-
1
-
-
0033887456
-
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
-
Frye RA. 2000. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273:793-98
-
(2000)
Biochem. Biophys. Res. Commun.
, vol.273
, pp. 793-798
-
-
Frye, R.A.1
-
2
-
-
84928501080
-
Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity
-
Bosch-Presegue L, Vaquero A. 2015. Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J. 282:1745-67
-
(2015)
FEBS J.
, vol.282
, pp. 1745-1767
-
-
Bosch-Presegue, L.1
Vaquero, A.2
-
3
-
-
84907441244
-
Sirtuins and the circadian clock: Bridging chromatin and metabolism
-
Masri S, Sassone-Corsi P. 2014. Sirtuins and the circadian clock: bridging chromatin and metabolism. Sci. Signal. 7:re6
-
(2014)
Sci. Signal.
, vol.7
, pp. re6
-
-
Masri, S.1
Sassone-Corsi, P.2
-
5
-
-
84882935541
-
Sirtuins' modulation of autophagy
-
Ng F, Tang BL. 2013. Sirtuins' modulation of autophagy. J. Cell. Physiol. 228:2262-70
-
(2013)
J. Cell. Physiol.
, vol.228
, pp. 2262-2270
-
-
Ng, F.1
Tang, B.L.2
-
8
-
-
77949887506
-
Mammalian sirtuins: Biological insights and disease relevance
-
Haigis MC, Sinclair DA. 2010. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. Mech. Dis. 5:253-95
-
(2010)
Annu. Rev. Pathol. Mech. Dis.
, vol.5
, pp. 253-295
-
-
Haigis, M.C.1
Sinclair, D.A.2
-
9
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
Imai S, ArmstrongCM, Kaeberlein M, Guarente L. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795-800
-
(2000)
Nature
, vol.403
, pp. 795-800
-
-
Imai, S.1
Armstrong, C.M.2
Kaeberlein, M.3
Guarente, L.4
-
10
-
-
0034687694
-
Silent information regulator 2 family of NADdependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
-
Tanner KG, Landry J, Sternglanz R, Denu JM. 2000. Silent information regulator 2 family of NADdependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. PNAS 97:14178-82
-
(2000)
PNAS
, vol.97
, pp. 14178-14182
-
-
Tanner, K.G.1
Landry, J.2
Sternglanz, R.3
Denu, J.M.4
-
11
-
-
0034705129
-
The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases
-
Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, et al. 2000. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. PNAS 97:5807-11
-
(2000)
PNAS
, vol.97
, pp. 5807-5811
-
-
Landry, J.1
Sutton, A.2
Tafrov, S.T.3
Heller, R.C.4
Stebbins, J.5
-
12
-
-
3242719545
-
Modulation of NF-?B-dependent transcription and cell survival by the SIRT1 deacetylase
-
Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, et al. 2004. Modulation of NF-?B-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23:2369-80
-
(2004)
EMBO J.
, vol.23
, pp. 2369-2380
-
-
Yeung, F.1
Hoberg, J.E.2
Ramsey, C.S.3
Keller, M.D.4
Jones, D.R.5
-
13
-
-
0035913911
-
Negative control of p53 by Sir2? Promotes cell survival under stress
-
Luo J, Nikolaev AY, Imai S-I, Chen D, Su F, et al. 2001. Negative control of p53 by Sir2? promotes cell survival under stress. Cell 107:137-48
-
(2001)
Cell
, vol.107
, pp. 137-148
-
-
Luo, J.1
Nikolaev, A.Y.2
Imai, S.-I.3
Chen, D.4
Su, F.5
-
14
-
-
0035913903
-
HSIR2SIRT1 functions as an NADdependent p53 deacetylase
-
Vaziri H, Dessain SK, Eaton EN, Imai S-I, Frye RA, et al. 2001. hSIR2SIRT1 functions as an NADdependent p53 deacetylasE. Cell 107:149-59
-
(2001)
Cell
, vol.107
, pp. 149-159
-
-
Vaziri, H.1
Dessain, S.K.2
Eaton, E.N.3
Imai, S.-I.4
Frye, R.A.5
-
15
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1?and SIRT1
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. 2005. Nutrient control of glucose homeostasis through a complex of PGC-1?and SIRT1. Nature 434:113-18
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
16
-
-
12144290563
-
Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
-
Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, et al. 2004. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011-15
-
(2004)
Science
, vol.303
, pp. 2011-2015
-
-
Brunet, A.1
Sweeney, L.B.2
Sturgill, J.F.3
Chua, K.F.4
Greer, P.L.5
-
17
-
-
84903315362
-
Sirtuin inhibitors as anticancer agents
-
Hu J, Jing H, Lin H. 2014. Sirtuin inhibitors as anticancer agents. Future Med. Chem. 6:945-66
-
(2014)
Future Med. Chem.
, vol.6
, pp. 945-966
-
-
Hu, J.1
Jing, H.2
Lin, H.3
-
18
-
-
34248640428
-
Lysine propionylation and butyrylation are novel post-translational modifications in histones
-
Chen Y, Sprung R, Tang Y, Ball H, Sangras B, et al. 2007. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteom. 6:812-19
-
(2007)
Mol. Cell. Proteom.
, vol.6
, pp. 812-819
-
-
Chen, Y.1
Sprung, R.2
Tang, Y.3
Ball, H.4
Sangras, B.5
-
19
-
-
48349112953
-
The role of sirtuin proteins in obesity
-
Metoyer CF, Pruitt K. 2008. The role of sirtuin proteins in obesity. Pathophysiology 15:103-8
-
(2008)
Pathophysiology
, vol.15
, pp. 103-108
-
-
Metoyer, C.F.1
Pruitt, K.2
-
20
-
-
42649146208
-
SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease
-
Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. 2008. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 177:861-70
-
(2008)
Am. J. Respir. Crit. Care Med.
, vol.177
, pp. 861-870
-
-
Rajendrasozhan, S.1
Yang, S.R.2
Kinnula, V.L.3
Rahman, I.4
-
21
-
-
84875881601
-
SIRT6 regulates TNF secretion through hydrolysis of long-chain fatty acyl lysine
-
Jiang H, Khan S, Wang Y, Charron G, He B, et al. 2013. SIRT6 regulates TNF-? secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496:110-13
-
(2013)
Nature
, vol.496
, pp. 110-113
-
-
Jiang, H.1
Khan, S.2
Wang, Y.3
Charron, G.4
He, B.5
-
22
-
-
84881034102
-
A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection
-
Eskandarian HA, Impens F, Nahori MA, Soubigou G, Coppee JY, et al. 2013. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. Science 341:1238858
-
(2013)
Science
, vol.341
, pp. 1238858
-
-
Eskandarian, H.A.1
Impens, F.2
Nahori, M.A.3
Soubigou, G.4
Coppee, J.Y.5
-
23
-
-
84878532308
-
Sirtuin-1 and HIV-1: An overview
-
Pinzone MR, Cacopardo B, Condorelli F, Di Rosa M, Nunnari G. 2013. Sirtuin-1 and HIV-1: An overview. Curr. Drug Targets 14:648-52
-
(2013)
Curr. Drug Targets
, vol.14
, pp. 648-652
-
-
Pinzone, M.R.1
Cacopardo, B.2
Condorelli, F.3
Di Rosa, M.4
Nunnari, G.5
-
24
-
-
84878550919
-
Sirtuins family-recent development as a drug target for aging, metabolism, and age related diseases
-
Chakraborty C, Doss CG. 2013. Sirtuins family-recent development as a drug target for aging, metabolism, and age related diseases. Curr. Drug Targets 14:666-75
-
(2013)
Curr. Drug Targets
, vol.14
, pp. 666-675
-
-
Chakraborty, C.1
Doss, C.G.2
-
25
-
-
0028841317
-
The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability
-
Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, Boeke JD. 1995. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9:2888-902
-
(1995)
Genes Dev.
