
    • 67650860463 scopus 로고    scopus 로고
    • Structural and molecular basis of the assembly of the TRPP2/PKD1 complex
    • Yu Y, Ulbrich MH, Li M-H, Buraei Z, Chen X-Z, Ong ACM et al (2009) Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci U S A 106:11558–11563. doi:10.1073/pnas.0903684106
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 11558-11563
    • Yu, Y.1    Ulbrich, M.H.2    Li, M.-H.3    Buraei, Z.4    Chen, X.-Z.5    Ong, A.6
  • 67
    • 0037317302 scopus 로고    scopus 로고
    • Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells
    • Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137. doi:10.1038/ng1076
    • (2003) Nat Genet , vol.33 , pp. 129-137
    • Nauli, S.M.1    Alenghat, F.J.2    Luo, Y.3    Williams, E.4    Vassilev, P.5    Li, X.6
  • 68
    • 39849099174 scopus 로고    scopus 로고
    • Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1
    • Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171. doi:10.1161/CIRCULATIONAHA.107.710111
    • (2008) Circulation , vol.117 , pp. 1161-1171
    • Nauli, S.M.1    Kawanabe, Y.2    Kaminski, J.J.3    Pearce, W.J.4    Ingber, D.E.5    Zhou, J.6
  • 69
    • 65249117068 scopus 로고    scopus 로고
    • Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades
    • AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ et al (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104:860–869. doi:10.1161/CIRCRESAHA.108.192765
    • (2009) Circ Res , vol.104 , pp. 860-869
    • Aboualaiwi, W.A.1    Takahashi, M.2    Mell, B.R.3    Jones, T.J.4    Ratnam, S.5    Kolb, R.J.6
  • 71
    • 2942534582 scopus 로고    scopus 로고
    • Polycystic kidney disease: New understanding in the pathogenesis
    • Wilson PD (2004) Polycystic kidney disease: new understanding in the pathogenesis. Int J Biochem Cell Biol 36:1868–1873. doi:10.1016/j.biocel.2004.03.012
    • (2004) Int J Biochem Cell Biol , vol.36 , pp. 1868-1873
    • Wilson, P.D.1
  • 72
    • 67249091839 scopus 로고    scopus 로고
    • Polycystic kidney disease
    • Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337. doi:10.1146/annurev.med.60.101707.125712
    • (2009) Annu Rev Med , vol.60 , pp. 321-337
    • Harris, P.C.1    Torres, V.E.2
  • 74
    • 0035498717 scopus 로고    scopus 로고
    • Bending the MDCK cell primary cilium increases intracellular calcium
    • Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79
    • (2001) J Membr Biol , vol.184 , pp. 71-79
    • Praetorius, H.A.1    Spring, K.R.2
  • 76
    • 84942821878 scopus 로고    scopus 로고
    • How ion channels sense mechanical force: Insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2
    • Brohawn SG (2015) How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann N Y Acad Sci 1352:20–32. doi:10.1111/nyas.12874
    • (2015) Ann N Y Acad Sci , vol.1352 , pp. 20-32
    • Brohawn, S.G.1
  • 77
    • 80052626686 scopus 로고    scopus 로고
    • Molecular regulations governing TREK and TRAAK channel functions
    • Noël J, Sandoz G, Lesage F (2014) Molecular regulations governing TREK and TRAAK channel functions. Channels (Austin) 5:402–409. doi:10.4161/chan.5.5.16469
    • (2014) Channels (Austin) , vol.5 , pp. 402-409
    • Noël, J.1    Sandoz, G.2    Lesage, F.3
  • 79
    • 77951041210 scopus 로고    scopus 로고
    • + currents: Two-pore domain potassium channels
    • + currents: two-pore domain potassium channels. Physiol Rev 90:559–605. doi:10.1152/physrev.00029.2009
    • (2010) Physiol Rev , vol.90 , pp. 559-605
    • Enyedi, P.1    Czirják, G.2
  • 82
    • 84861166382 scopus 로고    scopus 로고
    • Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K2P channels
    • Peyronnet R, Sharif-Naeini R, Folgering J, Arhatte M (2012) Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K2P channels. Cell Rep 1:241–250
    • (2012) Cell Rep , vol.1 , pp. 241-250
    • Peyronnet, R.1    Sharif-Naeini, R.2    Folgering, J.3    Arhatte, M.4
  • 83
    • 33645937296 scopus 로고    scopus 로고
    • Two‐pore‐domain potassium channels in smooth muscles: New components of myogenic regulation
    • Sanders KM, Don KS (2006) Two‐pore‐domain potassium channels in smooth muscles: new components of myogenic regulation. J Physiol 570:37–43. doi:10.1113/jphysiol.2005.098897
    • (2006) J Physiol , vol.570 , pp. 37-43
    • Sanders, K.M.1    Don, K.S.2
  • 84
    • 0036510053 scopus 로고    scopus 로고
    • Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear haircell function
    • Kurima K, Peters LM, Yang Y, Riazuddin S, Ahmed ZM, Naz S et al (2002) Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear haircell function. Nat Genet 30:277–284. doi:10.1038/ng842
    • (2002) Nat Genet , vol.30 , pp. 277-284
    • Kurima, K.1    Peters, L.M.2    Yang, Y.3    Riazuddin, S.4    Ahmed, Z.M.5    Naz, S.6
  • 85
    • 84881559173 scopus 로고    scopus 로고
    • TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear
    • Pan B, Géléoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K et al (2013) TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79:504–515. doi:10.1016/j.neuron.2013.06.019
