메뉴 건너뛰기




Volumn 26, Issue 11, 2016, Pages 875-888

Applications of CRISPR Genome Engineering in Cell Biology

Author keywords

cell biology; CRISPR Cas9; CRISPRi a; gene editing; gene regulation

Indexed keywords

CRISPR ASSOCIATED PROTEIN; CRISPR ASSOCIATED PROTEIN 9; ENDONUCLEASE; UNCLASSIFIED DRUG; GUIDE RNA;

EID: 84994504451     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2016.08.004     Document Type: Review
Times cited : (65)

References (124)
  • 1
    • 0024328536 scopus 로고
    • Altering the genome by homologous recombination
    • 1 Capecchi, M.R., Altering the genome by homologous recombination. Science 244 (1989), 1288–1292.
    • (1989) Science , vol.244 , pp. 1288-1292
    • Capecchi, M.R.1
  • 2
    • 0024693555 scopus 로고
    • Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae
    • 2 Rudin, N., et al. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122 (1989), 519–534.
    • (1989) Genetics , vol.122 , pp. 519-534
    • Rudin, N.1
  • 3
    • 0034749283 scopus 로고    scopus 로고
    • Stimulation of homologous recombination through targeted cleavage by chimeric nucleases
    • 3 Bibikova, M., et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell Biol. 21 (2001), 289–297.
    • (2001) Mol. Cell Biol. , vol.21 , pp. 289-297
    • Bibikova, M.1
  • 4
    • 0036021389 scopus 로고    scopus 로고
    • Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases
    • 4 Bibikova, M., et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161 (2002), 1169–1175.
    • (2002) Genetics , vol.161 , pp. 1169-1175
    • Bibikova, M.1
  • 5
    • 18944373328 scopus 로고    scopus 로고
    • Highly efficient endogenous human gene correction using designed zinc-finger nucleases
    • 5 Urnov, F.D., et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435 (2005), 646–651.
    • (2005) Nature , vol.435 , pp. 646-651
    • Urnov, F.D.1
  • 6
    • 78951479577 scopus 로고    scopus 로고
    • Targeting DNA double-strand breaks with TAL effector nucleases
    • 6 Christian, M., et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186 (2010), 757–761.
    • (2010) Genetics , vol.186 , pp. 757-761
    • Christian, M.1
  • 7
    • 84879264708 scopus 로고    scopus 로고
    • ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
    • 7 Gaj, T., et al. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31 (2013), 397–405.
    • (2013) Trends Biotechnol. , vol.31 , pp. 397-405
    • Gaj, T.1
  • 8
    • 0033624684 scopus 로고    scopus 로고
    • DNA recognition by Cys2His2 zinc finger proteins
    • 8 Wolfe, S.A., et al. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29 (2000), 183–212.
    • (2000) Annu. Rev. Biophys. Biomol. Struct. , vol.29 , pp. 183-212
    • Wolfe, S.A.1
  • 9
    • 0036168937 scopus 로고    scopus 로고
    • Engineering polydactyl zinc-finger transcription factors
    • 9 Beerli, R.R., Barbas, C.F. 3rd, Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20 (2002), 135–141.
    • (2002) Nat. Biotechnol. , vol.20 , pp. 135-141
    • Beerli, R.R.1    Barbas, C.F.2
  • 10
    • 84882976110 scopus 로고    scopus 로고
    • Optical control of mammalian endogenous transcription and epigenetic states
    • 10 Konermann, S., et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500 (2013), 472–476.
    • (2013) Nature , vol.500 , pp. 472-476
    • Konermann, S.1
  • 11
    • 79751487297 scopus 로고    scopus 로고
    • Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription
    • 11 Zhang, F., et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29 (2011), 149–153.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 149-153
    • Zhang, F.1
  • 12
    • 84884907424 scopus 로고    scopus 로고
    • CRISPR RNA-guided activation of endogenous human genes
    • 12 Maeder, M.L., et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10 (2013), 977–979.
    • (2013) Nat. Methods , vol.10 , pp. 977-979
    • Maeder, M.L.1
  • 13
    • 84857097177 scopus 로고    scopus 로고
    • RNA-guided genetic silencing systems in bacteria and archaea
    • 13 Wiedenheft, B., et al. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482 (2012), 331–338.