, vol.9
, pp. 2888-2902
-
-
Brachmann, C.B.1
Sherman, J.M.2
Devine, S.E.3
Cameron, E.E.4
Pillus, L.5
Boeke, J.D.6
-
27
-
-
81055122671
-
Sirt5 is an NAD-dependent protein lysine demalonylase and desuccinylase
-
Du J, Zhou Y, Su X, Yu J, Khan S, et al. 2011. Sirt5 is an NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806-9
-
(2011)
Science
, vol.334
, pp. 806-809
-
-
Du, J.1
Zhou, Y.2
Su, X.3
Yu, J.4
Khan, S.5
-
28
-
-
84862907582
-
Plasmodium falciparum Sir2A preferentially hydrolyzes medium and long chain fatty acyl lysine
-
Zhu AY, Zhou Y, Khan S, Deitsch KW, Hao Q, Lin H. 2012. Plasmodium falciparum Sir2A preferentially hydrolyzes medium and long chain fatty acyl lysine. ACS Chem. Biol. 7:155-59
-
(2012)
ACS Chem. Biol.
, vol.7
, pp. 155-159
-
-
Zhu, A.Y.1
Zhou, Y.2
Khan, S.3
Deitsch, K.W.4
Hao, Q.5
Lin, H.6
-
29
-
-
84886686038
-
Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
-
Feldman JL, Baeza J, Denu JM. 2013. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 288:31350-56
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 31350-31356
-
-
Feldman, J.L.1
Baeza, J.2
Denu, J.M.3
-
30
-
-
84907157670
-
Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors
-
He B, Hu J, Zhang X, Lin H. 2014. Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors. Org. Biomol. Chem. 12:7498-502
-
(2014)
Org. Biomol. Chem.
, vol.12
, pp. 7498-7502
-
-
He, B.1
Hu, J.2
Zhang, X.3
Lin, H.4
-
31
-
-
83055173304
-
The first identification of lysine malonylation substrates and its regulatory enzyme
-
M111. 012658
-
Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, et al. 2011. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteom. 10(12):M111. 012658
-
(2011)
Mol. Cell. Proteom.
, vol.10
, Issue.12
-
-
Peng, C.1
Lu, Z.2
Xie, Z.3
Cheng, Z.4
Chen, Y.5
-
32
-
-
84897565291
-
Lysine glutarylation is a protein posttranslational modification regulated by SIRT5
-
Tan M, Peng C, Anderson KA, Chhoy P, Xie Z, et al. 2014. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 19:605-17
-
(2014)
Cell Metab.
, vol.19
, pp. 605-617
-
-
Tan, M.1
Peng, C.2
Anderson, K.A.3
Chhoy, P.4
Xie, Z.5
-
33
-
-
80052942443
-
Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification
-
Tan M, Luo H, Lee S, Jin F, Yang Jeong S, et al. 2011. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016-28
-
(2011)
Cell
, vol.146
, pp. 1016-1028
-
-
Tan, M.1
Luo, H.2
Lee, S.3
Jin, F.4
Yang Jeong, S.5
-
34
-
-
78650516004
-
Identification of lysine succinylation as a new post-translational modification
-
Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y. 2011. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 7:58-63
-
(2011)
Nat. Chem. Biol.
, vol.7
, pp. 58-63
-
-
Zhang, Z.1
Tan, M.2
Xie, Z.3
Dai, L.4
Chen, Y.5
Zhao, Y.6
-
35
-
-
84880791239
-
SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
-
Park J, Chen Y, Tishkoff DX, Peng C, Tan M, et al. 2013. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50:919-30
-
(2013)
Mol. Cell
, vol.50
, pp. 919-930
-
-
Park, J.1
Chen, Y.2
Tishkoff, D.X.3
Peng, C.4
Tan, M.5
-
36
-
-
84890673317
-
Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli
-
Colak G, Xie Z, Zhu AY, Dai L, Lu Z, et al. 2013. Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. Mol. Cell. Proteom. 12:3509-20
-
(2013)
Mol. Cell. Proteom.
, vol.12
, pp. 3509-3520
-
-
Colak, G.1
Xie, Z.2
Zhu, A.Y.3
Dai, L.4
Lu, Z.5
-
37
-
-
84889636259
-
SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks
-
Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, et al. 2013. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 18:920-33
-
(2013)
Cell Metab.
, vol.18
, pp. 920-933
-
-
Rardin, M.J.1
He, W.2
Nishida, Y.3
Newman, J.C.4
Carrico, C.5
-
39
-
-
84871171710
-
Structural basis for sirtuin activity and inhibition
-
Yuan H, Marmorstein R. 2012. Structural basis for sirtuin activity and inhibition. J. Biol. Chem. 287:42428-35
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 42428-42435
-
-
Yuan, H.1
Marmorstein, R.2
-
40
-
-
0035662888
-
Structure of histone deacetylases: Insights into substrate recognition and catalysis
-
Marmorstein R. 2001. Structure of histone deacetylases: insights into substrate recognition and catalysis. Structure 9:1127-33
-
(2001)
Structure
, vol.9
, pp. 1127-1133
-
-
Marmorstein, R.1
-
41
-
-
0021734287
-
Characterization of two genes required for the position-effect control of yeast mating-type genes
-
Shore D, Squire M, Nasmyth KA. 1984. Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J. 3:2817-23
-
(1984)
EMBO J.
, vol.3
, pp. 2817-2823
-
-
Shore, D.1
Squire, M.2
Nasmyth, K.A.3
-
42
-
-
0033610894
-
CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide: 5, 6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2
-
Tsang AW, Escalante-Semerena JC. 1998. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5, 6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J. Biol. Chem. 273:31788-94
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 31788-31794
-
-
Tsang, A.W.1
Escalante-Semerena, J.C.2
-
43
-
-
0033600176
-
Characterization of five human cDNAs with homology to the yeast Sir2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
-
Frye RA. 1999. Characterization of five human cDNAs with homology to the yeast Sir2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260:273-79
-
(1999)
Biochem. Biophys. Res. Commun.
