-
1
-
-
0024328536
-
Altering the genome by homologous recombination
-
1 Capecchi, M.R., Altering the genome by homologous recombination. Science 244 (1989), 1288–1292.
-
(1989)
Science
, vol.244
, pp. 1288-1292
-
-
Capecchi, M.R.1
-
2
-
-
0024693555
-
Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae
-
2 Rudin, N., et al. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122 (1989), 519–534.
-
(1989)
Genetics
, vol.122
, pp. 519-534
-
-
Rudin, N.1
-
3
-
-
0034749283
-
Stimulation of homologous recombination through targeted cleavage by chimeric nucleases
-
3 Bibikova, M., et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell Biol. 21 (2001), 289–297.
-
(2001)
Mol. Cell Biol.
, vol.21
, pp. 289-297
-
-
Bibikova, M.1
-
4
-
-
0036021389
-
Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases
-
4 Bibikova, M., et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161 (2002), 1169–1175.
-
(2002)
Genetics
, vol.161
, pp. 1169-1175
-
-
Bibikova, M.1
-
5
-
-
18944373328
-
Highly efficient endogenous human gene correction using designed zinc-finger nucleases
-
5 Urnov, F.D., et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435 (2005), 646–651.
-
(2005)
Nature
, vol.435
, pp. 646-651
-
-
Urnov, F.D.1
-
6
-
-
78951479577
-
Targeting DNA double-strand breaks with TAL effector nucleases
-
6 Christian, M., et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186 (2010), 757–761.
-
(2010)
Genetics
, vol.186
, pp. 757-761
-
-
Christian, M.1
-
7
-
-
84879264708
-
ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
-
7 Gaj, T., et al. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31 (2013), 397–405.
-
(2013)
Trends Biotechnol.
, vol.31
, pp. 397-405
-
-
Gaj, T.1
-
8
-
-
0033624684
-
DNA recognition by Cys2His2 zinc finger proteins
-
8 Wolfe, S.A., et al. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29 (2000), 183–212.
-
(2000)
Annu. Rev. Biophys. Biomol. Struct.
, vol.29
, pp. 183-212
-
-
Wolfe, S.A.1
-
9
-
-
0036168937
-
Engineering polydactyl zinc-finger transcription factors
-
9 Beerli, R.R., Barbas, C.F. 3rd, Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20 (2002), 135–141.
-
(2002)
Nat. Biotechnol.
, vol.20
, pp. 135-141
-
-
Beerli, R.R.1
Barbas, C.F.2
-
10
-
-
84882976110
-
Optical control of mammalian endogenous transcription and epigenetic states
-
10 Konermann, S., et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500 (2013), 472–476.
-
(2013)
Nature
, vol.500
, pp. 472-476
-
-
Konermann, S.1
-
11
-
-
79751487297
-
Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription
-
11 Zhang, F., et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29 (2011), 149–153.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 149-153
-
-
Zhang, F.1
-
12
-
-
84884907424
-
CRISPR RNA-guided activation of endogenous human genes
-
12 Maeder, M.L., et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10 (2013), 977–979.
-
(2013)
Nat. Methods
, vol.10
, pp. 977-979
-
-
Maeder, M.L.1
-
13
-
-
84857097177
-
RNA-guided genetic silencing systems in bacteria and archaea
-
13 Wiedenheft, B., et al. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482 (2012), 331–338.
-
(2012)
Nature
, vol.482
, pp. 331-338
-
-
Wiedenheft, B.1
-
14
-
-
77249170201
-
CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea
-
14 Marraffini, L.A., Sontheimer, E.J., CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11 (2010), 181–190.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 181-190
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
15
-
-
0020368083
-
Cloning of alkaline phosphatase isozyme gene (iap) of Escherichia coli
-
15 Nakata, A., et al. Cloning of alkaline phosphatase isozyme gene (iap) of Escherichia coli. Gene 19 (1982), 313–319.
-
(1982)
Gene
, vol.19
, pp. 313-319
-
-
Nakata, A.1
-
16
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
16 Barrangou, R., et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 (2007), 1709–1712.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
-
17
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
17 Brouns, S.J., et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321 (2008), 960–964.
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.1
-
18
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
18 Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 (2012), 816–821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
19
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
19 Deltcheva, E., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471 (2011), 602–607.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
-
20
-
-
80755145195
-
The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
-
20 Sapranauskas, R., et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic. Acids Res. 39 (2011), 9275–9282.
-
(2011)
Nucleic. Acids Res.