    • (2012) Nature , vol.482 , pp. 331-338
    • Wiedenheft, B.1
  • 14
    • 77249170201 scopus 로고    scopus 로고
    • CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea
    • 14 Marraffini, L.A., Sontheimer, E.J., CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11 (2010), 181–190.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 181-190
    • Marraffini, L.A.1    Sontheimer, E.J.2
  • 15
    • 0020368083 scopus 로고
    • Cloning of alkaline phosphatase isozyme gene (iap) of Escherichia coli
    • 15 Nakata, A., et al. Cloning of alkaline phosphatase isozyme gene (iap) of Escherichia coli. Gene 19 (1982), 313–319.
    • (1982) Gene , vol.19 , pp. 313-319
    • Nakata, A.1
  • 16
    • 34047118522 scopus 로고    scopus 로고
    • CRISPR provides acquired resistance against viruses in prokaryotes
    • 16 Barrangou, R., et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 (2007), 1709–1712.
    • (2007) Science , vol.315 , pp. 1709-1712
    • Barrangou, R.1
  • 17
    • 49649114086 scopus 로고    scopus 로고
    • Small CRISPR RNAs guide antiviral defense in prokaryotes
    • 17 Brouns, S.J., et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321 (2008), 960–964.
    • (2008) Science , vol.321 , pp. 960-964
    • Brouns, S.J.1
  • 18
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • 18 Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 (2012), 816–821.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1
  • 19
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • 19 Deltcheva, E., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471 (2011), 602–607.
    • (2011) Nature , vol.471 , pp. 602-607
    • Deltcheva, E.1
  • 20
    • 80755145195 scopus 로고    scopus 로고
    • The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
    • 20 Sapranauskas, R., et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic. Acids Res. 39 (2011), 9275–9282.
    • (2011) Nucleic. Acids Res. , vol.39 , pp. 9275-9282
    • Sapranauskas, R.1
  • 21
    • 75749118174 scopus 로고    scopus 로고
    • Self versus non-self discrimination during CRISPR RNA-directed immunity
    • 21 Marraffini, L.A., Sontheimer, E.J., Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463 (2010), 568–571.
    • (2010) Nature , vol.463 , pp. 568-571
    • Marraffini, L.A.1    Sontheimer, E.J.2
  • 22
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • 22 Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339 (2013), 819–823.
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1
  • 23
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via Cas9
    • 23 Mali, P., et al. RNA-guided human genome engineering via Cas9. Science 339 (2013), 823–826.
    • (2013) Science , vol.339 , pp. 823-826
    • Mali, P.1
  • 24
    • 84876567971 scopus 로고    scopus 로고
    • RNA-programmed genome editing in human cells
    • 24 Jinek, M., et al. RNA-programmed genome editing in human cells. Elife, 2, 2013, e00471.
    • (2013) Elife , vol.2 , pp. e00471
    • Jinek, M.1
  • 25
    • 84874617789 scopus 로고    scopus 로고
    • Efficient genome editing in zebrafish using a CRISPR-Cas system
    • 25 Hwang, W.Y., et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31 (2013), 227–229.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 227-229
    • Hwang, W.Y.1
  • 26
    • 84874624936 scopus 로고    scopus 로고
    • Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
    • 26 Cho, S.W., et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31 (2013), 230–232.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 230-232
    • Cho, S.W.1
  • 27
    • 84944449180 scopus 로고    scopus 로고
    • An updated evolutionary classification of CRISPR-Cas systems
    • 27 Makarova, K.S., et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13 (2015), 722–736.
    • (2015) Nat. Rev. Microbiol. , vol.13 , pp. 722-736
    • Makarova, K.S.1
  • 28
    • 84902095351 scopus 로고    scopus 로고
    • Classification and evolution of type II CRISPR-Cas systems
    • 28 Chylinski, K., et al. Classification and evolution of type II CRISPR-Cas systems. Nucleic. Acids Res. 42 (2014), 6091–6105.
    • (2014) Nucleic. Acids Res. , vol.42 , pp. 6091-6105
    • Chylinski, K.1
  • 29
    • 84866859751 scopus 로고    scopus 로고
    • Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
    • 29 Gasiunas, G., et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), E2579–E2586.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. E2579-E2586
    • Gasiunas, G.1
  • 30
    • 84927514894 scopus 로고    scopus 로고
    • In vivo genome editing using Staphylococcus aureus Cas9
    • 30 Ran, F.A., et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520 (2015), 186–191.