, vol.260
, pp. 273-279
-
-
Frye, R.A.1
-
44
-
-
0033598942
-
An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing
-
Tanny JC, Dowd GJ, Huang J, Hilz H, Moazed D. 1999. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99:735-45
-
(1999)
Cell
, vol.99
, pp. 735-745
-
-
Tanny, J.C.1
Dowd, G.J.2
Huang, J.3
Hilz, H.4
Moazed, D.5
-
45
-
-
0035951072
-
Chemistry of gene silencing: The mechanism of NAD+-dependent deacetylation reactions
-
Sauve AA, Celic I, Avalos J, Deng H, Boeke JD, Schramm VL. 2001. Chemistry of gene silencing: The mechanism of NAD+-dependent deacetylation reactions. Biochemistry 40:15456-63
-
(2001)
Biochemistry
, vol.40
, pp. 15456-15463
-
-
Sauve, A.A.1
Celic, I.2
Avalos, J.3
Deng, H.4
Boeke, J.D.5
Schramm, V.L.6
-
46
-
-
33748316536
-
SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic?cells
-
Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, et al. 2006. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic?cells. Cell 126:941-54
-
(2006)
Cell
, vol.126
, pp. 941-954
-
-
Haigis, M.C.1
Mostoslavsky, R.2
Haigis, K.M.3
Fahie, K.4
Christodoulou, D.C.5
-
47
-
-
79959363092
-
SIRT6 promotes DNA repair under stress by activating PARP1
-
Mao Z, Hine C, Tian X, Van Meter M, Au M, et al. 2011. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332:1443-46
-
(2011)
Science
, vol.332
, pp. 1443-1446
-
-
Mao, Z.1
Hine, C.2
Tian, X.3
Van Meter, M.4
Au, M.5
-
48
-
-
20444409132
-
Mouse Sir2 homolog SIRT6 is a nuclear ADPribosyltransferase
-
Liszt G, Ford E, Kurtev M, Guarente L. 2005. Mouse Sir2 homolog SIRT6 is a nuclear ADPribosyltransferase. J. Biol. Chem. 280:21313-20
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 21313-21320
-
-
Liszt, G.1
Ford, E.2
Kurtev, M.3
Guarente, L.4
-
49
-
-
26244436281
-
Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
-
Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. 2005. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16:4623-35
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 4623-4635
-
-
Michishita, E.1
Park, J.Y.2
Burneskis, J.M.3
Barrett, J.C.4
Horikawa, I.5
-
50
-
-
41949129135
-
Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2
-
Kowieski TM, Lee S, Denu JM. 2008. Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2. J. Biol. Chem. 283:5317-26
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 5317-5326
-
-
Kowieski, T.M.1
Lee, S.2
Denu, J.M.3
-
51
-
-
65249091951
-
Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogs and 32P-NAD
-
Du J, Jiang H, Lin H. 2009. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogs and 32P-NAD. Biochemistry 48:2878-90
-
(2009)
Biochemistry
, vol.48
, pp. 2878-2890
-
-
Du, J.1
Jiang, H.2
Lin, H.3
-
52
-
-
84862573534
-
Protein lysine acylation and cysteine succination by intermediates of energy metabolism
-
Lin H, Su X, He B. 2012. Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem. Biol. 7:947-60
-
(2012)
ACS Chem. Biol.
, vol.7
, pp. 947-960
-
-
Lin, H.1
Su, X.2
He, B.3
-
53
-
-
84871107379
-
Mitochondrial protein acylation and intermediary metabolism: Regulation by sirtuins and implications for metabolic disease
-
Newman JC, He W, Verdin E. 2012. Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. J. Biol. Chem. 287:42436-43
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 42436-42443
-
-
Newman, J.C.1
He, W.2
Verdin, E.3
-
54
-
-
30144431571
-
Sir2 protein deacetylases: Evidence for chemical intermediates and functions of a conserved histidine
-
Smith BC, Denu JM. 2006. Sir2 protein deacetylases: Evidence for chemical intermediates and functions of a conserved histidine. Biochemistry 45:272-82
-
(2006)
Biochemistry
, vol.45
, pp. 272-282
-
-
Smith, B.C.1
Denu, J.M.2
-
55
-
-
35648935529
-
N-lysine propionylation controls the activity of propionyl-CoA synthetase
-
Garrity J, Gardner JG, Hawse W, Wolberger C, Escalante-Semerena JC. 2007. N-lysine propionylation controls the activity of propionyl-CoA synthetase. J. Biol. Chem. 282:30239-45
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 30239-30245
-
-
Garrity, J.1
Gardner, J.G.2
Hawse, W.3
Wolberger, C.4
Escalante-Semerena, J.C.5
-
56
-
-
84861163510
-
Lysine succinylation and lysine malonylation in histones
-
Xie Z, Dai J, Dai L, Tan M, Cheng Z, et al. 2012. Lysine succinylation and lysine malonylation in histones. Mol. Cell. Proteom. 11:100-7
-
(2012)
Mol. Cell. Proteom.
, vol.11
, pp. 100-107
-
-
Xie, Z.1
Dai, J.2
Dai, L.3
Tan, M.4
Cheng, Z.5
-
57
-
-
0041571570
-
Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry
-
Sauve AA, Schramm VL. 2003. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry 42:9249-56
-
(2003)
Biochemistry
, vol.42
, pp. 9249-9256
-
-
Sauve, A.A.1
Schramm, V.L.2
-
58
-
-
0037166269
-
Structural identification of 2-and 3-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of NAD+-dependent histone/protein deacetylases
-
Jackson MD, Denu JM. 2002. Structural identification of 2-and 3-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of NAD+-dependent histone/protein deacetylases. J. Biol. Chem. 277:18535-44
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 18535-18544
-
-
Jackson, M.D.1
Denu, J.M.2
-
59
-
-
0346435109
-
Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases
-
Jackson MD, Schmidt MT, Oppenheimer NJ, Denu JM. 2003. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. J. Biol. Chem. 278:50985-98
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 50985-50998
-
-
Jackson, M.D.1
Schmidt, M.T.2
Oppenheimer, N.J.3
Denu, J.M.4
-
60
-
-
37349110743
-
Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide
-
Smith BC, Denu JM. 2007. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide. Biochemistry 46:14478-86
-
(2007)
Biochemistry
, vol.46
, pp. 14478-14486
-
-
Smith, B.C.1
Denu, J.M.2
-
61
-
-
50849135494
-
Structural insights into intermediate steps in the Sir2 deacetylation reaction
-
Hawse WF, Hoff KG, Fatkins DG, Daines A, Zubkova OV, et al. 2008. Structural insights into intermediate steps in the Sir2 deacetylation reaction. Structure 16:1368-77
-
(2008)
Structure
, vol.16
, pp. 1368-1377
-
-
Hawse, W.F.1
Hoff, K.G.2
Fatkins, D.G.3
Daines, A.4
Zubkova, O.V.5
-
62
-
-
33745534953
-
Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide
-
Hoff KG, Avalos JL, Sens K, Wolberger C. 2006. Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide. Structure 14:1231-40
-
(2006)
Structure
, vol.14
, pp. 1231-1240
-
-
Hoff, K.G.1
Avalos, J.L.2
Sens, K.3
Wolberger, C.4
-
63
-
-
0242626891
-
Structure of the yeastHst2 protein deacetylase in ternary complex with 2-O-acetyl ADP ribose and histone peptide
-
Zhao K, Chai X, MarmorsteinR. 2003. Structure of the yeastHst2 protein deacetylase in ternary complex with 2-O-acetyl ADP ribose and histone peptide. Structure 11:1403-11