    • (2013) Neuron , vol.79 , pp. 504-515
    • Pan, B.1    Géléoc, G.S.2    Asai, Y.3    Horwitz, G.C.4    Kurima, K.5    Ishikawa, K.6
  • 86
    • 84941168712 scopus 로고    scopus 로고
    • TMC1 and TMC2 localize at the site of mechanotransduction in mammalian inner ear hair cell stereocilia
    • Kurima K, Ebrahim S, Pan B, Sedlacek M, Sengupta P, Millis BA et al (2015) TMC1 and TMC2 localize at the site of mechanotransduction in mammalian inner ear hair cell stereocilia. Cell Rep 12:1606–1617. doi:10.1016/j.celrep.2015.07.058
    • (2015) Cell Rep , vol.12 , pp. 1606-1617
    • Kurima, K.1    Ebrahim, S.2    Pan, B.3    Sedlacek, M.4    Sengupta, P.5    Millis, B.A.6
  • 87
    • 9444261862 scopus 로고    scopus 로고
    • TMC and EVER genes belong to a larger novel family, the TMC gene family encoding transmembrane proteins
    • Keresztes G, Mutai H, Heller S (2003) TMC and EVER genes belong to a larger novel family, the TMC gene family encoding transmembrane proteins. BMC Genomics 4:24. doi:10.1186/1471-2164-4-24
    • (2003) BMC Genomics , vol.4 , pp. 24
    • Keresztes, G.1    Mutai, H.2    Heller, S.3
  • 88
    • 77957254987 scopus 로고    scopus 로고
    • Topology of transmembrane channel-like gene 1 protein
    • Labay V, Weichert RM, Makishima T, Griffith AJ (2010) Topology of transmembrane channel-like gene 1 protein. Biochemistry 49:8592–8598. doi:10.1021/bi1004377
    • (2010) Biochemistry , vol.49 , pp. 8592-8598
    • Labay, V.1    Weichert, R.M.2    Makishima, T.3    Griffith, A.J.4
  • 89
    • 84874683479 scopus 로고    scopus 로고
    • Tmc-1 encodes a sodiumsensitive channel required for salt chemosensation in C. Elegans
    • Chatzigeorgiou M, Bang S, Hwang SW, Schafer WR (2013) tmc-1 encodes a sodiumsensitive channel required for salt chemosensation in C. elegans. Nature 494:95–99. doi:10.1038/nature11845
    • (2013) Nature , vol.494 , pp. 95-99
    • Chatzigeorgiou, M.1    Bang, S.2    Hwang, S.W.3    Schafer, W.R.4
  • 90
    • 84055217017 scopus 로고    scopus 로고
    • Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes
    • Kawashima Y, Géléoc GSG, Kurima K, Labay V, Lelli A, Asai Y et al (2011) Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest 121:4796–4809. doi:10.1172/JCI60405
    • (2011) J Clin Invest , vol.121 , pp. 4796-4809
    • Kawashima, Y.1    Géléoc, G.2    Kurima, K.3    Labay, V.4    Lelli, A.5    Asai, Y.6
  • 91
    • 0036509711 scopus 로고    scopus 로고
    • Beethoven, a mouse model for dominant, progressive hearing loss DFNA36
    • Vreugde S, Erven A, Kros CJ, Marcotti W, Fuchs H, Kurima K et al (2002) Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nat Genet 30:257–258. doi:10.1038/ng848
    • (2002) Nat Genet , vol.30 , pp. 257-258
    • Vreugde, S.1    Erven, A.2    Kros, C.J.3    Marcotti, W.4    Fuchs, H.5    Kurima, K.6
  • 92
    • 84903792907 scopus 로고    scopus 로고
    • Conductance and block of hair-cell mechanotransducer channels in transmembrane channel-like protein mutants
    • Beurg M, Kim KX, Fettiplace R (2014) Conductance and block of hair-cell mechanotransducer channels in transmembrane channel-like protein mutants. J Gen Physiol 144:55–69. doi:10.1038/ng848
    • (2014) J Gen Physiol , vol.144 , pp. 55-69
    • Beurg, M.1    Kim, K.X.2    Fettiplace, R.3
  • 93
    • 0035884807 scopus 로고    scopus 로고
    • FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel
    • Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP (2001) FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci 21:7013–7025
    • (2001) J Neurosci , vol.21 , pp. 7013-7025
    • Gale, J.E.1    Marcotti, W.2    Kennedy, H.J.3    Kros, C.J.4    Richardson, G.P.5
  • 94
    • 24944566024 scopus 로고    scopus 로고
    • The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels
    • Marcotti W, Van Netten SM (2005) The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol 567:505–521
    • (2005) J Physiol , vol.567 , pp. 505-521
    • Marcotti, W.1    Van Netten, S.M.2
  • 95
    • 34548509448 scopus 로고    scopus 로고
    • Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells
    • Abstract
    • Kazmierczak P, Sakaguchi H, Tokita J (2007) Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449(7158):87–91. Abstract
    • (2007) Nature , vol.449 , Issue.7158 , pp. 87-91
    • Kazmierczak, P.1    Sakaguchi, H.2    Tokita, J.3
  • 97
    • 84907228023 scopus 로고    scopus 로고
    • Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2
    • Maeda R, Kindt KS, Mo W, Morgan CP, Erickson T, Zhao H et al (2014) Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc Natl Acad Sci U S A 111:12907–12912. doi:10.1073/pnas.1402152111
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 12907-12912
    • Maeda, R.1    Kindt, K.S.2    Mo, W.3    Morgan, C.P.4    Erickson, T.5    Zhao, H.6
  • 98
    • 84922251466 scopus 로고    scopus 로고
    • Subunit determination of the conductance of hair-cell mechanotransducer channels. 2015