, vol.39
, pp. 9275-9282
-
-
Sapranauskas, R.1
-
21
-
-
75749118174
-
Self versus non-self discrimination during CRISPR RNA-directed immunity
-
21 Marraffini, L.A., Sontheimer, E.J., Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463 (2010), 568–571.
-
(2010)
Nature
, vol.463
, pp. 568-571
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
22
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
22 Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339 (2013), 819–823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
23
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
23 Mali, P., et al. RNA-guided human genome engineering via Cas9. Science 339 (2013), 823–826.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
-
24
-
-
84876567971
-
RNA-programmed genome editing in human cells
-
24 Jinek, M., et al. RNA-programmed genome editing in human cells. Elife, 2, 2013, e00471.
-
(2013)
Elife
, vol.2
, pp. e00471
-
-
Jinek, M.1
-
25
-
-
84874617789
-
Efficient genome editing in zebrafish using a CRISPR-Cas system
-
25 Hwang, W.Y., et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31 (2013), 227–229.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 227-229
-
-
Hwang, W.Y.1
-
26
-
-
84874624936
-
Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
-
26 Cho, S.W., et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31 (2013), 230–232.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 230-232
-
-
Cho, S.W.1
-
27
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
27 Makarova, K.S., et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13 (2015), 722–736.
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
-
28
-
-
84902095351
-
Classification and evolution of type II CRISPR-Cas systems
-
28 Chylinski, K., et al. Classification and evolution of type II CRISPR-Cas systems. Nucleic. Acids Res. 42 (2014), 6091–6105.
-
(2014)
Nucleic. Acids Res.
, vol.42
, pp. 6091-6105
-
-
Chylinski, K.1
-
29
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
29 Gasiunas, G., et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), E2579–E2586.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
-
30
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
30 Ran, F.A., et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520 (2015), 186–191.
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
-
31
-
-
84878193178
-
Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis
-
31 Zhang, Y., et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50 (2013), 488–503.
-
(2013)
Mol. Cell
, vol.50
, pp. 488-503
-
-
Zhang, Y.1
-
32
-
-
84884160273
-
CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
-
32 Mali, P., et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31 (2013), 833–838.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 833-838
-
-
Mali, P.1
-
33
-
-
84877782955
-
A CRISPR/Cas system mediates bacterial innate immune evasion and virulence
-
33 Sampson, T.R., et al. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497 (2013), 254–257.
-
(2013)
Nature
, vol.497
, pp. 254-257
-
-
Sampson, T.R.1
-
34
-
-
84959440451
-
Structure and engineering of Francisella novicida Cas9
-
34 Hirano, H., et al. Structure and engineering of Francisella novicida Cas9. Cell 164 (2016), 950–961.
-
(2016)
Cell
, vol.164
, pp. 950-961
-
-
Hirano, H.1
-
35
-
-
70449753811
-
RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
-
35 Hale, C.R., et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139 (2009), 945–956.
-
(2009)
Cell
, vol.139
, pp. 945-956
-
-
Hale, C.R.1
-
36
-
-
84856792673
-
Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs
-
36 Hale, C.R., et al. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol. Cell 45 (2012), 292–302.
-
(2012)
Mol. Cell
, vol.45
, pp. 292-302
-
-
Hale, C.R.1
-
37
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
37 Zetsche, B., et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163 (2015), 759–771.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
-
38
-
-
84963973892
-
Crystal structure of Cpf1 in complex with guide RNA and target DNA
-
38 Yamano, T., et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165 (2016), 949–962.
-
(2016)
Cell
, vol.165
, pp. 949-962
-
-
Yamano, T.1
-
39
-
-
84964831029
-
The crystal structure of Cpf1 in complex with CRISPR RNA
-
39 Dong, D., et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532 (2016), 522–526.
-
(2016)