-
(2003)
Structure
, vol.11
, pp. 1403-1411
-
-
Zhao, K.1
Chai, X.2
Marmorstein, R.3
-
64
-
-
0035910031
-
Identification of a small molecule inhibitor of Sir2p
-
Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA. 2001. Identification of a small molecule inhibitor of Sir2p. PNAS 98:15113-18
-
(2001)
PNAS
, vol.98
, pp. 15113-15118
-
-
Bedalov, A.1
Gatbonton, T.2
Irvine, W.P.3
Gottschling, D.E.4
Simon, J.A.5
-
65
-
-
52249090638
-
Plasmodium falciparum Sir2 is anNAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase
-
French JB, Cen Y, Sauve AA. 2008. Plasmodium falciparum Sir2 is anNAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase. Biochemistry 47:10227-39
-
(2008)
Biochemistry
, vol.47
, pp. 10227-10239
-
-
French, J.B.1
Cen, Y.2
Sauve, A.A.3
-
66
-
-
33846113751
-
N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage
-
Jiang T, Zhou X, Taghizadeh K, Dong M, Dedon PC. 2007. N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage. PNAS 104:60-65
-
(2007)
PNAS
, vol.104
, pp. 60-65
-
-
Jiang, T.1
Zhou, X.2
Taghizadeh, K.3
Dong, M.4
Dedon, P.C.5
-
67
-
-
77956246695
-
Transition state of ADP-ribosylation of acetyllysine catalyzed by Archaeoglobus fulgidus Sir2 determined by kinetic isotope effects and computational approaches
-
Cen Y, Sauve AA. 2010. Transition state of ADP-ribosylation of acetyllysine catalyzed by Archaeoglobus fulgidus Sir2 determined by kinetic isotope effects and computational approaches. J. Am. Chem. Soc. 132:12286-98
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 12286-12298
-
-
Cen, Y.1
Sauve, A.A.2
-
68
-
-
77953289094
-
Structural basis for sirtuin function: What we know and what we don't
-
Sanders BD, Jackson B, Marmorstein R. 2010. Structural basis for sirtuin function: what we know and what we don't. Biochim. Biophys. Acta 1804:1604-16
-
(2010)
Biochim. Biophys. Acta
, vol.1804
, pp. 1604-1616
-
-
Sanders, B.D.1
Jackson, B.2
Marmorstein, R.3
-
69
-
-
0018072848
-
The taxonomy of binding sites in proteins
-
Rossmann MG, Argos P. 1978. The taxonomy of binding sites in proteins. Mol. Cell. Biochem. 21:161-82
-
(1978)
Mol. Cell. Biochem.
, vol.21
, pp. 161-182
-
-
Rossmann, M.G.1
Argos, P.2
-
70
-
-
0036753953
-
Structure of a Sir2 enzyme bound to an acetylated p53 peptide
-
Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. 2002. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol. Cell 10:523-35
-
(2002)
Mol. Cell
, vol.10
, pp. 523-535
-
-
Avalos, J.L.1
Celic, I.2
Muhammad, S.3
Cosgrove, M.S.4
Boeke, J.D.5
Wolberger, C.6
-
71
-
-
0035917536
-
Crystal structure of a SIR2 homolog-NAD complex
-
Min J, Landry J, Sternglanz R, Xu R-M. 2001. Crystal structure of a SIR2 homolog-NAD complex. Cell 105:269-79
-
(2001)
Cell
, vol.105
, pp. 269-279
-
-
Min, J.1
Landry, J.2
Sternglanz, R.3
Xu, R.-M.4
-
73
-
-
33745119442
-
The structural basis of sirtuin substrate affinity
-
Cosgrove MS, Bever K, Avalos JL, Muhammad S, Zhang X, Wolberger C. 2006. The structural basis of sirtuin substrate affinity. Biochemistry 45:7511-21
-
(2006)
Biochemistry
, vol.45
, pp. 7511-7521
-
-
Cosgrove, M.S.1
Bever, K.2
Avalos, J.L.3
Muhammad, S.4
Zhang, X.5
Wolberger, C.6
-
74
-
-
1642297558
-
Structural basis for the mechanism and regulation of Sir2 enzymes
-
Avalos J, Boeke JD, Wolberger C. 2004. Structural basis for the mechanism and regulation of Sir2 enzymes. Mol. Cell 13:639-48
-
(2004)
Mol. Cell
, vol.13
, pp. 639-648
-
-
Avalos, J.1
Boeke, J.D.2
Wolberger, C.3
-
75
-
-
0043244921
-
Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state
-
Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, et al. 2003. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol. Cell 12:51-62
-
(2003)
Mol. Cell
, vol.12
, pp. 51-62
-
-
Fulco, M.1
Schiltz, R.L.2
Iezzi, S.3
King, M.T.4
Zhao, P.5
-
76
-
-
1542298916
-
Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli
-
Zhao K, Chai X, Marmorstein R. 2004. Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli. J. Mol. Biol. 337:731-41
-
(2004)
J. Mol. Biol.
, vol.337
, pp. 731-741
-
-
Zhao, K.1
Chai, X.2
Marmorstein, R.3
-
77
-
-
33847635635
-
Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin
-
Schuetz A, Min J, Antoshenko T, Wang C-L, Allali-Hassani A, et al. 2007. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 15:377-89
-
(2007)
Structure
, vol.15
, pp. 377-389
-
-
Schuetz, A.1
Min, J.2
Antoshenko, T.3
Wang, C.-L.4
Allali-Hassani, A.5
-
78
-
-
3343024449
-
Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases
-
Borra MT, Langer MR, Slama JT, Denu JM. 2004. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases. Biochemistry 43:9877-87
-
(2004)
Biochemistry
, vol.43
, pp. 9877-9887
-
-
Borra, M.T.1
Langer, M.R.2
Slama, J.T.3
Denu, J.M.4
-
79
-
-
2942534101
-
Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases
-
Zhao K, Harshaw R, Chai X, Marmorstein R. 2004. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases. PNAS USA 101:8563-68
-
(2004)
PNAS USA
, vol.101
, pp. 8563-8568
-
-
Zhao, K.1
Harshaw, R.2
Chai, X.3
Marmorstein, R.4
-
80
-
-
84865225339
-
The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5)
-
Zhou Y, Zhang H, He B, Du J, Lin H, et al. 2012. The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5). J. Biol. Chem. 287:28307-14
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 28307-28314
-
-
Zhou, Y.1
Zhang, H.2
He, B.3
Du, J.4
Lin, H.5
-
81
-
-
0037023326
-
The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation
-
Bell SD, Botting CH, Wardleworth BN, Jackson SP, White MF. 2002. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 296:148-51
-
(2002)
Science
, vol.296
, pp. 148-151
-
-
Bell, S.D.1
Botting, C.H.2
Wardleworth, B.N.3
Jackson, S.P.4
White, M.F.5
-
82
-
-
0037166274
-
Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels
-
Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Cohen H, et al. 2002. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J. Biol. Chem. 277:18881-90
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 18881-18890
-
-
Anderson, R.M.1
Bitterman, K.J.2
Wood, J.G.3
Medvedik, O.4
Cohen, H.5
-
83
-
-
4544243684
-
Coenzyme specificity of Sir2 protein deacetylases: Implications for physiological regulation
-
SchmidtMT, Smith BC, JacksonMD, Denu JM. 2004. Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J. Biol. Chem. 279:40122-29
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 40122-40129
-
-
Schmidt, M.T.1
Smith, B.C.2
Jackson, M.D.3
Denu, J.M.4
-
84
-
-
0037221445
-
Linking chromatin function with metabolic networks: Sir2 family of NAD+-dependent deacetylases
-
Denu JM. 2003. Linking chromatin function with metabolic networks: Sir2 family of NAD+-dependent deacetylases. Trends Biochem. Sci. 28:41-48
-
(2003)
Trends Biochem. Sci.