    • Beurg M, Xiong W, Zhao B, Müller U (2015) Subunit determination of the conductance of hair-cell mechanotransducer channels. 2015. Proc Natl Acad Sci U S A 112(5):1589–1594. doi:10.1073/pnas.1420906112
    • (2015) Proc Natl Acad Sci U S A , vol.112 , Issue.5 , pp. 1589-1594
    • Beurg, M.1    Xiong, W.2    Zhao, B.3    Müller, U.4
  • 99
    • 0023666065 scopus 로고
    • Integrins: A family of cell surface receptors
    • Hynes R (1987) Integrins: a family of cell surface receptors. Cell 48:549–554. doi:10.1016/0092-8674(87)90233-9
    • (1987) Cell , vol.48 , pp. 549-554
    • Hynes, R.1
  • 100
    • 0037145037 scopus 로고    scopus 로고
    • Integrins: Bidirectional, allosteric signaling machines
    • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687
    • (2002) Cell , vol.110 , pp. 673-687
    • Hynes, R.O.1
  • 102
    • 77949862490 scopus 로고    scopus 로고
    • The final steps of integrin activation: The end game
    • Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11:288–300. doi:10.1038/nrm2871
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 288-300
    • Shattil, S.J.1    Kim, C.2    Ginsberg, M.H.3
  • 104
    • 0035002155 scopus 로고    scopus 로고
    • Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates
    • Abstract
    • Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I et al (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472. doi:10.1038/35074532, Abstract
    • (2001) Nat Cell Biol , vol.3 , pp. 466-472
    • Balaban, N.Q.1    Schwarz, U.S.2    Riveline, D.3    Goichberg, P.4    Tzur, G.5    Sabanay, I.6
  • 105
    • 0037175402 scopus 로고    scopus 로고
    • The relationship between force and focal complex development
    • Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159(4):695–705
    • (2002) J Cell Biol , vol.159 , Issue.4 , pp. 695-705
    • Galbraith, C.G.1    Yamada, K.M.2    Sheetz, M.P.3
  • 106
    • 0027172919 scopus 로고
    • Mechanotransduction across the cell surface and through the cytoskeleton
    • Wang N, Butler J, Ingber D (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127. doi:10.1126/science.7684161
    • (1993) Science , vol.260 , pp. 1124-1127
    • Wang, N.1    Butler, J.2    Ingber, D.3
  • 107
    • 0030994017 scopus 로고    scopus 로고
    • Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages
    • Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88(1):39–48
    • (1997) Cell , vol.88 , Issue.1 , pp. 39-48
    • Choquet, D.1    Felsenfeld, D.P.2    Sheetz, M.P.3
  • 108
    • 0034282248 scopus 로고    scopus 로고
    • Mechanical control of cyclic AMP signalling and gene transcription through integrins
    • Abstract
    • Meyer CJ, Alenghat FJ, Rim P, Fong JH-J, Fabry B, Ingber DE (2000) Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nat Cell Biol 2:666–668. doi:10.1038/35023621, Abstract
    • (2000) Nat Cell Biol , vol.2 , pp. 666-668
    • Meyer, C.J.1    Alenghat, F.J.2    Rim, P.3    Fong, J.-J.4    Fabry, B.5    Ingber, D.E.6
  • 109
    • 0034987580 scopus 로고    scopus 로고
    • Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells
    • Chen J, Fabry B, Schiffrin EL, Wang N (2001) Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am J Physiol Cell Physiol 280:C1475–C1484
    • (2001) Am J Physiol Cell Physiol , vol.280 , pp. C1475-C1484
    • Chen, J.1    Fabry, B.2    Schiffrin, E.L.3    Wang, N.4
  • 110
    • 0035844869 scopus 로고    scopus 로고
    • Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and rock-independent mechanism
    • Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S et al (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and rock-independent mechanism. J Cell Biol 153:1175–1186. doi:10.1083/jcb.141.2.539
    • (2001) J Cell Biol , vol.153 , pp. 1175-1186
    • Riveline, D.1    Zamir, E.2    Balaban, N.Q.3    Schwarz, U.S.4    Ishizaki, T.5    Narumiya, S.6
  • 111
    • 0033917881 scopus 로고    scopus 로고
    • Cell movement is guided by the rigidity of the substrate
    • Lo CM, Wang HB, Dembo M, Wang Y (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152
    • (2000) Biophys J , vol.79 , Issue.1 , pp. 144-152
    • Lo, C.M.1    Wang, H.B.2    Dembo, M.3    Wang, Y.4
  • 113
    • 0032881990 scopus 로고    scopus 로고
    • Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates
    • Dike LE, Chen CS, Mrksich M, Tien J, Whitesides GM, Ingber DE (1999) Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. Dev Biol 35:441–448
    • (1999) Dev Biol , vol.35 , pp. 441-448
    • Dike, L.E.1    Chen, C.S.2    Mrksich, M.3    Tien, J.4    Whitesides, G.M.5    Ingber, D.E.6
  • 114
    • 0036325856 scopus 로고    scopus 로고
    • Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces
    • Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N, Ostuni E et al (2002) Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J 16(10):1195–1204
    • (2002) FASEB J , vol.16 , Issue.10 , pp. 1195-1204
    • Parker, K.K.1    Brock, A.L.2    Brangwynne, C.3    Mannix, R.J.4    Wang, N.5    Ostuni, E.6
  • 115
    • 72449161735 scopus 로고    scopus 로고
    • Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic
    • McHugh BJ, Buttery R, Lad Y, Banks S (2010) Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic. J Cell Sci 123(1):51–61. doi:10.1242/jcs.056424
    • (2010) J Cell Sci , vol.123 , Issue.1 , pp. 51-61
    • McHugh, B.J.1    Buttery, R.2    Lad, Y.3    Banks, S.4
  • 116
    • 0025239290 scopus 로고
    • Localization of specificity determining sites in cadherin cell adhesion molecules
    • Nose A, Tsuji K, Takeichi M (1990) Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61:147–155
    • (1990) Cell , vol.61 , pp. 147-155
    • Nose, A.1    Tsuji, K.2    Takeichi, M.3
  • 117
    • 77149148479 scopus 로고    scopus 로고
    • Structure and biochemistry of cadherins and catenins
    • Shapiro L, Weis WI (2009) Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol 1:a003053. doi:10.1101/cshperspect.a003053
    • (2009) Cold Spring Harb Perspect Biol , vol.1
    • Shapiro, L.1    Weis, W.I.2
  • 118
    • 33750323506 scopus 로고    scopus 로고
    • Similarities between heterophilic and homophilic cadherin adhesion
    • Prakasam AK, Maruthamuthu V, Leckband DE (2006) Similarities between heterophilic and homophilic cadherin adhesion. Proc Natl Acad Sci U S A 103:15434–15439. doi:10.1073/pnas.0606701103
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 15434-15439
    • Prakasam, A.K.1    Maruthamuthu, V.2    Leckband, D.E.3
  • 119
    • 33748195976 scopus 로고    scopus 로고
    • Mechanism and dynamics of cadherin adhesion
    • Leckband D, Prakasam A (2006) Mechanism and dynamics of cadherin adhesion. Annu Rev Biomed Eng 8:259–287. doi:10.1146/annurev.bioeng.8.061505.095753
    • (2006) Annu Rev Biomed Eng , vol.8 , pp. 259-287
    • Leckband, D.1    Prakasam, A.2
  • 120
    • 77954351636 scopus 로고    scopus 로고
    • Allosteric cross talk between cadherin extracellular domains
    • Shi Q, Maruthamuthu V, Li F, Leckband D (2010) Allosteric cross talk between cadherin extracellular domains. Biophys J 99:95–104. doi:10.1016/j.bpj.2010.03.062
    • (2010) Biophys J , vol.99 , pp. 95-104
    • Shi, Q.1    Maruthamuthu, V.2    Li, F.3    Leckband, D.4
  • 121
    • 84874639502 scopus 로고    scopus 로고
    • Monomeric α-catenin links cadherin to the actin cytoskeleton
    • Desai R, Sarpal R, Ishiyama N, Pellikka M, Ikura M, Tepass U (2013) Monomeric α-catenin links cadherin to the actin cytoskeleton. Nature 15:261–273. doi:10.1038/ncb2685
    • (2013) Nature , vol.15 , pp. 261-273
    • Desai, R.1    Sarpal, R.2    Ishiyama, N.3    Pellikka, M.4    Ikura, M.5    Tepass, U.6
  • 122
    • 77954410997 scopus 로고    scopus 로고
    • Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner
    • le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D et al (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189:1107–1115. doi:10.1083/jcb.201001149
    • (2010) J Cell Biol , vol.189 , pp. 1107-1115
    • Le Duc, Q.1    Shi, Q.2    Blonk, I.3    Sonnenberg, A.4    Wang, N.5    Leckband, D.6
  • 123
    • 77953123743 scopus 로고    scopus 로고
    • Alpha-Catenin as a tension transducer that induces adherens junction development
    • Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) alpha-Catenin as a tension transducer that induces adherens junction development. Nature 12:533–542.doi:10.1038/ncb2055
    • (2010) Nature , vol.12 , pp. 533-542
    • Yonemura, S.1    Wada, Y.2    Watanabe, T.3    Nagafuchi, A.4    Shibata, M.5
  • 124
    • 80052830219 scopus 로고    scopus 로고
    • A mechanism of mechanotransduction at the cell-cell interface: Emergence of α-catenin as the center of a force-balancing mechanism for morphogenesis in multicellular organisms
    • Yonemura S (2011) A mechanism of mechanotransduction at the cell-cell interface: emergence of α-catenin as the center of a force-balancing mechanism for morphogenesis in multicellular organisms. Bioessays 33:732–736. doi:10.1002/bies.201100064
    • (2011) Bioessays , vol.33 , pp. 732-736
    • Yonemura, S.1
  • 125
    • 84964315607 scopus 로고    scopus 로고
    • Cadherin adhesion and mechanotransduction
    • Leckband DE, de Rooij J (2014) Cadherin adhesion and mechanotransduction. Annu Rev Cell Dev Biol 30:291–315. doi:10.1146/annurev-cellbio-100913-013212
    • (2014) Annu Rev Cell Dev Biol , vol.30 , pp. 291-315
    • Leckband, D.E.1    de Rooij, J.2
  • 126
    • 28444491145 scopus 로고    scopus 로고
    • Is the mechanical activity of epithelial cells controlled by deformations or forces
    • Saez A, Buguin A, Silberzan P, Ladoux B (2005) Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J 89:L52–L54. doi:10.1529/biophysj.105.071217
    • (2005) Biophys J , vol.89 , pp. L52-L54
    • Saez, A.1    Buguin, A.2    Silberzan, P.3    Ladoux, B.4
  • 127
    • 77954853935 scopus 로고    scopus 로고
    • Lentiviral-mediated miRNA against liverintestine cadherin suppresses tumor growth and invasiveness of human gastric cancer
    • Liu Q-S, Zhang J, Liu M, Dong W-G (2010) Lentiviral-mediated miRNA against liverintestine cadherin suppresses tumor growth and invasiveness of human gastric cancer. Cancer Sci 101:1807–1812. doi:10.1111/j.1349-7006.2010.01600.x