    • (2015) Nature , vol.520 , pp. 186-191
    • Ran, F.A.1
  • 31
    • 84878193178 scopus 로고    scopus 로고
    • Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis
    • 31 Zhang, Y., et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50 (2013), 488–503.
    • (2013) Mol. Cell , vol.50 , pp. 488-503
    • Zhang, Y.1
  • 32
    • 84884160273 scopus 로고    scopus 로고
    • CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
    • 32 Mali, P., et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31 (2013), 833–838.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 833-838
    • Mali, P.1
  • 33
    • 84877782955 scopus 로고    scopus 로고
    • A CRISPR/Cas system mediates bacterial innate immune evasion and virulence
    • 33 Sampson, T.R., et al. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497 (2013), 254–257.
    • (2013) Nature , vol.497 , pp. 254-257
    • Sampson, T.R.1
  • 34
    • 84959440451 scopus 로고    scopus 로고
    • Structure and engineering of Francisella novicida Cas9
    • 34 Hirano, H., et al. Structure and engineering of Francisella novicida Cas9. Cell 164 (2016), 950–961.
    • (2016) Cell , vol.164 , pp. 950-961
    • Hirano, H.1
  • 35
    • 70449753811 scopus 로고    scopus 로고
    • RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
    • 35 Hale, C.R., et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139 (2009), 945–956.
    • (2009) Cell , vol.139 , pp. 945-956
    • Hale, C.R.1
  • 36
    • 84856792673 scopus 로고    scopus 로고
    • Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs
    • 36 Hale, C.R., et al. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol. Cell 45 (2012), 292–302.
    • (2012) Mol. Cell , vol.45 , pp. 292-302
    • Hale, C.R.1
  • 37
    • 84975678715 scopus 로고    scopus 로고
    • Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
    • 37 Zetsche, B., et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163 (2015), 759–771.
    • (2015) Cell , vol.163 , pp. 759-771
    • Zetsche, B.1
  • 38
    • 84963973892 scopus 로고    scopus 로고
    • Crystal structure of Cpf1 in complex with guide RNA and target DNA
    • 38 Yamano, T., et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165 (2016), 949–962.
    • (2016) Cell , vol.165 , pp. 949-962
    • Yamano, T.1
  • 39
    • 84964831029 scopus 로고    scopus 로고
    • The crystal structure of Cpf1 in complex with CRISPR RNA
    • 39 Dong, D., et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532 (2016), 522–526.
    • (2016) Nature , vol.532 , pp. 522-526
    • Dong, D.1
  • 40
    • 84964862130 scopus 로고    scopus 로고
    • The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
    • 40 Fonfara, I., et al. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532 (2016), 517–521.
    • (2016) Nature , vol.532 , pp. 517-521
    • Fonfara, I.1
  • 41
    • 84974606818 scopus 로고    scopus 로고
    • C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
    • 41 Abudayyeh, O.O., et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353, 2016, aaf5573.
    • (2016) Science , vol.353 , pp. aaf5573
    • Abudayyeh, O.O.1
  • 42
    • 84884288934 scopus 로고    scopus 로고
    • Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
    • 42 Ran, F.A., et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154 (2013), 1380–1389.
    • (2013) Cell , vol.154 , pp. 1380-1389
    • Ran, F.A.1
  • 43
    • 84971006562 scopus 로고    scopus 로고
    • Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
    • 43 Komor, A.C., et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533 (2016), 420–424.
    • (2016) Nature , vol.533 , pp. 420-424
    • Komor, A.C.1
  • 44
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
    • 44 Qi, L.S., et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152 (2013), 1173–1183.
    • (2013) Cell , vol.152 , pp. 1173-1183
    • Qi, L.S.1
  • 45
    • 84969916078 scopus 로고    scopus 로고
    • A comprehensive, CRISPR-based functional analysis of essential genes in bacteria
    • 45 Peters, J.M., et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165 (2016), 1493–1506.
    • (2016) Cell , vol.165 , pp. 1493-1506
    • Peters, J.M.1
  • 46
    • 84880571335 scopus 로고    scopus 로고
    • CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
    • 46 Gilbert, L.A., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154 (2013), 442–451.
    • (2013) Cell , vol.154 , pp. 442-451
    • Gilbert, L.A.1
  • 47
    • 84908352138 scopus 로고    scopus 로고
    • Genome-scale CRISPR-mediated control of gene repression and activation
    • 47 Gilbert, L.A., et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159 (2014), 647–661.