, vol.28
, pp. 41-48
-
-
Denu, J.M.1
-
85
-
-
15244355745
-
Mechanism of sirtuin inhibition by nicotinamide: Altering the NAD+ cosubstrate specificity of a Sir2 enzyme
-
Avalos JL, Bever KM, Wolberger C. 2005. Mechanism of sirtuin inhibition by nicotinamide: Altering the NAD+ cosubstrate specificity of a Sir2 enzyme. Mol. Cell 17:855-68
-
(2005)
Mol. Cell
, vol.17
, pp. 855-868
-
-
Avalos, J.L.1
Bever, K.M.2
Wolberger, C.3
-
86
-
-
13944258164
-
Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition
-
Sauve AA, Moir RD, Schramm VL, Willis IM. 2005. Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition. Mol. Cell 17:595-601
-
(2005)
Mol. Cell
, vol.17
, pp. 595-601
-
-
Sauve, A.A.1
Moir, R.D.2
Schramm, V.L.3
Willis, I.M.4
-
87
-
-
0030798245
-
Histone acetylation in chromatin structure and transcription
-
Grunstein M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389:349-52
-
(1997)
Nature
, vol.389
, pp. 349-352
-
-
Grunstein, M.1
-
88
-
-
0347457075
-
Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine
-
Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC. 2002. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390-92
-
(2002)
Science
, vol.298
, pp. 2390-2392
-
-
Starai, V.J.1
Celic, I.2
Cole, R.N.3
Boeke, J.D.4
Escalante-Semerena, J.C.5
-
89
-
-
37549067781
-
Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases
-
Smith BC, Denu JM. 2007. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases. J. Biol. Chem. 282:37256-65
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 37256-37265
-
-
Smith, B.C.1
Denu, J.M.2
-
90
-
-
61849108746
-
Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software
-
Zhang K, Chen Y, Zhang Z, Zhao Y. 2008. Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. J. Proteome Res. 8:900-6
-
(2008)
J. Proteome Res.
, vol.8
, pp. 900-906
-
-
Zhang, K.1
Chen, Y.2
Zhang, Z.3
Zhao, Y.4
-
91
-
-
59149086584
-
Molecular characterization of propionyllysines in non-histone proteins
-
Cheng Z, Tang Y, Chen Y, Kim S, Liu H, et al. 2009. Molecular characterization of propionyllysines in non-histone proteins. Mol. Cell. Proteom. 8:45-52
-
(2009)
Mol. Cell. Proteom.
, vol.8
, pp. 45-52
-
-
Cheng, Z.1
Tang, Y.2
Chen, Y.3
Kim, S.4
Liu, H.5
-
92
-
-
70450277232
-
Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells
-
Liu B, Lin Y, Darwanto A, Song X, Xu G, Zhang K. 2009. Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells. J. Biol. Chem. 284:32288-95
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 32288-32295
-
-
Liu, B.1
Lin, Y.2
Darwanto, A.3
Song, X.4
Xu, G.5
Zhang, K.6
-
93
-
-
50149103440
-
Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
-
Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CFW, Steegborn C. 2008. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 382:790-801
-
(2008)
J. Mol. Biol.
, vol.382
, pp. 790-801
-
-
Schlicker, C.1
Gertz, M.2
Papatheodorou, P.3
Kachholz, B.4
Becker, C.F.W.5
Steegborn, C.6
-
94
-
-
65249087389
-
SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
-
Nakagawa T, Lomb DJ, Haigis MC, Guarente L. 2009. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cyclE. Cell 137:560-70
-
(2009)
Cell
, vol.137
, pp. 560-570
-
-
Nakagawa, T.1
Lomb, D.J.2
Haigis, M.C.3
Guarente, L.4
-
95
-
-
84937517955
-
SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target
-
Nishida Y, Rardin MJ, Carrico C, He W, Sahu AK, et al. 2015. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol. Cell 59:321-32
-
(2015)
Mol. Cell
, vol.59
, pp. 321-332
-
-
Nishida, Y.1
Rardin, M.J.2
Carrico, C.3
He, W.4
Sahu, A.K.5
-
96
-
-
84928979016
-
Alternate deacylating specificities of the archaeal sirtuins Sir2Af1 and Sir2Af2
-
Ringel AE, Roman C, Wolberger C. 2014. Alternate deacylating specificities of the archaeal sirtuins Sir2Af1 and Sir2Af2. Protein Sci. 23:1686-97
-
(2014)
Protein Sci.
, vol.23
, pp. 1686-1697
-
-
Ringel, A.E.1
Roman, C.2
Wolberger, C.3
-
97
-
-
41349090663
-
SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
-
Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, et al. 2008. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492-96
-
(2008)
Nature
, vol.452
, pp. 492-496
-
-
Michishita, E.1
McCord, R.A.2
Berber, E.3
Kioi, M.4
Padilla-Nash, H.5
-
98
-
-
69249221533
-
Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6
-
Michishita E, McCord RA, Boxer LD, Barber MF, Hong T, et al. 2009. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 8:2664-66
-
(2009)
Cell Cycle
, vol.8
, pp. 2664-2666
-
-
Michishita, E.1
McCord, R.A.2
Boxer, L.D.3
Barber, M.F.4
Hong, T.5
-
99
-
-
69249229772
-
The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability
-
Yang B, Zwaans BMM, Eckersdorff M, Lombard DB. 2009. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle 8:2662-63
-
(2009)
Cell Cycle
, vol.8
, pp. 2662-2663
-
-
Yang, B.1
Zwaans, B.M.M.2
Eckersdorff, M.3
Lombard, D.B.4
-
100
-
-
77956550868
-
Human SIRT6 promotes DNA end resection through CtIP deacetylation
-
Kaidi A, Weinert BT, Choudhary C, Jackson SP. 2010. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329:1348-53
-
(2010)
Science
, vol.329
, pp. 1348-1353
-
-
Kaidi, A.1
Weinert, B.T.2
Choudhary, C.3
Jackson, S.P.4
-
101
-
-
78650724968
-
Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity
-
Schwer B, Schumacher B, Lombard DB, Xiao C, Kurtev MV, et al. 2010. Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. PNAS 107:21790-94
-
(2010)
PNAS
, vol.107
, pp. 21790-21794
-
-
Schwer, B.1
Schumacher, B.2
Lombard, D.B.3
Xiao, C.4
Kurtev, M.V.5
-
103
-
-
0026698088
-
Myristyl acylation of the tumor necrosis factor ?precursor on specific lysine residues
-
Stevenson FT, Bursten SL, Locksley RM, Lovett DH. 1992. Myristyl acylation of the tumor necrosis factor ?precursor on specific lysine residues. J. Exp. Med. 176:1053-62
-
(1992)
J. Exp. Med.
, vol.176
, pp. 1053-1062
-
-
Stevenson, F.T.1
Bursten, S.L.2
Locksley, R.M.3
Lovett, D.H.4
-
104
-
-
59649117804
-
Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner
-
Van Gool F, Galli M, Gueydan C, Kruys V, Prevot P-P, et al. 2009. Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nat. Med. 15:206-10
-
(2009)
Nat. Med.