    • (2010) Cancer Sci , vol.101 , pp. 1807-1812
    • Liu, Q.-S.1    Zhang, J.2    Liu, M.3    Dong, W.-G.4
  • 128
    • 84928662556 scopus 로고    scopus 로고
    • Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers
    • Barry AK, Wang N, Leckband DE (2015) Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers. J Cell Sci 128:1341–1351. doi:10.1242/jcs.159954
    • (2015) J Cell Sci , vol.128 , pp. 1341-1351
    • Barry, A.K.1    Wang, N.2    Leckband, D.E.3
  • 129
    • 84858074626 scopus 로고    scopus 로고
    • Triggering a cell shape change by exploiting preexisting actomyosin contractions
    • Roh-Johnson M, Shemer G, Higgins CD, McClellan JH, Werts AD, Tulu US et al (2012) Triggering a cell shape change by exploiting preexisting actomyosin contractions. Science 335:1232–1235. doi:10.1126/science.1217869
    • (2012) Science , vol.335 , pp. 1232-1235
    • Roh-Johnson, M.1    Shemer, G.2    Higgins, C.D.3    McClellan, J.H.4    Werts, A.D.5    Tulu, U.S.6
  • 130
    • 84880964628 scopus 로고    scopus 로고
    • Oscillation and polarity of E-cadherin asymmetries control actomyosin flow patterns during morphogenesis
    • Levayer R, Lecuit T (2013) Oscillation and polarity of E-cadherin asymmetries control actomyosin flow patterns during morphogenesis. Dev Cell 26:162–175. doi:10.1016/j.devcel.2013.06.020
    • (2013) Dev Cell , vol.26 , pp. 162-175
    • Levayer, R.1    Lecuit, T.2
  • 131
    • 84867845786 scopus 로고    scopus 로고
    • Cadherin-dependent mechanotransduction depends on ligand identity but not affinity
    • Tabdili H, Langer M, Shi Q, Poh Y-C, Wang N, Leckband D (2012) Cadherin-dependent mechanotransduction depends on ligand identity but not affinity. J Cell Sci 125:4362–4371. doi:10.1242/jcs.105775
    • (2012) J Cell Sci , vol.125 , pp. 4362-4371
    • Tabdili, H.1    Langer, M.2    Shi, Q.3    Poh, Y.-C.4    Wang, N.5    Leckband, D.6
  • 132
  • 133
    • 84883501935 scopus 로고    scopus 로고
    • α-Catenin, vinculin, and F-actin in strengthening E-cadherin cell–cell adhesions and mechanosensing
    • Dufour S, Mège R-M, Thiery JP (2014) α-Catenin, vinculin, and F-actin in strengthening E-cadherin cell–cell adhesions and mechanosensing. Cell Adh Migr 7:345–350. doi:10.4161/cam.25139
    • (2014) Cell Adh Migr , vol.7 , pp. 345-350
    • Dufour, S.1    Mège, R.-M.2    Thiery, J.P.3
  • 134
    • 84874071253 scopus 로고    scopus 로고
    • α-Catenin and vinculin cooperate to promote high E-cadherin-based adhesion strength
    • Thomas WA, Boscher C, Chu Y-S, Cuvelier D, Martinez-Rico C, Seddiki R et al (2013) α-Catenin and vinculin cooperate to promote high E-cadherin-based adhesion strength. J Biol Chem 288:4957–4969. doi:10.1074/jbc.M112.403774
    • (2013) J Biol Chem , vol.288 , pp. 4957-4969
    • Thomas, W.A.1    Boscher, C.2    Chu, Y.-S.3    Cuvelier, D.4    Martinez-Rico, C.5    Seddiki, R.6
  • 135
    • 80054019905 scopus 로고    scopus 로고
    • Force generation, transmission, and integration during cell and tissue morphogenesis
    • Lecuit T, Lenne P-F, Munro E (2010) Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol 27:157–184. doi:10.1146/annurevcellbio-100109-104027
    • (2010) Annu Rev Cell Dev Biol , vol.27 , pp. 157-184
    • Lecuit, T.1    Lenne, P.-F.2    Munro, E.3
  • 136
    • 84880652745 scopus 로고    scopus 로고
    • Three functions of cadherins in cell adhesion
    • Maıˆtre J-L, Heisenberg C-P (2013) Three functions of cadherins in cell adhesion. Curr Biol 23:R626–R633. doi:10.1016/j.cub.2013.06.019
    • (2013) Curr Biol , vol.23 , pp. R626-R633
    • Maıˆtre, J.-L.1    Heisenberg, C.-P.2
  • 138
    • 67649216750 scopus 로고    scopus 로고
    • Intestinal barrier function: Molecular regulation and disease pathogenesis
    • Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124:3–20. doi:10.1016/j.jaci.2009.05.038,quiz 21–2
    • (2009) J Allergy Clin Immunol , vol.124 , pp. 3-20
    • Groschwitz, K.R.1    Hogan, S.P.2
  • 139
    • 23144442645 scopus 로고    scopus 로고
    • Regulation of cadherin-mediated adhesion in morphogenesis
    • Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634. doi:10.1038/nrm1699
    • (2005) Nat Rev Mol Cell Biol , vol.6 , pp. 622-634
    • Gumbiner, B.M.1
  • 140
    • 0033118334 scopus 로고    scopus 로고
    • Molecular tinkering of G protein-coupled receptors: An evolutionary success
    • Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18:1723–1729. doi:10.1093/emboj/18.7.1723
    • (1999) EMBO J , vol.18 , pp. 1723-1729
    • Bockaert, J.1    Pin, J.P.2
  • 142
    • 2942751868 scopus 로고    scopus 로고
    • Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II
    • Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T et al (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506. doi:10.1038/ncb1137
    • (2004) Nat Cell Biol , vol.6 , pp. 499-506
    • Zou, Y.1    Akazawa, H.2    Qin, Y.3    Sano, M.4    Takano, H.5    Minamino, T.6
  • 143
    • 0036889864 scopus 로고    scopus 로고