    • (2014) Cell , vol.159 , pp. 647-661
    • Gilbert, L.A.1
  • 48
    • 84923096541 scopus 로고    scopus 로고
    • Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
    • 48 Konermann, S., et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517 (2015), 583–588.
    • (2015) Nature , vol.517 , pp. 583-588
    • Konermann, S.1
  • 49
    • 84886993480 scopus 로고    scopus 로고
    • CRISPR interference (CRISPRi) for sequence-specific control of gene expression
    • 49 Larson, M.H., et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8 (2013), 2180–2196.
    • (2013) Nat. Protoc. , vol.8 , pp. 2180-2196
    • Larson, M.H.1
  • 50
    • 84893819419 scopus 로고    scopus 로고
    • Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system
    • 50 Zhao, Y., et al. Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci. Rep., 4, 2014, 3943.
    • (2014) Sci. Rep. , vol.4 , pp. 3943
    • Zhao, Y.1
  • 51
    • 84884906690 scopus 로고    scopus 로고
    • RNA-guided gene activation by CRISPR-Cas9-based transcription factors
    • 51 Perez-Pinera, P., et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10 (2013), 973–976.
    • (2013) Nat. Methods , vol.10 , pp. 973-976
    • Perez-Pinera, P.1
  • 52
    • 84885180675 scopus 로고    scopus 로고
    • Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system
    • 52 Cheng, A.W., et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23 (2013), 1163–1171.
    • (2013) Cell Res. , vol.23 , pp. 1163-1171
    • Cheng, A.W.1
  • 53
    • 84908328232 scopus 로고    scopus 로고
    • A protein-tagging system for signal amplification in gene expression and fluorescence imaging
    • 53 Tanenbaum, M.E., et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159 (2014), 635–646.
    • (2014) Cell , vol.159 , pp. 635-646
    • Tanenbaum, M.E.1
  • 54
    • 84926521955 scopus 로고    scopus 로고
    • Highly efficient Cas9-mediated transcriptional programming
    • 54 Chavez, A., et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12 (2015), 326–328.
    • (2015) Nat. Methods , vol.12 , pp. 326-328
    • Chavez, A.1
  • 55
    • 84969791285 scopus 로고    scopus 로고
    • Comparison of Cas9 activators in multiple species
    • 55 Chavez, A., et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13 (2016), 563–567.
    • (2016) Nat. Methods , vol.13 , pp. 563-567
    • Chavez, A.1
  • 56
    • 84920992414 scopus 로고    scopus 로고
    • Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
    • 56 Zalatan, J.G., et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160 (2015), 339–350.
    • (2015) Cell , vol.160 , pp. 339-350
    • Zalatan, J.G.1
  • 57
    • 84929135130 scopus 로고    scopus 로고
    • Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
    • 57 Hilton, I.B., et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33 (2015), 510–517.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 510-517
    • Hilton, I.B.1
  • 58
    • 84928924333 scopus 로고    scopus 로고
    • Functional annotation of native enhancers with a Cas9-histone demethylase fusion
    • 58 Kearns, N.A., et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12 (2015), 401–403.
    • (2015) Nat. Methods , vol.12 , pp. 401-403
    • Kearns, N.A.1
  • 59
    • 84949100864 scopus 로고    scopus 로고
    • Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements
    • 59 Thakore, P.I., et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12 (2015), 1143–1149.
    • (2015) Nat. Methods , vol.12 , pp. 1143-1149
    • Thakore, P.I.1
  • 60
    • 84979034770 scopus 로고    scopus 로고
    • Repurposing the CRISPR-Cas9 system for targeted DNA methylation
    • 60 Vojta, A., et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic. Acids Res. 44 (2016), 5615–5628.
    • (2016) Nucleic. Acids Res. , vol.44 , pp. 5615-5628
    • Vojta, A.1
  • 61
    • 84890460786 scopus 로고    scopus 로고
    • Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells
    • 61 Kearns, N.A., et al. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141 (2014), 219–223.
    • (2014) Development , vol.141 , pp. 219-223
    • Kearns, N.A.1
  • 62
    • 84930939029 scopus 로고    scopus 로고
    • Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains
    • 62 Shi, J., et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol. 33 (2015), 661–667.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 661-667
    • Shi, J.1
  • 63
    • 84957590341 scopus 로고    scopus 로고
    • Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9
    • 63 Korkmaz, G., et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat. Biotechnol. 34 (2016), 192–198.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 192-198
    • Korkmaz, G.1
  • 64
    • 84892765883 scopus 로고    scopus 로고
    • Genome-scale CRISPR-Cas9 knockout screening in human cells
    • 64 Shalem, O., et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343 (2014), 84–87.