, vol.15
, pp. 206-210
-
-
Van Gool, F.1
Galli, M.2
Gueydan, C.3
Kruys, V.4
Prevot, P.-P.5
-
105
-
-
84923337675
-
Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies
-
Teng Y-B, Jing H, Aramsangtienchai P, He B, Khan S, et al. 2015. Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies. Sci. Rep. 5:8529
-
(2015)
Sci. Rep.
, vol.5
, pp. 8529
-
-
Teng, Y.-B.1
Jing, H.2
Aramsangtienchai, P.3
He, B.4
Khan, S.5
-
106
-
-
84929600711
-
Kinetic and structural basis for acyl-group selectivity and NAD+ dependence in sirtuin-catalyzed deacylation
-
Feldman JL, Dittenhafer-Reed KE, Kudo N, Thelen JN, Ito A, et al. 2015. Kinetic and structural basis for acyl-group selectivity and NAD+ dependence in sirtuin-catalyzed deacylation. Biochemistry 54:3037-50
-
(2015)
Biochemistry
, vol.54
, pp. 3037-3050
-
-
Feldman, J.L.1
Dittenhafer-Reed, K.E.2
Kudo, N.3
Thelen, J.N.4
Ito, A.5
-
107
-
-
84919933749
-
Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity
-
Mathias RA, Greco TM, Oberstein A, Budayeva HG, Chakrabarti R, et al. 2014. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159:1615-25
-
(2014)
Cell
, vol.159
, pp. 1615-1625
-
-
Mathias, R.A.1
Greco, T.M.2
Oberstein, A.3
Budayeva, H.G.4
Chakrabarti, R.5
-
108
-
-
84996553972
-
Identification of 'erasers' for lysine crotonylated histone marks using a chemical proteomics approach
-
Bao X, Wang Y, Li X, Li XM, Liu Z, et al. 2014. Identification of 'erasers' for lysine crotonylated histone marks using a chemical proteomics approach. ELife 3:e02999
-
(2014)
ELife
, vol.3
, pp. e02999
-
-
Bao, X.1
Wang, Y.2
Li, X.3
Li, X.M.4
Liu, Z.5
-
109
-
-
39149121854
-
N formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function
-
Wísniewski JR, Zougman A, Mann M. 2008. N formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucl. Acids Res. 36:570-77
-
(2008)
Nucl. Acids Res.
, vol.36
, pp. 570-577
-
-
Wísniewski, J.R.1
Zougman, A.2
Mann, M.3
-
110
-
-
84881077601
-
Functional lysine modification by an intrinsically reactive primary glycolytic metabolite
-
Moellering RE, Cravatt BF. 2013. Functional lysine modification by an intrinsically reactive primary glycolytic metabolite. Science 341:549-53
-
(2013)
Science
, vol.341
, pp. 549-553
-
-
Moellering, R.E.1
Cravatt, B.F.2
-
111
-
-
15444379602
-
SIRT1 shows no substrate specificity in vitro
-
Blander G, Olejnik J, Krzymanska-Olejnik E, McDonagh T, Haigis M, et al. 2005. SIRT1 shows no substrate specificity in vitro. J. Biol. Chem. 280:9780-85
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 9780-9785
-
-
Blander, G.1
Olejnik, J.2
Krzymanska-Olejnik, E.3
McDonagh, T.4
Haigis, M.5
-
112
-
-
84884163378
-
An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms
-
Rauh D, Fischer F, Gertz M, Lakshminarasimhan M, Bergbrede T, et al. 2013. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms. Nat. Commun. 4:2327
-
(2013)
Nat. Commun.
, vol.4
, pp. 2327
-
-
Rauh, D.1
Fischer, F.2
Gertz, M.3
Lakshminarasimhan, M.4
Bergbrede, T.5
-
113
-
-
30144435945
-
SIRT1 top 40 hits: Use of one-bead, one-compound acetyl-peptide libraries and quantum dots to probe deacetylase specificity
-
Garske AL, Denu JM. 2006. SIRT1 top 40 hits: use of one-bead, one-compound acetyl-peptide libraries and quantum dots to probe deacetylase specificity. Biochemistry 45:94-101
-
(2006)
Biochemistry
, vol.45
, pp. 94-101
-
-
Garske, A.L.1
Denu, J.M.2
-
114
-
-
84922810755
-
The E. Coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites
-
AbouElfetouh A, Kuhn ML, Hu LI, Scholle MD, Sorensen DJ, et al. 2015. The E. Coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites. MicrobiologyOpen 4:66-83
-
(2015)
MicrobiologyOpen
, vol.4
, pp. 66-83
-
-
AbouElfetouh, A.1
Kuhn, M.L.2
Hu, L.I.3
Scholle, M.D.4
Sorensen, D.J.5
-
115
-
-
79951906633
-
SIRT3 substrate specificity determined by peptide arrays and machine learning
-
Smith BC, Settles B, Hallows WC, CravenMW, Denu JM. 2011. SIRT3 substrate specificity determined by peptide arrays and machine learning. ACS Chem. Biol. 6:146-57
-
(2011)
ACS Chem. Biol.