    • Role of phospholipase C in development of myogenic tone in rat posterior cerebral arteries
    • Jarajapu YPR, Knot HJ (2002) Role of phospholipase C in development of myogenic tone in rat posterior cerebral arteries. Am J Physiol Heart Circ Physiol 283:H2234–H2238. doi:10.1152/ajpheart.00624.2002
    • (2002) Am J Physiol Heart Circ Physiol , vol.283 , pp. H2234-H2238
    • Jarajapu, Y.1    Knot, H.J.2
  • 144
    • 0027177730 scopus 로고    scopus 로고
    • KelleyM(1993) Myogenic tone is coupled to phospholipase C and G protein activation in small cerebral arteries
    • Osol G, Laher I, KelleyM(1993) Myogenic tone is coupled to phospholipase C and G protein activation in small cerebral arteries. Am J Physiol Heart Circ Physiol 265:H415–H420
    • Am J Physiol Heart Circ Physiol , vol.265 , pp. H415-H420
    • Osol, G.1    Laher, I.2
  • 145
    • 0029907599 scopus 로고    scopus 로고
    • Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin
    • Farrens DL, Altenbach C, Yang K, Hubbell WL (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274(5288):768–770
    • (1996) Science , vol.274 , Issue.5288 , pp. 768-770
    • Farrens, D.L.1    Altenbach, C.2    Yang, K.3    Hubbell, W.L.4
  • 146
    • 0242696218 scopus 로고    scopus 로고
    • Activation of G-protein-coupled receptors: A common molecular mechanism
    • Karnik S, Gogonea C, Patil S, Saad Y, Takezako T (2003) Activation of G-protein-coupled receptors: a common molecular mechanism. Trends Endocrinol Metab 14:431–437. doi:10.1016/j.tem.2003.09.007
    • (2003) Trends Endocrinol Metab , vol.14 , pp. 431-437
    • Karnik, S.1    Gogonea, C.2    Patil, S.3    Saad, Y.4    Takezako, T.5
  • 147
    • 38949137039 scopus 로고    scopus 로고
    • Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation
    • Yasuda N, Miura S-I, Akazawa H, Tanaka T, Qin Y, Kiya Y et al (2008) Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep 9:179–186. doi:10.1038/sj.embor.7401157
    • (2008) EMBO Rep , vol.9 , pp. 179-186
    • Yasuda, N.1    Miura, S.-I.2    Akazawa, H.3    Tanaka, T.4    Qin, Y.5    Kiya, Y.6
  • 149
    • 33750366860 scopus 로고    scopus 로고
    • G protein-coupled receptors sense fluid shear stress in endothelial cells
    • Chachisvilis M, Zhang Y-L, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A 103:15463–15468. doi:10.1073/pnas.0607224103
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 15463-15468
    • Chachisvilis, M.1    Zhang, Y.-L.2    Frangos, J.A.3
  • 150
    • 0032735547 scopus 로고    scopus 로고
    • Receptors for PTH and PTHrP: Their biological importance and functional properties
    • Mannstadt M, Jüppner H, Gardella TJ (1999) Receptors for PTH and PTHrP: their biological importance and functional properties. Am J Physiol 277:F665–F675
    • (1999) Am J Physiol , vol.277 , pp. F665-F675
    • Mannstadt, M.1    Jüppner, H.2    Gardella, T.J.3
  • 151
    • 66749151000 scopus 로고    scopus 로고
    • Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells
    • Zhang Y-L, Frangos JA, Chachisvilis M (2009) Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells. Am J Physiol Cell Physiol 296:C1391–C1399. doi:10.1152/ajpcell.00549.2008
    • (2009) Am J Physiol Cell Physiol , vol.296 , pp. C1391-C1399
    • Zhang, Y.-L.1    Frangos, J.A.2    Chachisvilis, M.3
  • 152
    • 80051469652 scopus 로고    scopus 로고
    • Dopamine receptor type 5 in the primary cilia has dual chemo- and mechano-sensory roles
    • Abdul-Majeed S, Nauli SM (2011) Dopamine receptor type 5 in the primary cilia has dual chemo- and mechano-sensory roles. Hypertension 58:325–331
    • (2011) Hypertension , vol.58 , pp. 325-331
    • Abdul-Majeed, S.1    Nauli, S.M.2
  • 154
    • 84878318013 scopus 로고    scopus 로고
    • Sticky signaling-adhesion class G protein-coupled receptors take the stage
    • re3
    • Langenhan T, Aust G, Hamann J (2013) Sticky signaling-adhesion class G protein-coupled receptors take the stage. Sci Signal 6:re3. doi:10.1126/scisignal.2003825
    • (2013) Sci Signal , vol.6
    • Langenhan, T.1    Aust, G.2    Hamann, J.3
  • 155
    • 84925434794 scopus 로고    scopus 로고
    • The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211
    • Petersen SC, Luo R, Liebscher I, Giera S, Jeong S-J, Mogha A et al (2015) The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. Neuron 85:755–769. doi:10.1016/j.neuron.2014.12.057
    • (2015) Neuron , vol.85 , pp. 755-769
    • Petersen, S.C.1    Luo, R.2    Liebscher, I.3    Giera, S.4    Jeong, S.-J.5    Mogha, A.6
  • 160
    • 3843101589 scopus 로고    scopus 로고
    • Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif
    • Lin H-H, Chang G-W, Davies JQ, Stacey M, Harris J, Gordon S (2004) Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem 279:31823–31832. doi:10.1074/jbc.M402974200
    • (2004) J Biol Chem , vol.279 , pp. 31823-31832
    • Lin, H.-H.1    Chang, G.-W.2    Davies, J.Q.3    Stacey, M.4    Harris, J.5    Gordon, S.6
  • 161
    • 0031006123 scopus 로고    scopus 로고
    • Alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal Gprotein- coupled receptor