Nature
, vol.532
, pp. 522-526
-
-
Dong, D.1
-
40
-
-
84964862130
-
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
-
40 Fonfara, I., et al. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532 (2016), 517–521.
-
(2016)
Nature
, vol.532
, pp. 517-521
-
-
Fonfara, I.1
-
41
-
-
84974606818
-
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
-
41 Abudayyeh, O.O., et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353, 2016, aaf5573.
-
(2016)
Science
, vol.353
, pp. aaf5573
-
-
Abudayyeh, O.O.1
-
42
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
42 Ran, F.A., et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154 (2013), 1380–1389.
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
-
43
-
-
84971006562
-
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
-
43 Komor, A.C., et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533 (2016), 420–424.
-
(2016)
Nature
, vol.533
, pp. 420-424
-
-
Komor, A.C.1
-
44
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
44 Qi, L.S., et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152 (2013), 1173–1183.
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
-
45
-
-
84969916078
-
A comprehensive, CRISPR-based functional analysis of essential genes in bacteria
-
45 Peters, J.M., et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165 (2016), 1493–1506.
-
(2016)
Cell
, vol.165
, pp. 1493-1506
-
-
Peters, J.M.1
-
46
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
-
46 Gilbert, L.A., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154 (2013), 442–451.
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
-
47
-
-
84908352138
-
Genome-scale CRISPR-mediated control of gene repression and activation
-
47 Gilbert, L.A., et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159 (2014), 647–661.
-
(2014)
Cell
, vol.159
, pp. 647-661
-
-
Gilbert, L.A.1
-
48
-
-
84923096541
-
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
-
48 Konermann, S., et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517 (2015), 583–588.
-
(2015)
Nature
, vol.517
, pp. 583-588
-
-
Konermann, S.1
-
49
-
-
84886993480
-
CRISPR interference (CRISPRi) for sequence-specific control of gene expression
-
49 Larson, M.H., et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8 (2013), 2180–2196.
-
(2013)
Nat. Protoc.
, vol.8
, pp. 2180-2196
-
-
Larson, M.H.1
-
50
-
-
84893819419
-
Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system
-
50 Zhao, Y., et al. Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci. Rep., 4, 2014, 3943.
-
(2014)
Sci. Rep.
, vol.4
, pp. 3943
-
-
Zhao, Y.1
-
51
-
-
84884906690
-
RNA-guided gene activation by CRISPR-Cas9-based transcription factors
-
51 Perez-Pinera, P., et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10 (2013), 973–976.
-
(2013)
Nat. Methods
, vol.10
, pp. 973-976
-
-
Perez-Pinera, P.1
-
52
-
-
84885180675
-
Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system
-
52 Cheng, A.W., et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23 (2013), 1163–1171.
-
(2013)
Cell Res.
, vol.23
, pp. 1163-1171
-
-
Cheng, A.W.1
-
53
-
-
84908328232
-
A protein-tagging system for signal amplification in gene expression and fluorescence imaging
-
53 Tanenbaum, M.E., et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159 (2014), 635–646.
-
(2014)
Cell
, vol.159
, pp. 635-646
-
-
Tanenbaum, M.E.1
-
54
-
-
84926521955
-
Highly efficient Cas9-mediated transcriptional programming
-
54 Chavez, A., et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12 (2015), 326–328.
-
(2015)
Nat. Methods
, vol.12
, pp. 326-328
-
-
Chavez, A.1
-
55
-
-
84969791285
-
Comparison of Cas9 activators in multiple species
-
55 Chavez, A., et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13 (2016), 563–567.
-
(2016)
Nat. Methods
, vol.13
, pp. 563-567
-
-
Chavez, A.1
-
56
-
-
84920992414
-
Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
-
56 Zalatan, J.G., et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160 (2015), 339–350.
-
(2015)
Cell
, vol.160
, pp. 339-350
-
-
Zalatan, J.G.1
-
57
-
-
84929135130
-
Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
-
57 Hilton, I.B., et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33 (2015), 510–517.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 510-517
-
-
Hilton, I.B.1
-
58
-
-
84928924333
-
Functional annotation of native enhancers with a Cas9-histone demethylase fusion
-
58 Kearns, N.A., et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12 (2015), 401–403.
-
(2015)
Nat. Methods
, vol.12
, pp. 401-403
-
-
Kearns, N.A.1
-
59
-
-
84949100864
-
Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements
-
59 Thakore, P.I., et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12 (2015), 1143–1149.
-
(2015)
Nat. Methods
, vol.12
, pp. 1143-1149
-
-
Thakore, P.I.1
-
60
-
-
84979034770
-
Repurposing the CRISPR-Cas9 system for targeted DNA methylation
-
60 Vojta, A., et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic. Acids Res. 44 (2016), 5615–5628.
-
(2016)
Nucleic. Acids Res.