    • (2014) Science , vol.343 , pp. 84-87
    • Shalem, O.1
  • 65
    • 33646070846 scopus 로고    scopus 로고
    • A bivalent chromatin structure marks key developmental genes in embryonic stem cells
    • 65 Bernstein, B.E., et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125 (2006), 315–326.
    • (2006) Cell , vol.125 , pp. 315-326
    • Bernstein, B.E.1
  • 66
    • 84900861730 scopus 로고    scopus 로고
    • High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells
    • 66 Zhou, Y., et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509 (2014), 487–491.
    • (2014) Nature , vol.509 , pp. 487-491
    • Zhou, Y.1
  • 67
    • 84925008880 scopus 로고    scopus 로고
    • Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis
    • 67 Chen, S., et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160 (2015), 1246–1260.
    • (2015) Cell , vol.160 , pp. 1246-1260
    • Chen, S.1
  • 68
    • 84938744950 scopus 로고    scopus 로고
    • A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks
    • 68 Parnas, O., et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162 (2015), 675–686.
    • (2015) Cell , vol.162 , pp. 675-686
    • Parnas, O.1
  • 69
    • 84959418862 scopus 로고    scopus 로고
    • Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM
    • 69 Wong, A.S., et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc. Natl. Acad. Sci. U.S.A. 113 (2016), 2544–2549.
    • (2016) Proc. Natl. Acad. Sci. U.S.A. , vol.113 , pp. 2544-2549
    • Wong, A.S.1
  • 70
    • 84974622979 scopus 로고    scopus 로고
    • CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes
    • 70 Evers, B., et al. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat. Biotechnol. 34 (2016), 631–633.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 631-633
    • Evers, B.1
  • 71
    • 84974588043 scopus 로고    scopus 로고
    • Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes
    • 71 Morgens, D.W., et al. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat. Biotechnol. 34 (2016), 634–636.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 634-636
    • Morgens, D.W.1
  • 72
    • 84939443783 scopus 로고    scopus 로고
    • Enzymatically generated CRISPR libraries for genome labeling and screening
    • 72 Lane, A.B., et al. Enzymatically generated CRISPR libraries for genome labeling and screening. Dev Cell 34 (2015), 373–378.
    • (2015) Dev Cell , vol.34 , pp. 373-378
    • Lane, A.B.1
  • 73
    • 84881475586 scopus 로고    scopus 로고
    • Heritable genome editing in C. elegans via a CRISPR-Cas9 system
    • 73 Friedland, A.E., et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods 10 (2013), 741–743.
    • (2013) Nat. Methods , vol.10 , pp. 741-743
    • Friedland, A.E.1
  • 74
    • 84892437994 scopus 로고    scopus 로고
    • Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
    • 74 Bassett, A.R., et al. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 4 (2013), 220–228.
    • (2013) Cell Rep. , vol.4 , pp. 220-228
    • Bassett, A.R.1
  • 75
    • 84882788354 scopus 로고    scopus 로고
    • Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system
    • 75 Jao, L.E., et al. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 13904–13909.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 13904-13909
    • Jao, L.E.1
  • 76
    • 84876409836 scopus 로고    scopus 로고
    • Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos
    • 76 Chang, N., et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 23 (2013), 465–472.
    • (2013) Cell Res. , vol.23 , pp. 465-472
    • Chang, N.1
  • 77
    • 84883779087 scopus 로고    scopus 로고
    • Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems
    • 77 Li, W., et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol. 31 (2013), 684–686.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 684-686
    • Li, W.1
  • 78
    • 84964692641 scopus 로고    scopus 로고
    • Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9
    • 78 Lv, Q., et al. Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9. Sci. Rep., 6, 2016, 25029.
    • (2016) Sci. Rep. , vol.6 , pp. 25029
    • Lv, Q.1
  • 79
    • 84988233630 scopus 로고    scopus 로고
    • Generation of multi-gene knockout rabbits using the Cas9/gRNA system
    • 79 Yan, Q., et al. Generation of multi-gene knockout rabbits using the Cas9/gRNA system. Cell Regen. (Lond)., 3, 2014, 12.