, vol.6
, pp. 146-157
-
-
Smith, B.C.1
Settles, B.2
Hallows, W.C.3
Craven, M.W.4
Denu, J.M.5
-
116
-
-
84872276165
-
Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
-
Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, et al. 2013. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 49:186-99
-
(2013)
Mol. Cell
, vol.49
, pp. 186-199
-
-
Hebert, A.S.1
Dittenhafer-Reed, K.E.2
Yu, W.3
Bailey, D.J.4
Selen, E.S.5
-
117
-
-
27744569240
-
Unstructured conformations are a substrate requirement for the Sir2 family of NAD-dependent protein deacetylases
-
Khan AN, Lewis PN. 2005. Unstructured conformations are a substrate requirement for the Sir2 family of NAD-dependent protein deacetylases. J. Biol. Chem. 280:36073-78
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 36073-36078
-
-
Khan, A.N.1
Lewis, P.N.2
-
118
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, et al. 2010. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464:121-25
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
Shimazu, T.2
Goetzman, E.3
Jing, E.4
Schwer, B.5
-
119
-
-
84888329025
-
Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site
-
Bharathi SS, Zhang Y, Mohsen AW, Uppala R, Balasubramani M, et al. 2013. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J. Biol. Chem. 288:33837-47
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 33837-33847
-
-
Bharathi, S.S.1
Zhang, Y.2
Mohsen, A.W.3
Uppala, R.4
Balasubramani, M.5
-
120
-
-
33745889628
-
Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
-
Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E. 2006. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. PNAS 103:10224-29
-
(2006)
PNAS
, vol.103
, pp. 10224-10229
-
-
Schwer, B.1
Bunkenborg, J.2
Verdin, R.O.3
Andersen, J.S.4
Verdin, E.5
-
121
-
-
58149090925
-
SIRT6 links histone H3 lysine 9 deacetylation to NF-?B-dependent gene expression and organismal life span
-
Kawahara TLA, Michishita E, Adler AS, Damian M, Berber E, et al. 2009. SIRT6 links histone H3 lysine 9 deacetylation to NF-?B-dependent gene expression and organismal life span. Cell 136:62-74
-
(2009)
Cell
, vol.136
, pp. 62-74
-
-
Kawahara, T.L.A.1
Michishita, E.2
Adler, A.S.3
Damian, M.4
Berber, E.5
-
122
-
-
74549142287
-
The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1?
-
Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE, et al. 2010. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1?. Cell 140:280-93
-
(2010)
Cell
, vol.140
, pp. 280-293
-
-
Zhong, L.1
D'Urso, A.2
Toiber, D.3
Sebastian, C.4
Henry, R.E.5
-
123
-
-
84870874690
-
The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism
-
Sebastián C, Zwaans BMM, Silberman DM, Gymrek M, Goren A, et al. 2012. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151:1185-99
-
(2012)
Cell
, vol.151
, pp. 1185-1199
-
-
Sebastián, C.1
Zwaans, B.M.M.2
Silberman, D.M.3
Gymrek, M.4
Goren, A.5
-
124
-
-
84863453769
-
SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
-
Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, et al. 2012. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114-18
-
(2012)
Nature
, vol.487
, pp. 114-118
-
-
Barber, M.F.1
Michishita-Kioi, E.2
Xi, Y.3
Tasselli, L.4
Kioi, M.5
-
125
-
-
36849009695
-
Plasmodium falciparum Sir2: An unusual sirtuin with dual histone deacetylase and ADP-ribosyltransferase activity
-
Merrick CJ, Duraisingh MT. 2007. Plasmodium falciparum Sir2: An unusual sirtuin with dual histone deacetylase and ADP-ribosyltransferase activity. Eukaryot. Cell 6:2081-91
-
(2007)
Eukaryot. Cell
, vol.6
, pp. 2081-2091
-
-
Merrick, C.J.1
Duraisingh, M.T.2
-
126
-
-
70450225307
-
Structure-based mechanism of ADP-ribosylation by sirtuins
-
Hawse WF, Wolberger C. 2009. Structure-based mechanism of ADP-ribosylation by sirtuins. J. Biol. Chem. 284:33654-61
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 33654-33661
-
-
Hawse, W.F.1
Wolberger, C.2
-
127
-
-
70449701819
-
Side chain specificity of ADPribosylation by a sirtuin
-
Fahie K, Hu P, Swatkoski S, Cotter RJ, Zhang Y, Wolberger C. 2009. Side chain specificity of ADPribosylation by a sirtuin. FEBS J. 276:7159-76
-
(2009)
FEBS J.
, vol.276
, pp. 7159-7176
-
-
Fahie, K.1
Hu, P.2
Swatkoski, S.3
Cotter, R.J.4
Zhang, Y.5
Wolberger, C.6
-
128
-
-
84937519320
-
Identification of a class of protein ADP-ribosylating sirtuins in microbial pathogens
-
Rack JGM, Morra R, Barkauskaite E, Kraehenbuehl R, Ariza A, et al. 2015. Identification of a class of protein ADP-ribosylating sirtuins in microbial pathogens. Mol. Cell 59:309-20
-
(2015)
Mol. Cell
, vol.59
, pp. 309-320
-
-
Rack, J.G.M.1
Morra, R.2
Barkauskaite, E.3
Kraehenbuehl, R.4
Ariza, A.5
-
129
-
-
84876167387
-
Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases
-
Rosenthal F, Feijs KL, Frugier E, Bonalli M, Forst AH, et al. 2013. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat. Struct. Mol. Biol. 20:502-7
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 502-507
-
-
Rosenthal, F.1
Feijs, K.L.2
Frugier, E.3
Bonalli, M.4
Forst, A.H.5
-
130
-
-
84876186940
-
A family of macrodomain proteins reverses cellular mono-ADP-ribosylation
-
Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, et al. 2013. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat. Struct. Mol. Biol. 20:508-14
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 508-514
-
-
Jankevicius, G.1
Hassler, M.2
Golia, B.3
Rybin, V.4
Zacharias, M.5
-
131
-
-
84858000209
-
The sirtuin SIRT6 regulates lifespan in male mice
-
Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, et al. 2012. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218-21
-
(2012)
Nature
, vol.483
, pp. 218-221
-
-
Kanfi, Y.1
Naiman, S.2
Amir, G.3
Peshti, V.4
Zinman, G.5
-
132
-
-
84885155285
-
Widespread and enzyme-independent N acetylation and N succinylation of proteins in the chemical conditions of the mitochondrial matrix
-
Wagner GR, Payne RM. 2013. Widespread and enzyme-independent N acetylation and N succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288:29036-45
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 29036-29045
-
-
Wagner, G.R.1
Payne, R.M.2
-
133
-
-
84888604134
-
Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: Chemical and metabolic logic of acetyl-lysine modifications
-
Ghanta S, Grossmann RE, Brenner C. 2013. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications. Crit. Rev. Biochem. Mol. Biol. 48:561-74
-
(2013)
Crit. Rev. Biochem. Mol. Biol.
, vol.48
, pp. 561-574
-
-
Ghanta, S.1
Grossmann, R.E.2
Brenner, C.3
-
134
-
-
79959906869
-
Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase
-
Jiang W, Wang S, Xiao M, Lin Y, Zhou L, et al. 2011. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol. Cell 43:33-44
-
(2011)
Mol. Cell
, vol.43
, pp. 33-44
-
-
Jiang, W.1
Wang, S.2
Xiao, M.3
Lin, Y.4
Zhou, L.5
-
135
-
-
0034968667
-
Structure and function of histone acetyltransferases
-
Marmorstein R. 2001. Structure and function of histone acetyltransferases. Cell. Mol. Life Sci. 58:693-703
-
(2001)
Cell. Mol. Life Sci.
, vol.58
, pp. 693-703
-
-
Marmorstein, R.1
-
136
-
-
84860192261
-
Identification of a molecular component of the mitochondrial acetyltransferase programme: A novel role for GCN5L1
-
Scott I, Webster BR, Li JH, Sack MN. 2012. Identification of a molecular component of the mitochondrial acetyltransferase programme: A novel role for GCN5L1. Biochem. J. 443:655-61
-
(2012)
Biochem. J.