    • Krasnoperov VG, Bittner MA, Beavis R, Kuang YN, Salnikow KV, Chepurny OG et al (1997) alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal Gprotein- coupled receptor. Neuron 18:925–937. doi:10.1016/S0896-6273(00)80332-3
    • (1997) Neuron , vol.18 , pp. 925-937
    • Krasnoperov, V.G.1    Bittner, M.A.2    Beavis, R.3    Kuang, Y.N.4    Salnikow, K.V.5    Chepurny, O.G.6
  • 162
    • 84858792464 scopus 로고    scopus 로고
    • A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis
    • Arac¸ D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM, Südhof TC et al (2012) A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J 31:1364–1378. doi:10.1038/emboj.2012.26
    • (2012) EMBO J , vol.31 , pp. 1364-1378
    • Arac¸, D.1    Boucard, A.A.2    Bolliger, M.F.3    Nguyen, J.4    Soltis, S.M.5    Südhof, T.C.6
  • 163
    • 84919876223 scopus 로고    scopus 로고
    • A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133
    • Liebscher I, Schön J, Petersen SC, Fischer L, Auerbach N, Demberg LM et al (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep 9:2018–2026. doi:10.1016/j.celrep.2014.11.036
    • (2014) Cell Rep , vol.9 , pp. 2018-2026
    • Liebscher, I.1    Schön, J.2    Petersen, S.C.3    Fischer, L.4    Auerbach, N.5    Demberg, L.M.6
  • 164
    • 84929208101 scopus 로고    scopus 로고
    • Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist
    • Stoveken HM, Hajduczok AG, Xu L, Tall GG (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1421785112
    • (2015) Proc Natl Acad Sci U S A
    • Stoveken, H.M.1    Hajduczok, A.G.2    Xu, L.3    Tall, G.G.4
  • 165
    • 84938751168 scopus 로고    scopus 로고
    • Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2
    • Demberg LM, Rothemund S, Schöneberg T, Liebscher I (2015) Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochem Biophys Res Commun 464:743–747. doi:10.1016/j.bbrc.2015.07.020
    • (2015) Biochem Biophys Res Commun , vol.464 , pp. 743-747
    • Demberg, L.M.1    Rothemund, S.2    Schöneberg, T.3    Liebscher, I.4
  • 166
    • 84958778198 scopus 로고    scopus 로고
    • The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist
    • Wilde C, Fischer L, Lede V, Kirchberger J, Rothemund S, Schöneberg T et al (2015) The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J. doi:10.1096/fj.15-276220
    • (2015) FASEB J
    • Wilde, C.1    Fischer, L.2    Lede, V.3    Kirchberger, J.4    Rothemund, S.5    Schöneberg, T.6
  • 168
    • 70249105005 scopus 로고    scopus 로고
    • A G protein-coupled receptor is essential for Schwann cells to initiate myelination
    • Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C et al (2009) A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325:1402–1405. doi:10.1126/science.1173474
    • (2009) Science , vol.325 , pp. 1402-1405
    • Monk, K.R.1    Naylor, S.G.2    Glenn, T.D.3    Mercurio, S.4    Perlin, J.R.5    Dominguez, C.6
  • 169
    • 79958164659 scopus 로고    scopus 로고
    • Gpr126 is essential for peripheral nerve development and myelination in mammals
    • Monk KR, Oshima K, Jörs S, Heller S, Talbot WS (2011) Gpr126 is essential for peripheral nerve development and myelination in mammals. Development 138:2673–2680. doi:10.1242/dev.062224
    • (2011) Development , vol.138 , pp. 2673-2680
    • Monk, K.R.1    Oshima, K.2    Jörs, S.3    Heller, S.4    Talbot, W.S.5
  • 170
    • 84880286306 scopus 로고    scopus 로고
    • Analysis of Gpr126 function defines distinct mechanisms controlling the initiation and maturation of myelin
    • Glenn TD, Talbot WS (2013) Analysis of Gpr126 function defines distinct mechanisms controlling the initiation and maturation of myelin. Development 140:3167–3175. doi:10.1242/dev.093401
    • (2013) Development , vol.140 , pp. 3167-3175
    • Glenn, T.D.1    Talbot, W.S.2
  • 171
    • 84887359255 scopus 로고    scopus 로고
    • Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation
    • Mogha A, Benesh AE, Patra C, Engel FB, Schöneberg T, Liebscher I et al (2013) Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation. J Neurosci 33:17976–17985. doi:10.1523/JNEUROSCI.1809-13.2013
    • (2013) J Neurosci , vol.33 , pp. 17976-17985
    • Mogha, A.1    Benesh, A.E.2    Patra, C.3    Engel, F.B.4    Schöneberg, T.5    Liebscher, I.6
  • 172
    • 22144492671 scopus 로고    scopus 로고
    • Laminins and their receptors in Schwann cells and hereditary neuropathies
    • Feltri ML, Wrabetz L (2005) Laminins and their receptors in Schwann cells and hereditary neuropathies. J Peripher Nerv Syst 10:128–143. doi:10.1111/j.1085-9489.2005.0010204.x
    • (2005) J Peripher Nerv Syst , vol.10 , pp. 128-143
    • Feltri, M.L.1    Wrabetz, L.2
  • 173
    • 84930868020 scopus 로고    scopus 로고
    • New insights on Schwann cell development
    • Monk KR, Feltri ML, Taveggia C (2015) New insights on Schwann cell development. Glia 63:1376–1393. doi:10.1002/glia.22852
    • (2015) Glia , vol.63 , pp. 1376-1393
    • Monk, K.R.1    Feltri, M.L.2    Taveggia, C.3
  • 174
    • 0033581703 scopus 로고    scopus 로고