    • (2014) Cell Regen. (Lond). , vol.3 , pp. 12
    • Yan, Q.1
  • 80
    • 84941206117 scopus 로고    scopus 로고
    • Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system
    • 80 Wang, X., et al. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci. Rep., 5, 2015, 13878.
    • (2015) Sci. Rep. , vol.5 , pp. 13878
    • Wang, X.1
  • 81
    • 84942887576 scopus 로고    scopus 로고
    • Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes
    • 81 Crispo, M., et al. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS ONE, 10, 2015, e0136690.
    • (2015) PLoS ONE , vol.10 , pp. e0136690
    • Crispo, M.1
  • 82
    • 84975677837 scopus 로고    scopus 로고
    • Generation of gene-target dogs using CRISPR/Cas9 system
    • 82 Zou, Q., et al. Generation of gene-target dogs using CRISPR/Cas9 system. J. Mol. Cell Biol. 7 (2015), 580–583.
    • (2015) J. Mol. Cell Biol. , vol.7 , pp. 580-583
    • Zou, Q.1
  • 83
    • 84946917339 scopus 로고    scopus 로고
    • Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 System
    • 83 Wang, K., et al. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 System. Sci. Rep., 5, 2015, 16623.
    • (2015) Sci. Rep. , vol.5 , pp. 16623
    • Wang, K.1
  • 84
    • 84894081986 scopus 로고    scopus 로고
    • Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos
    • 84 Niu, Y., et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156 (2014), 836–843.
    • (2014) Cell , vol.156 , pp. 836-843
    • Niu, Y.1
  • 85
    • 84877707375 scopus 로고    scopus 로고
    • One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
    • 85 Wang, H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153 (2013), 910–918.
    • (2013) Cell , vol.153 , pp. 910-918
    • Wang, H.1
  • 86
    • 84884289608 scopus 로고    scopus 로고
    • One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering
    • 86 Yang, H., et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154 (2013), 1370–1379.
    • (2013) Cell , vol.154 , pp. 1370-1379
    • Yang, H.1
  • 87
    • 84912101598 scopus 로고    scopus 로고
    • CRISPR-Cas9 knockin mice for genome editing and cancer modeling
    • 87 Platt, R.J., et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159 (2014), 440–455.
    • (2014) Cell , vol.159 , pp. 440-455
    • Platt, R.J.1
  • 88
    • 84938151244 scopus 로고    scopus 로고
    • Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing
    • 88 Chiou, S.H., et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes. Dev. 29 (2015), 1576–1585.
    • (2015) Genes. Dev. , vol.29 , pp. 1576-1585
    • Chiou, S.H.1
  • 89
    • 84926061715 scopus 로고    scopus 로고
    • In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9
    • 89 Swiech, L., et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 33 (2015), 102–106.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 102-106
    • Swiech, L.1
  • 90
    • 84923118778 scopus 로고    scopus 로고
    • Rapid modelling of cooperating genetic events in cancer through somatic genome editing
    • 90 Sanchez-Rivera, F.J., et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516 (2014), 428–431.
    • (2014) Nature , vol.516 , pp. 428-431
    • Sanchez-Rivera, F.J.1
  • 91
    • 84908190503 scopus 로고    scopus 로고
    • CRISPR-mediated direct mutation of cancer genes in the mouse liver
    • 91 Xue, W., et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514 (2014), 380–384.
    • (2014) Nature , vol.514 , pp. 380-384
    • Xue, W.1
  • 92
    • 33846283384 scopus 로고    scopus 로고
    • Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions
    • 92 Lanctot, C., et al. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 8 (2007), 104–115.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 104-115
    • Lanctot, C.1
  • 93
    • 84894063115 scopus 로고    scopus 로고
    • Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
    • 93 Chen, B., et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155 (2013), 1479–1491.
    • (2013) Cell , vol.155 , pp. 1479-1491
    • Chen, B.1
  • 94
    • 84920389030 scopus 로고    scopus 로고
    • Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system
    • 94 Anton, T., et al. Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 5 (2014), 163–172.
    • (2014) Nucleus , vol.5 , pp. 163-172
    • Anton, T.1
  • 95
    • 84924347318 scopus 로고    scopus 로고
    • Multicolor CRISPR labeling of chromosomal loci in human cells
    • 95 Ma, H., et al. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 3002–3007.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 3002-3007
    • Ma, H.1
  • 96
    • 84942845731 scopus 로고    scopus 로고
    • CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells
    • 96 Deng, W., et al. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 11870–11875.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 11870-11875
    • Deng, W.1
  • 97
    • 84928141099 scopus 로고    scopus 로고
    • CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super–resolution microscopy of living human cells
    • 97 Ratz, M., et al. CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super–resolution microscopy of living human cells. Sci. Rep., 5, 2015, 9592.
