메뉴 건너뛰기




Volumn 85, Issue , 2016, Pages 405-429

The Substrate Specificity of Sirtuins

Author keywords

ADP ribosylation; Deacylation; Myristoylation; Palmitoylation; Succinylation

Indexed keywords

FUNCTIONAL GROUP; GLUTARYL GROUP; LYSINE; MALONYL GROUP; NICOTINAMIDE ADENINE DINUCLEOTIDE; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE; PEPTIDE; PROPIONYL GROUP; SIRTUIN; SIRTUIN 5; SUCCINYL GROUP; UNCLASSIFIED DRUG; HISTONE; MYRISTIC ACID; SUCCINIC ACID;

EID: 84974727339     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060815-014537     Document Type: Article
Times cited : (197)

References (151)
  • 1
    • 0033887456 scopus 로고    scopus 로고
    • Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
    • Frye RA. 2000. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273:793-98
    • (2000) Biochem. Biophys. Res. Commun. , vol.273 , pp. 793-798
    • Frye, R.A.1
  • 2
    • 84928501080 scopus 로고    scopus 로고
    • Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity
    • Bosch-Presegue L, Vaquero A. 2015. Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J. 282:1745-67
    • (2015) FEBS J. , vol.282 , pp. 1745-1767
    • Bosch-Presegue, L.1    Vaquero, A.2
  • 3
    • 84907441244 scopus 로고    scopus 로고
    • Sirtuins and the circadian clock: Bridging chromatin and metabolism
    • Masri S, Sassone-Corsi P. 2014. Sirtuins and the circadian clock: bridging chromatin and metabolism. Sci. Signal. 7:re6
    • (2014) Sci. Signal. , vol.7 , pp. re6
    • Masri, S.1    Sassone-Corsi, P.2
  • 5
    • 84882935541 scopus 로고    scopus 로고
    • Sirtuins' modulation of autophagy
    • Ng F, Tang BL. 2013. Sirtuins' modulation of autophagy. J. Cell. Physiol. 228:2262-70
    • (2013) J. Cell. Physiol. , vol.228 , pp. 2262-2270
    • Ng, F.1    Tang, B.L.2
  • 8
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: Biological insights and disease relevance
    • Haigis MC, Sinclair DA. 2010. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. Mech. Dis. 5:253-95
    • (2010) Annu. Rev. Pathol. Mech. Dis. , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 9
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S, ArmstrongCM, Kaeberlein M, Guarente L. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795-800
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 10
    • 0034687694 scopus 로고    scopus 로고
    • Silent information regulator 2 family of NADdependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
    • Tanner KG, Landry J, Sternglanz R, Denu JM. 2000. Silent information regulator 2 family of NADdependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. PNAS 97:14178-82
    • (2000) PNAS , vol.97 , pp. 14178-14182
    • Tanner, K.G.1    Landry, J.2    Sternglanz, R.3    Denu, J.M.4
  • 11
    • 0034705129 scopus 로고    scopus 로고
    • The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases
    • Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, et al. 2000. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. PNAS 97:5807-11
    • (2000) PNAS , vol.97 , pp. 5807-5811
    • Landry, J.1    Sutton, A.2    Tafrov, S.T.3    Heller, R.C.4    Stebbins, J.5
  • 12
    • 3242719545 scopus 로고    scopus 로고
    • Modulation of NF-?B-dependent transcription and cell survival by the SIRT1 deacetylase
    • Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, et al. 2004. Modulation of NF-?B-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23:2369-80
    • (2004) EMBO J. , vol.23 , pp. 2369-2380
    • Yeung, F.1    Hoberg, J.E.2    Ramsey, C.S.3    Keller, M.D.4    Jones, D.R.5
  • 13
    • 0035913911 scopus 로고    scopus 로고
    • Negative control of p53 by Sir2? Promotes cell survival under stress
    • Luo J, Nikolaev AY, Imai S-I, Chen D, Su F, et al. 2001. Negative control of p53 by Sir2? promotes cell survival under stress. Cell 107:137-48
    • (2001) Cell , vol.107 , pp. 137-148
    • Luo, J.1    Nikolaev, A.Y.2    Imai, S.-I.3    Chen, D.4    Su, F.5
  • 14
    • 0035913903 scopus 로고    scopus 로고
    • HSIR2SIRT1 functions as an NADdependent p53 deacetylase
    • Vaziri H, Dessain SK, Eaton EN, Imai S-I, Frye RA, et al. 2001. hSIR2SIRT1 functions as an NADdependent p53 deacetylasE. Cell 107:149-59
    • (2001) Cell , vol.107 , pp. 149-159
    • Vaziri, H.1    Dessain, S.K.2    Eaton, E.N.3    Imai, S.-I.4    Frye, R.A.5
  • 16
    • 12144290563 scopus 로고    scopus 로고
    • Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
    • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, et al. 2004. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011-15
    • (2004) Science , vol.303 , pp. 2011-2015