, vol.443
, pp. 655-661
-
-
Scott, I.1
Webster, B.R.2
Li, J.H.3
Sack, M.N.4
-
137
-
-
84894263431
-
Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex
-
Fan J, Shan C, Kang HB, Elf S, Xie J, et al. 2014. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol. Cell 53:534-48
-
(2014)
Mol. Cell
, vol.53
, pp. 534-548
-
-
Fan, J.1
Shan, C.2
Kang, H.B.3
Elf, S.4
Xie, J.5
-
138
-
-
84906791699
-
Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth
-
Shan C, Elf S, Ji Q, Kang HB, Zhou L, et al. 2014. Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth. Mol. Cell 55:552-65
-
(2014)
Mol. Cell
, vol.55
, pp. 552-565
-
-
Shan, C.1
Elf, S.2
Ji, Q.3
Kang, H.B.4
Zhou, L.5
-
139
-
-
84935831609
-
Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines
-
Gibson GE, Xu H, Chen HL, Chen W, Denton TT, Zhang S. 2015. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines. J. Neurochem. 134:86-96
-
(2015)
J. Neurochem.
, vol.134
, pp. 86-96
-
-
Gibson, G.E.1
Xu, H.2
Chen, H.L.3
Chen, W.4
Denton, T.T.5
Zhang, S.6
-
140
-
-
0022578928
-
Determination of short-chain acyl-coenzyme A esters by high-performance liquid chromatography
-
Hosokawa Y, Shimomura Y, Harris RA, Ozawa T. 1986. Determination of short-chain acyl-coenzyme A esters by high-performance liquid chromatography. Anal. Biochem. 153:45-49
-
(1986)
Anal. Biochem.
, vol.153
, pp. 45-49
-
-
Hosokawa, Y.1
Shimomura, Y.2
Harris, R.A.3
Ozawa, T.4
-
141
-
-
0021961854
-
Separation and measurement of short-chain coenzyme-A compounds in rat liver by reversed-phase high-performance liquid chromatography
-
King MT, Reiss PD. 1985. Separation and measurement of short-chain coenzyme-A compounds in rat liver by reversed-phase high-performance liquid chromatography. Anal. Biochem. 146:173-79
-
(1985)
Anal. Biochem.
, vol.146
, pp. 173-179
-
-
King, M.T.1
Reiss, P.D.2
-
142
-
-
34249989455
-
Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phaseHPLC/MS
-
Gao L, ChiouW, Tang H, Cheng X, CampHS, Burns DJ. 2007. Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phaseHPLC/MS. J. Chromatogr. B 853:303-13
-
(2007)
J. Chromatogr. B
, vol.853
, pp. 303-313
-
-
Gao, L.1
Chiou, W.2
Tang, H.3
Cheng, X.4
Camp, H.S.5
Burns, D.J.6
-
143
-
-
75349111140
-
Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
-
Cimen H, Han M-J, Yang Y, Tong Q, Koc H, Koc EC. 2010. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49:304-11
-
(2010)
Biochemistry
, vol.49
, pp. 304-311
-
-
Cimen, H.1
Han, M.-J.2
Yang, Y.3
Tong, Q.4
Koc, H.5
Koc, E.C.6
-
144
-
-
80051716282
-
Succinate dehydrogenase is a direct target of Sirtuin 3 deacetylase activity
-
Finley LWS, Haas W, Desquiret-Dumas V, Wallace DC, Procaccio V, et al. 2011. Succinate dehydrogenase is a direct target of Sirtuin 3 deacetylase activity. PLOS ONE 6:e23295
-
(2011)
PLOS ONE
, vol.6
, pp. e23295
-
-
Finley, L.W.S.1
Haas, W.2
Desquiret-Dumas, V.3
Wallace, D.C.4
Procaccio, V.5
-
145
-
-
77955810448
-
Site-specific introduction of an acetyl-lysine mimic into peptides and proteins by cysteine alkylation
-
Huang R, Holbert MA, Tarrant MK, Curtet S, Colquhoun DR, et al. 2010. Site-specific introduction of an acetyl-lysine mimic into peptides and proteins by cysteine alkylation. J. Am. Chem. Soc. 132:9986-87
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 9986-9987
-
-
Huang, R.1
Holbert, M.A.2
Tarrant, M.K.3
Curtet, S.4
Colquhoun, D.R.5
-
146
-
-
80053557477
-
A direct method for site-specific protein acetylation
-
Li F, Allahverdi A, Yang R, Lua GBJ, Zhang X, et al. 2011. A direct method for site-specific protein acetylation. Angew. Chem. Int. Ed. Engl. 50:9611-14
-
(2011)
Angew. Chem. Int. Ed. Engl.
, vol.50
, pp. 9611-9614
-
-
Li, F.1
Allahverdi, A.2
Yang, R.3
Lua, G.B.J.4
Zhang, X.5
-
147
-
-
40949099577
-
Genetically encoding N acetyllysine in recombinant proteins
-
Neumann H, Peak-Chew SY, Chin JW. 2008. Genetically encoding N acetyllysine in recombinant proteins. Nat. Chem. Biol. 4:232-34
-
(2008)
Nat. Chem. Biol.
, vol.4
, pp. 232-234
-
-
Neumann, H.1
Peak-Chew, S.Y.2
Chin, J.W.3
-
148
-
-
77951298744
-
Acetylation regulates cyclophilin A catalysis, immunosuppression and HIV isomerization
-
Lammers M, Neumann H, Chin JW, James LC. 2010. Acetylation regulates cyclophilin A catalysis, immunosuppression and HIV isomerization. Nat. Chem. Biol. 6:331-37
-
(2010)
Nat. Chem. Biol.
, vol.6
, pp. 331-337
-
-
Lammers, M.1
Neumann, H.2
Chin, J.W.3
James, L.C.4
-
149
-
-
77949757079
-
A convenient method for genetic incorporation of multiple noncanonical amino acids into one protein in Escherichia coli
-
Huang Y, Russell WK, Wan W, Pai P-J, Russell DH, Liu W. 2010. A convenient method for genetic incorporation of multiple noncanonical amino acids into one protein in Escherichia coli. Mol. BioSyst. 6:683-86
-
(2010)
Mol. BioSyst.
, vol.6
, pp. 683-686
-
-
Huang, Y.1
Russell, W.K.2
Wan, W.3
Pai, P.-J.4
Russell, D.H.5
Liu, W.6
-
150
-
-
84859951790
-
SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status
-
Yu W, Dittenhafer-Reed KE, Denu JM. 2012. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J. Biol. Chem. 287:14078-86
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 14078-14086
-
-
Yu, W.1
Dittenhafer-Reed, K.E.2
Denu, J.M.3
-
151
-
-
84870906814
-
Synthesis of N-propionyl-, N-butyryl-, and N-crotonyllysine containing histone H3 using the pyrrolysine system
-
Gattner MJ, Vrabel M, Carell T. 2013. Synthesis of N-propionyl-, N-butyryl-, and N-crotonyllysine containing histone H3 using the pyrrolysine system. Chem. Commun. 49:379-81
-
(2013)
Chem. Commun.
, vol.49
, pp. 379-381
-
-
Gattner, M.J.1
Vrabel, M.2
Carell, T.3
|