    • (2015) Sci. Rep. , vol.5 , pp. 9592
    • Ratz, M.1
  • 98
    • 84961654781 scopus 로고    scopus 로고
    • Versatile protein tagging in cells with split fluorescent protein
    • 98 Kamiyama, D., et al. Versatile protein tagging in cells with split fluorescent protein. Nat. Commun., 7, 2016, 11046.
    • (2016) Nat. Commun. , vol.7 , pp. 11046
    • Kamiyama, D.1
  • 99
    • 84961226910 scopus 로고    scopus 로고
    • Programmable RNA tracking in live cells with CRISPR/Cas9
    • 99 Nelles, D.A., et al. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165 (2016), 488–496.
    • (2016) Cell , vol.165 , pp. 488-496
    • Nelles, D.A.1
  • 100
    • 84974576984 scopus 로고    scopus 로고
    • Whole-organism lineage tracing by combinatorial and cumulative genome editing
    • 100 McKenna, A., et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science, 353, 2016, aaf7907.
    • (2016) Science , vol.353 , pp. aaf7907
    • McKenna, A.1
  • 101
    • 84975270845 scopus 로고    scopus 로고
    • Molecular recordings by directed CRISPR spacer acquisition
    • 101 Shipman, S.L., et al. Molecular recordings by directed CRISPR spacer acquisition. Science, 353, 2016, aaf1175.
    • (2016) Science , vol.353 , pp. aaf1175
    • Shipman, S.L.1
  • 102
    • 84922735816 scopus 로고    scopus 로고
    • In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system
    • 102 Maddalo, D., et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516 (2014), 423–427.
    • (2014) Nature , vol.516 , pp. 423-427
    • Maddalo, D.1
  • 103
    • 84899490344 scopus 로고    scopus 로고
    • Targeted genomic rearrangements using CRISPR/Cas technology
    • 103 Choi, P.S., Meyerson, M., Targeted genomic rearrangements using CRISPR/Cas technology. Nat. Commun., 5, 2014, 3728.
    • (2014) Nat. Commun. , vol.5 , pp. 3728
    • Choi, P.S.1    Meyerson, M.2
  • 104
    • 84884165315 scopus 로고    scopus 로고
    • DNA targeting specificity of RNA-guided Cas9 nucleases
    • 104 Hsu, P.D., et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31 (2013), 827–832.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 827-832
    • Hsu, P.D.1
  • 105
    • 84880570576 scopus 로고    scopus 로고
    • High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
    • 105 Fu, Y., et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31 (2013), 822–826.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 822-826
    • Fu, Y.1
  • 106
    • 84875754465 scopus 로고    scopus 로고
    • Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing
    • 106 Crosetto, N., et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 10 (2013), 361–365.
    • (2013) Nat. Methods , vol.10 , pp. 361-365
    • Crosetto, N.1
  • 107
    • 84923266604 scopus 로고    scopus 로고
    • GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
    • 107 Tsai, S.Q., et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33 (2015), 187–197.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 187-197
    • Tsai, S.Q.1
  • 108
    • 84902210542 scopus 로고    scopus 로고
    • Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
    • 108 Guilinger, J.P., et al. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32 (2014), 577–582.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 577-582
    • Guilinger, J.P.1
  • 109
    • 84902204289 scopus 로고    scopus 로고
    • Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
    • 109 Tsai, S.Q., et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32 (2014), 569–576.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 569-576
    • Tsai, S.Q.1
  • 110
    • 84896929630 scopus 로고    scopus 로고
    • Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
    • 110 Fu, Y., et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32 (2014), 279–284.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 279-284
    • Fu, Y.1
  • 111
    • 84937764361 scopus 로고    scopus 로고
    • Small molecule-triggered Cas9 protein with improved genome-editing specificity
    • 111 Davis, K.M., et al. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11 (2015), 316–318.
    • (2015) Nat. Chem. Biol. , vol.11 , pp. 316-318
    • Davis, K.M.1
  • 112
    • 84952943845 scopus 로고    scopus 로고
    • Rationally engineered Cas9 nucleases with improved specificity
    • 112 Slaymaker, I.M., et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351 (2016), 84–88.