, vol.44
, pp. 5615-5628
-
-
Vojta, A.1
-
61
-
-
84890460786
-
Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells
-
61 Kearns, N.A., et al. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141 (2014), 219–223.
-
(2014)
Development
, vol.141
, pp. 219-223
-
-
Kearns, N.A.1
-
62
-
-
84930939029
-
Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains
-
62 Shi, J., et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol. 33 (2015), 661–667.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 661-667
-
-
Shi, J.1
-
63
-
-
84957590341
-
Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9
-
63 Korkmaz, G., et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat. Biotechnol. 34 (2016), 192–198.
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 192-198
-
-
Korkmaz, G.1
-
64
-
-
84892765883
-
Genome-scale CRISPR-Cas9 knockout screening in human cells
-
64 Shalem, O., et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343 (2014), 84–87.
-
(2014)
Science
, vol.343
, pp. 84-87
-
-
Shalem, O.1
-
65
-
-
33646070846
-
A bivalent chromatin structure marks key developmental genes in embryonic stem cells
-
65 Bernstein, B.E., et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125 (2006), 315–326.
-
(2006)
Cell
, vol.125
, pp. 315-326
-
-
Bernstein, B.E.1
-
66
-
-
84900861730
-
High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells
-
66 Zhou, Y., et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509 (2014), 487–491.
-
(2014)
Nature
, vol.509
, pp. 487-491
-
-
Zhou, Y.1
-
67
-
-
84925008880
-
Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis
-
67 Chen, S., et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160 (2015), 1246–1260.
-
(2015)
Cell
, vol.160
, pp. 1246-1260
-
-
Chen, S.1
-
68
-
-
84938744950
-
A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks
-
68 Parnas, O., et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162 (2015), 675–686.
-
(2015)
Cell
, vol.162
, pp. 675-686
-
-
Parnas, O.1
-
69
-
-
84959418862
-
Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM
-
69 Wong, A.S., et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc. Natl. Acad. Sci. U.S.A. 113 (2016), 2544–2549.
-
(2016)
Proc. Natl. Acad. Sci. U.S.A.
, vol.113
, pp. 2544-2549
-
-
Wong, A.S.1
-
70
-
-
84974622979
-
CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes
-
70 Evers, B., et al. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat. Biotechnol. 34 (2016), 631–633.
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 631-633
-
-
Evers, B.1
-
71
-
-
84974588043
-
Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes
-
71 Morgens, D.W., et al. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat. Biotechnol. 34 (2016), 634–636.
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 634-636
-
-
Morgens, D.W.1
-
72
-
-
84939443783
-
Enzymatically generated CRISPR libraries for genome labeling and screening
-
72 Lane, A.B., et al. Enzymatically generated CRISPR libraries for genome labeling and screening. Dev Cell 34 (2015), 373–378.
-
(2015)
Dev Cell
, vol.34
, pp. 373-378
-
-
Lane, A.B.1
-
73
-
-
84881475586
-
Heritable genome editing in C. elegans via a CRISPR-Cas9 system
-
73 Friedland, A.E., et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods 10 (2013), 741–743.
-
(2013)
Nat. Methods
, vol.10
, pp. 741-743
-
-
Friedland, A.E.1
-
74
-
-
84892437994
-
Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
-
74 Bassett, A.R., et al. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 4 (2013), 220–228.
-
(2013)
Cell Rep.
, vol.4
, pp. 220-228
-
-
Bassett, A.R.1
-
75
-
-
84882788354
-
Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system
-
75 Jao, L.E., et al. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 13904–13909.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 13904-13909
-
-
Jao, L.E.1
-
76
-
-
84876409836
-
Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos
-
76 Chang, N., et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 23 (2013), 465–472.
-
(2013)
Cell Res.