    • The laminin alpha2 expressed by dystrophic dy(2J) mice is defective in its ability to form polymers
    • Colognato H, Yurchenco PD (1999) The laminin alpha2 expressed by dystrophic dy(2J) mice is defective in its ability to form polymers. Curr Biol 9:1327–1330
    • (1999) Curr Biol , vol.9 , pp. 1327-1330
    • Colognato, H.1    Yurchenco, P.D.2
  • 175
    • 13944280196 scopus 로고    scopus 로고
    • Coordinate control of axon defasciculation and myelination by laminin-2 and -8
    • Yang D (2005) Coordinate control of axon defasciculation and myelination by laminin-2 and -8. J Cell Biol 168:655–666. doi:10.1083/jcb.200411158
    • (2005) J Cell Biol , vol.168 , pp. 655-666
    • Yang, D.1
  • 176
    • 0028334735 scopus 로고
    • Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse
    • Xu H, Christmas P, Wu XR, Wewer UM, Engvall E (1994) Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc Natl Acad Sci U S A 91:5572–5576
    • (1994) Proc Natl Acad Sci U S A , vol.91 , pp. 5572-5576
    • Xu, H.1    Christmas, P.2    Wu, X.R.3    Wewer, U.M.4    Engvall, E.5
  • 177
    • 0033178530 scopus 로고    scopus 로고
    • Feeling the vibes: Chordotonal mechanisms in insect hearing
    • Eberl DF (1999) Feeling the vibes: chordotonal mechanisms in insect hearing. Curr Opin Neurobiol 9:389–393. doi:10.1016/S0959-4388(99)80058-0
    • (1999) Curr Opin Neurobiol , vol.9 , pp. 389-393
    • Eberl, D.F.1
  • 179
    • 84936948939 scopus 로고    scopus 로고
    • Physical biology of human brain development
    • Budday S, Steinmann P, Kuhl E (2015) Physical biology of human brain development. Front Cell Neurosci 9:257. doi:10.3389/fncel.2015.00257
    • (2015) Front Cell Neurosci , vol.9 , pp. 257
    • Budday, S.1    Steinmann, P.2    Kuhl, E.3
  • 181
    • 84959017087 scopus 로고    scopus 로고
    • Vibratory urticaria associated with a missense variant in ADGRE2
    • Boyden SE, Desai MS, Cruse G, Young ML, Bolan HC, Scott LM et al (2016) Vibratory urticaria associated with a missense variant in ADGRE2. N Engl J Med 374(7):656–663. doi:10.1056/NEJMoa1500611
    • (2016) N Engl J Med , vol.374 , Issue.7 , pp. 656-663
    • Boyden, S.E.1    Desai, M.S.2    Cruse, G.3    Young, M.L.4    Bolan, H.C.5    Scott, L.M.6
  • 182
    • 84880839405 scopus 로고    scopus 로고
    • Orphan G proteincoupled receptor GPR116 regulates pulmonary surfactant pool size
    • Bridges JP, Ludwig M-G, Mueller M, Kinzel B, Sato A, Xu Y et al (2013) Orphan G proteincoupled receptor GPR116 regulates pulmonary surfactant pool size. Am J Respir Cell Mol Biol 49:348–357. doi:10.1165/rcmb.2012-0439OC
    • (2013) Am J Respir Cell Mol Biol , vol.49 , pp. 348-357
    • Bridges, J.P.1    Ludwig, M.-G.2    Mueller, M.3    Kinzel, B.4    Sato, A.5    Xu, Y.6
  • 183
    • 84878589406 scopus 로고    scopus 로고
    • Essential regulation of lung surfactant homeostasis by the orphan G protein-coupled receptor GPR116
    • Yang MY, Hilton MB, Seaman S, Haines DC, Nagashima K, Burks CM et al (2013) Essential regulation of lung surfactant homeostasis by the orphan G protein-coupled receptor GPR116. Cell Rep 3:1457–1464. doi:10.1016/j.celrep.2013.04.019
    • (2013) Cell Rep , vol.3 , pp. 1457-1464
    • Yang, M.Y.1    Hilton, M.B.2    Seaman, S.3    Haines, D.C.4    Nagashima, K.5    Burks, C.M.6
  • 184
    • 84880794212 scopus 로고    scopus 로고
    • Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D
    • Fukuzawa T, Ishida J, Kato A, Ichinose T, Ariestanti DM, Takahashi T et al (2013) Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D. PLoS One 8:e69451. doi:10.1371/journal.pone.0069451
    • (2013) Plos One , vol.8
    • Fukuzawa, T.1    Ishida, J.2    Kato, A.3    Ichinose, T.4    Ariestanti, D.M.5    Takahashi, T.6
  • 186
    • 0037016757 scopus 로고    scopus 로고
    • Very large G proteincoupled receptor-1, the largest known cell surface protein, is highly expressed in the developing central nervous system
    • McMillan DR, Kayes-Wandover KM, Richardson JA, White PC (2002) Very large G proteincoupled receptor-1, the largest known cell surface protein, is highly expressed in the developing central nervous system. J Biol Chem 277:785–792. doi:10.1074/jbc.M108929200
    • (2002) J Biol Chem , vol.277 , pp. 785-792
    • McMillan, D.R.1    Kayes-Wandover, K.M.2    Richardson, J.A.3    White, P.C.4
  • 187
    • 33745787321 scopus 로고    scopus 로고
    • The very large G-protein-coupled receptor VLGR1: A component of the ankle link complex required for the normal development of auditory hair bundles
    • McGee J, Goodyear RJ, McMillan DR, Stauffer EA, Holt JR, Locke KG et al (2006) The very large G-protein-coupled receptor VLGR1: a component of the ankle link complex required for the normal development of auditory hair bundles. J Neurosci 26:6543–6553. doi:10.1523/JNEUROSCI.0693-06.2006
    • (2006) J Neurosci , vol.26 , pp. 6543-6553
    • McGee, J.1    Goodyear, R.J.2    McMillan, D.R.3    Stauffer, E.A.4    Holt, J.R.5    Locke, K.G.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.