    • (2016) Science , vol.351 , pp. 84-88
    • Slaymaker, I.M.1
  • 113
    • 84963941043 scopus 로고    scopus 로고
    • High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
    • 113 Kleinstiver, B.P., et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529 (2016), 490–495.
    • (2016) Nature , vol.529 , pp. 490-495
    • Kleinstiver, B.P.1
  • 114
    • 84961340697 scopus 로고    scopus 로고
    • Newly characterized region of CP190 associates with microtubules and mediates proper spindle morphology in Drosophila stem cells
    • 114 Plevock, K.M., et al. Newly characterized region of CP190 associates with microtubules and mediates proper spindle morphology in Drosophila stem cells. PLoS ONE, 10, 2015, e0144174.
    • (2015) PLoS ONE , vol.10 , pp. e0144174
    • Plevock, K.M.1
  • 115
    • 84982812274 scopus 로고    scopus 로고
    • Activity of Menkes Disease protein ATP7A is essential for redox balance in mitochondria
    • 115 Bhattacharjee, A., et al. Activity of Menkes Disease protein ATP7A is essential for redox balance in mitochondria. J. Biol. Chem. 291 (2016), 16644–16658.
    • (2016) J. Biol. Chem. , vol.291 , pp. 16644-16658
    • Bhattacharjee, A.1
  • 116
    • 84944721159 scopus 로고    scopus 로고
    • FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation
    • 116 Popow, J., et al. FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation. RNA 21 (2015), 1873–1884.
    • (2015) RNA , vol.21 , pp. 1873-1884
    • Popow, J.1
  • 117
    • 84940830979 scopus 로고    scopus 로고
    • FTO obesity variant circuitry and adipocyte browning in humans
    • 117 Claussnitzer, M., et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373 (2015), 895–907.
    • (2015) N. Engl. J. Med. , vol.373 , pp. 895-907
    • Claussnitzer, M.1
  • 118
    • 84938232611 scopus 로고    scopus 로고
    • An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
    • 118 Birsoy, K., et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162 (2015), 540–551.
    • (2015) Cell , vol.162 , pp. 540-551
    • Birsoy, K.1
  • 119
    • 84939152599 scopus 로고    scopus 로고
    • Transcription factor ATF4 induces NLRP1 inflammasome expression during endoplasmic reticulum stress
    • 119 D'Osualdo, A., et al. Transcription factor ATF4 induces NLRP1 inflammasome expression during endoplasmic reticulum stress. PLoS ONE, 10, 2015, e0130635.
    • (2015) PLoS ONE , vol.10 , pp. e0130635
    • D'Osualdo, A.1
  • 120
    • 84930649002 scopus 로고    scopus 로고
    • A functional link between the co-translational protein translocation pathway and the UPR
    • 120 Plumb, R., et al. A functional link between the co-translational protein translocation pathway and the UPR. Elife, 4, 2015, e07426.
    • (2015) Elife , vol.4 , pp. e07426
    • Plumb, R.1
  • 121
    • 84959378162 scopus 로고    scopus 로고
    • An Asp-CaM complex is required for centrosome-pole cohesion and centrosome inheritance in neural stem cells
    • 121 Schoborg, T., et al. An Asp-CaM complex is required for centrosome-pole cohesion and centrosome inheritance in neural stem cells. J. Cell Biol. 211 (2015), 987–998.
    • (2015) J. Cell Biol. , vol.211 , pp. 987-998
    • Schoborg, T.1
  • 122
    • 84948702864 scopus 로고    scopus 로고
    • Glycosylation inhibition reduces cholesterol accumulation in NPC1 protein-deficient cells
    • 122 Li, J., et al. Glycosylation inhibition reduces cholesterol accumulation in NPC1 protein-deficient cells. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 14876–14881.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 14876-14881
    • Li, J.1
  • 123
    • 84920949832 scopus 로고    scopus 로고
    • Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site
    • 123 Fuchs, G., et al. Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 319–325.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 319-325
    • Fuchs, G.1
  • 124
    • 84963815220 scopus 로고    scopus 로고
    • Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus alpha-hemolysin-mediated toxicity
    • 124 Virreira Winter, S., et al. Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus alpha-hemolysin-mediated toxicity. Sci. Rep., 6, 2016, 24242.
    • (2016) Sci. Rep. , vol.6 , pp. 24242
    • Virreira Winter, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.