, vol.23
, pp. 465-472
-
-
Chang, N.1
-
77
-
-
84883779087
-
Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems
-
77 Li, W., et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol. 31 (2013), 684–686.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 684-686
-
-
Li, W.1
-
78
-
-
84964692641
-
Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9
-
78 Lv, Q., et al. Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9. Sci. Rep., 6, 2016, 25029.
-
(2016)
Sci. Rep.
, vol.6
, pp. 25029
-
-
Lv, Q.1
-
79
-
-
84988233630
-
Generation of multi-gene knockout rabbits using the Cas9/gRNA system
-
79 Yan, Q., et al. Generation of multi-gene knockout rabbits using the Cas9/gRNA system. Cell Regen. (Lond)., 3, 2014, 12.
-
(2014)
Cell Regen. (Lond).
, vol.3
, pp. 12
-
-
Yan, Q.1
-
80
-
-
84941206117
-
Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system
-
80 Wang, X., et al. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci. Rep., 5, 2015, 13878.
-
(2015)
Sci. Rep.
, vol.5
, pp. 13878
-
-
Wang, X.1
-
81
-
-
84942887576
-
Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes
-
81 Crispo, M., et al. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS ONE, 10, 2015, e0136690.
-
(2015)
PLoS ONE
, vol.10
, pp. e0136690
-
-
Crispo, M.1
-
82
-
-
84975677837
-
Generation of gene-target dogs using CRISPR/Cas9 system
-
82 Zou, Q., et al. Generation of gene-target dogs using CRISPR/Cas9 system. J. Mol. Cell Biol. 7 (2015), 580–583.
-
(2015)
J. Mol. Cell Biol.
, vol.7
, pp. 580-583
-
-
Zou, Q.1
-
83
-
-
84946917339
-
Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 System
-
83 Wang, K., et al. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 System. Sci. Rep., 5, 2015, 16623.
-
(2015)
Sci. Rep.
, vol.5
, pp. 16623
-
-
Wang, K.1
-
84
-
-
84894081986
-
Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos
-
84 Niu, Y., et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156 (2014), 836–843.
-
(2014)
Cell
, vol.156
, pp. 836-843
-
-
Niu, Y.1
-
85
-
-
84877707375
-
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
-
85 Wang, H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153 (2013), 910–918.
-
(2013)
Cell
, vol.153
, pp. 910-918
-
-
Wang, H.1
-
86
-
-
84884289608
-
One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering
-
86 Yang, H., et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154 (2013), 1370–1379.
-
(2013)
Cell
, vol.154
, pp. 1370-1379
-
-
Yang, H.1
-
87
-
-
84912101598
-
CRISPR-Cas9 knockin mice for genome editing and cancer modeling
-
87 Platt, R.J., et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159 (2014), 440–455.
-
(2014)
Cell
, vol.159
, pp. 440-455
-
-
Platt, R.J.1
-
88
-
-
84938151244
-
Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing
-
88 Chiou, S.H., et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes. Dev. 29 (2015), 1576–1585.
-
(2015)
Genes. Dev.
, vol.29
, pp. 1576-1585
-
-
Chiou, S.H.1
-
89
-
-
84926061715
-
In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9
-
89 Swiech, L., et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 33 (2015), 102–106.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 102-106
-
-
Swiech, L.1
-
90
-
-
84923118778
-
Rapid modelling of cooperating genetic events in cancer through somatic genome editing
-
90 Sanchez-Rivera, F.J., et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516 (2014), 428–431.
-
(2014)
Nature
, vol.516
, pp. 428-431
-
-
Sanchez-Rivera, F.J.1
-
91
-
-
84908190503
-
CRISPR-mediated direct mutation of cancer genes in the mouse liver
-
91 Xue, W., et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514 (2014), 380–384.
-
(2014)
Nature
, vol.514
, pp. 380-384
-
-
Xue, W.1
-
92
-
-
33846283384
-
Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions
-
92 Lanctot, C., et al. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 8 (2007), 104–115.
-
(2007)
Nat. Rev. Genet.
, vol.8
, pp. 104-115
-
-
Lanctot, C.1
-
93
-
-
84894063115
-
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
-
93 Chen, B., et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155 (2013), 1479–1491.
-
(2013)
Cell
, vol.155
, pp. 1479-1491
-
-
Chen, B.1
-
94
-
-
84920389030
-
Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system
-
94 Anton, T., et al. Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 5 (2014), 163–172.
-
(2014)
Nucleus
, vol.5
, pp. 163-172
-
-
Anton, T.1
-
95
-
-
84924347318
-
Multicolor CRISPR labeling of chromosomal loci in human cells
-
95 Ma, H., et al. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 3002–3007.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 3002-3007
-
-
Ma, H.1
-
96
-
-
84942845731
-
CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells
-
96 Deng, W., et al. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 11870–11875.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 11870-11875
-
-
Deng, W.1
-
97
-
-
84928141099
-
CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super–resolution microscopy of living human cells
-
97 Ratz, M., et al. CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super–resolution microscopy of living human cells. Sci. Rep., 5, 2015, 9592.
-
(2015)
Sci. Rep.
, vol.5
, pp. 9592
-
-
Ratz, M.1
-
98
-
-
84961654781
-
Versatile protein tagging in cells with split fluorescent protein
-
98 Kamiyama, D., et al. Versatile protein tagging in cells with split fluorescent protein. Nat. Commun., 7, 2016, 11046.
-
(2016)
Nat. Commun.
, vol.7
, pp. 11046
-
-
Kamiyama, D.1
-
99
-
-
84961226910
-
Programmable RNA tracking in live cells with CRISPR/Cas9
-
99 Nelles, D.A., et al. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165 (2016), 488–496.
-
(2016)
Cell
, vol.165
, pp. 488-496
-
-
Nelles, D.A.1
-
100
-
-
84974576984
-
Whole-organism lineage tracing by combinatorial and cumulative genome editing
-
100 McKenna, A., et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science, 353, 2016, aaf7907.
-
(2016)
Science
, vol.353
, pp. aaf7907
-
-
McKenna, A.1
-
101
-
-
84975270845
-
Molecular recordings by directed CRISPR spacer acquisition
-
101 Shipman, S.L., et al. Molecular recordings by directed CRISPR spacer acquisition. Science, 353, 2016, aaf1175.
-
(2016)
Science
, vol.353
, pp. aaf1175
-
-
Shipman, S.L.1
-
102
-
-
84922735816
-
In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system
-
102 Maddalo, D., et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516 (2014), 423–427.
-
(2014)
Nature
, vol.516
, pp. 423-427
-
-
Maddalo, D.1
-
103
-
-
84899490344
-
Targeted genomic rearrangements using CRISPR/Cas technology
-
103 Choi, P.S., Meyerson, M., Targeted genomic rearrangements using CRISPR/Cas technology. Nat. Commun., 5, 2014, 3728.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3728
-
-
Choi, P.S.1
Meyerson, M.2
-
104
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases
-
104 Hsu, P.D., et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31 (2013), 827–832.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 827-832
-
-
Hsu, P.D.1
-
105
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
105 Fu, Y., et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31 (2013), 822–826.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 822-826
-
-
Fu, Y.1
-
106
-
-
84875754465
-
Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing
-
106 Crosetto, N., et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 10 (2013), 361–365.
-
(2013)
Nat. Methods
, vol.10
, pp. 361-365
-
-
Crosetto, N.1
-
107
-
-
84923266604
-
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
-
107 Tsai, S.Q., et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33 (2015), 187–197.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 187-197
-
-
Tsai, S.Q.1
-
108
-
-
84902210542
-
Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
-
108 Guilinger, J.P., et al. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32 (2014), 577–582.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 577-582
-
-
Guilinger, J.P.1
-
109
-
-
84902204289
-
Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
-
109 Tsai, S.Q., et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32 (2014), 569–576.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 569-576
-
-
Tsai, S.Q.1
-
110
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
110 Fu, Y., et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32 (2014), 279–284.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 279-284
-
-
Fu, Y.1
-
111
-
-
84937764361
-
Small molecule-triggered Cas9 protein with improved genome-editing specificity
-
111 Davis, K.M., et al. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11 (2015), 316–318.
-
(2015)
Nat. Chem. Biol.
, vol.11
, pp. 316-318
-
-
Davis, K.M.1
-
112
-
-
84952943845
-
Rationally engineered Cas9 nucleases with improved specificity
-
112 Slaymaker, I.M., et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351 (2016), 84–88.
-
(2016)
Science
, vol.351
, pp. 84-88
-
-
Slaymaker, I.M.1
-
113
-
-
84963941043
-
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
-
113 Kleinstiver, B.P., et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529 (2016), 490–495.
-
(2016)
Nature
, vol.529
, pp. 490-495
-
-
Kleinstiver, B.P.1
-
114
-
-
84961340697
-
Newly characterized region of CP190 associates with microtubules and mediates proper spindle morphology in Drosophila stem cells
-
114 Plevock, K.M., et al. Newly characterized region of CP190 associates with microtubules and mediates proper spindle morphology in Drosophila stem cells. PLoS ONE, 10, 2015, e0144174.
-
(2015)
PLoS ONE
, vol.10
, pp. e0144174
-
-
Plevock, K.M.1
-
115
-
-
84982812274
-
Activity of Menkes Disease protein ATP7A is essential for redox balance in mitochondria
-
115 Bhattacharjee, A., et al. Activity of Menkes Disease protein ATP7A is essential for redox balance in mitochondria. J. Biol. Chem. 291 (2016), 16644–16658.
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 16644-16658
-
-
Bhattacharjee, A.1
-
116
-
-
84944721159
-
FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation
-
116 Popow, J., et al. FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation. RNA 21 (2015), 1873–1884.
-
(2015)
RNA
, vol.21
, pp. 1873-1884
-
-
Popow, J.1
-
117
-
-
84940830979
-
FTO obesity variant circuitry and adipocyte browning in humans
-
117 Claussnitzer, M., et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373 (2015), 895–907.
-
(2015)
N. Engl. J. Med.
, vol.373
, pp. 895-907
-
-
Claussnitzer, M.1
-
118
-
-
84938232611
-
An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
-
118 Birsoy, K., et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162 (2015), 540–551.
-
(2015)
Cell
, vol.162
, pp. 540-551
-
-
Birsoy, K.1
-
119
-
-
84939152599
-
Transcription factor ATF4 induces NLRP1 inflammasome expression during endoplasmic reticulum stress
-
119 D'Osualdo, A., et al. Transcription factor ATF4 induces NLRP1 inflammasome expression during endoplasmic reticulum stress. PLoS ONE, 10, 2015, e0130635.
-
(2015)
PLoS ONE
, vol.10
, pp. e0130635
-
-
D'Osualdo, A.1
-
120
-
-
84930649002
-
A functional link between the co-translational protein translocation pathway and the UPR
-
120 Plumb, R., et al. A functional link between the co-translational protein translocation pathway and the UPR. Elife, 4, 2015, e07426.
-
(2015)
Elife
, vol.4
, pp. e07426
-
-
Plumb, R.1
-
121
-
-
84959378162
-
An Asp-CaM complex is required for centrosome-pole cohesion and centrosome inheritance in neural stem cells
-
121 Schoborg, T., et al. An Asp-CaM complex is required for centrosome-pole cohesion and centrosome inheritance in neural stem cells. J. Cell Biol. 211 (2015), 987–998.
-
(2015)
J. Cell Biol.
, vol.211
, pp. 987-998
-
-
Schoborg, T.1
-
122
-
-
84948702864
-
Glycosylation inhibition reduces cholesterol accumulation in NPC1 protein-deficient cells
-
122 Li, J., et al. Glycosylation inhibition reduces cholesterol accumulation in NPC1 protein-deficient cells. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 14876–14881.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 14876-14881
-
-
Li, J.1
-
123
-
-
84920949832
-
Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site
-
123 Fuchs, G., et al. Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 319–325.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 319-325
-
-
Fuchs, G.1
-
124
-
-
84963815220
-
Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus alpha-hemolysin-mediated toxicity
-
124 Virreira Winter, S., et al. Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus alpha-hemolysin-mediated toxicity. Sci. Rep., 6, 2016, 24242.
-
(2016)
Sci. Rep.
, vol.6
, pp. 24242
-
-
Virreira Winter, S.1
|