    • Brunet, A.1    Sweeney, L.B.2    Sturgill, J.F.3    Chua, K.F.4    Greer, P.L.5
  • 17
    • 84903315362 scopus 로고    scopus 로고
    • Sirtuin inhibitors as anticancer agents
    • Hu J, Jing H, Lin H. 2014. Sirtuin inhibitors as anticancer agents. Future Med. Chem. 6:945-66
    • (2014) Future Med. Chem. , vol.6 , pp. 945-966
    • Hu, J.1    Jing, H.2    Lin, H.3
  • 18
    • 34248640428 scopus 로고    scopus 로고
    • Lysine propionylation and butyrylation are novel post-translational modifications in histones
    • Chen Y, Sprung R, Tang Y, Ball H, Sangras B, et al. 2007. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteom. 6:812-19
    • (2007) Mol. Cell. Proteom. , vol.6 , pp. 812-819
    • Chen, Y.1    Sprung, R.2    Tang, Y.3    Ball, H.4    Sangras, B.5
  • 19
    • 48349112953 scopus 로고    scopus 로고
    • The role of sirtuin proteins in obesity
    • Metoyer CF, Pruitt K. 2008. The role of sirtuin proteins in obesity. Pathophysiology 15:103-8
    • (2008) Pathophysiology , vol.15 , pp. 103-108
    • Metoyer, C.F.1    Pruitt, K.2
  • 20
    • 42649146208 scopus 로고    scopus 로고
    • SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease
    • Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. 2008. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 177:861-70
    • (2008) Am. J. Respir. Crit. Care Med. , vol.177 , pp. 861-870
    • Rajendrasozhan, S.1    Yang, S.R.2    Kinnula, V.L.3    Rahman, I.4
  • 21
    • 84875881601 scopus 로고    scopus 로고
    • SIRT6 regulates TNF secretion through hydrolysis of long-chain fatty acyl lysine
    • Jiang H, Khan S, Wang Y, Charron G, He B, et al. 2013. SIRT6 regulates TNF-? secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496:110-13
    • (2013) Nature , vol.496 , pp. 110-113
    • Jiang, H.1    Khan, S.2    Wang, Y.3    Charron, G.4    He, B.5
  • 22
    • 84881034102 scopus 로고    scopus 로고
    • A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection
    • Eskandarian HA, Impens F, Nahori MA, Soubigou G, Coppee JY, et al. 2013. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. Science 341:1238858
    • (2013) Science , vol.341 , pp. 1238858
    • Eskandarian, H.A.1    Impens, F.2    Nahori, M.A.3    Soubigou, G.4    Coppee, J.Y.5
  • 24
    • 84878550919 scopus 로고    scopus 로고
    • Sirtuins family-recent development as a drug target for aging, metabolism, and age related diseases
    • Chakraborty C, Doss CG. 2013. Sirtuins family-recent development as a drug target for aging, metabolism, and age related diseases. Curr. Drug Targets 14:666-75
    • (2013) Curr. Drug Targets , vol.14 , pp. 666-675
    • Chakraborty, C.1    Doss, C.G.2
  • 25
    • 0028841317 scopus 로고
    • The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability
    • Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, Boeke JD. 1995. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9:2888-902
    • (1995) Genes Dev. , vol.9 , pp. 2888-2902
    • Brachmann, C.B.1    Sherman, J.M.2    Devine, S.E.3    Cameron, E.E.4    Pillus, L.5    Boeke, J.D.6
  • 27
    • 81055122671 scopus 로고    scopus 로고
    • Sirt5 is an NAD-dependent protein lysine demalonylase and desuccinylase
    • Du J, Zhou Y, Su X, Yu J, Khan S, et al. 2011. Sirt5 is an NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806-9
    • (2011) Science , vol.334 , pp. 806-809
    • Du, J.1    Zhou, Y.2    Su, X.3    Yu, J.4    Khan, S.5
  • 28
    • 84862907582 scopus 로고    scopus 로고
    • Plasmodium falciparum Sir2A preferentially hydrolyzes medium and long chain fatty acyl lysine
    • Zhu AY, Zhou Y, Khan S, Deitsch KW, Hao Q, Lin H. 2012. Plasmodium falciparum Sir2A preferentially hydrolyzes medium and long chain fatty acyl lysine. ACS Chem. Biol. 7:155-59
    • (2012) ACS Chem. Biol. , vol.7 , pp. 155-159
    • Zhu, A.Y.1    Zhou, Y.2    Khan, S.3    Deitsch, K.W.4    Hao, Q.5    Lin, H.6
  • 29
    • 84886686038 scopus 로고    scopus 로고
    • Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
    • Feldman JL, Baeza J, Denu JM. 2013. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 288:31350-56
    • (2013) J. Biol. Chem. , vol.288 , pp. 31350-31356
    • Feldman, J.L.1    Baeza, J.2    Denu, J.M.3
  • 30
    • 84907157670 scopus 로고    scopus 로고
    • Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors
    • He B, Hu J, Zhang X, Lin H. 2014. Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors. Org. Biomol. Chem. 12:7498-502
    • (2014) Org. Biomol. Chem. , vol.12 , pp. 7498-7502
    • He, B.1    Hu, J.2    Zhang, X.3    Lin, H.4
  • 31
    • 83055173304 scopus 로고    scopus 로고
    • The first identification of lysine malonylation substrates and its regulatory enzyme
    • M111. 012658
    • Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, et al. 2011. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteom. 10(12):M111. 012658
    • (2011) Mol. Cell. Proteom. , vol.10 , Issue.12
    • Peng, C.1    Lu, Z.2    Xie, Z.3    Cheng, Z.4    Chen, Y.5
  • 32
    • 84897565291 scopus 로고    scopus 로고
    • Lysine glutarylation is a protein posttranslational modification regulated by SIRT5
    • Tan M, Peng C, Anderson KA, Chhoy P, Xie Z, et al. 2014. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 19:605-17
    • (2014) Cell Metab. , vol.19 , pp. 605-617
    • Tan, M.1    Peng, C.2    Anderson, K.A.3    Chhoy, P.4    Xie, Z.5
  • 33
    • 80052942443 scopus 로고    scopus 로고
    • Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification
    • Tan M, Luo H, Lee S, Jin F, Yang Jeong S, et al. 2011. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016-28
    • (2011) Cell , vol.146 , pp. 1016-1028
    • Tan, M.1    Luo, H.2    Lee, S.3    Jin, F.4    Yang Jeong, S.5
  • 34
    • 78650516004 scopus 로고    scopus 로고
    • Identification of lysine succinylation as a new post-translational modification
    • Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y. 2011. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 7:58-63
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 58-63
    • Zhang, Z.1    Tan, M.2    Xie, Z.3    Dai, L.4    Chen, Y.5    Zhao, Y.6
  • 35
    • 84880791239 scopus 로고    scopus 로고
    • SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
    • Park J, Chen Y, Tishkoff DX, Peng C, Tan M, et al. 2013. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50:919-30
    • (2013) Mol. Cell , vol.50 , pp. 919-930
    • Park, J.1    Chen, Y.2    Tishkoff, D.X.3    Peng, C.4    Tan, M.5
  • 36
    • 84890673317 scopus 로고    scopus 로고
    • Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli
    • Colak G, Xie Z, Zhu AY, Dai L, Lu Z, et al. 2013. Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. Mol. Cell. Proteom. 12:3509-20
    • (2013) Mol. Cell. Proteom. , vol.12 , pp. 3509-3520
    • Colak, G.1    Xie, Z.2    Zhu, A.Y.3    Dai, L.4    Lu, Z.5
  • 37
    • 84889636259 scopus 로고    scopus 로고
    • SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks
    • Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, et al. 2013. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 18:920-33
    • (2013) Cell Metab. , vol.18 , pp. 920-933
    • Rardin, M.J.1    He, W.2    Nishida, Y.3    Newman, J.C.4    Carrico, C.5
  • 39
    • 84871171710 scopus 로고    scopus 로고
    • Structural basis for sirtuin activity and inhibition
    • Yuan H, Marmorstein R. 2012. Structural basis for sirtuin activity and inhibition. J. Biol. Chem. 287:42428-35
    • (2012) J. Biol. Chem. , vol.287 , pp. 42428-42435
    • Yuan, H.1    Marmorstein, R.2
  • 40
    • 0035662888 scopus 로고    scopus 로고
    • Structure of histone deacetylases: Insights into substrate recognition and catalysis
    • Marmorstein R. 2001. Structure of histone deacetylases: insights into substrate recognition and catalysis. Structure 9:1127-33
    • (2001) Structure , vol.9 , pp. 1127-1133
    • Marmorstein, R.1
  • 41
    • 0021734287 scopus 로고
    • Characterization of two genes required for the position-effect control of yeast mating-type genes
    • Shore D, Squire M, Nasmyth KA. 1984. Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J. 3:2817-23
    • (1984) EMBO J. , vol.3 , pp. 2817-2823
    • Shore, D.1    Squire, M.2    Nasmyth, K.A.3
  • 42
    • 0033610894 scopus 로고    scopus 로고
    • CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide: 5, 6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2
    • Tsang AW, Escalante-Semerena JC. 1998. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5, 6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J. Biol. Chem. 273:31788-94
    • (1998) J. Biol. Chem. , vol.273 , pp. 31788-31794
    • Tsang, A.W.1    Escalante-Semerena, J.C.2
  • 43
    • 0033600176 scopus 로고    scopus 로고
    • Characterization of five human cDNAs with homology to the yeast Sir2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
    • Frye RA. 1999. Characterization of five human cDNAs with homology to the yeast Sir2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260:273-79
    • (1999) Biochem. Biophys. Res. Commun. , vol.260 , pp. 273-279
    • Frye, R.A.1
  • 44
    • 0033598942 scopus 로고    scopus 로고
    • An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing
    • Tanny JC, Dowd GJ, Huang J, Hilz H, Moazed D. 1999. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99:735-45
    • (1999) Cell , vol.99 , pp. 735-745
    • Tanny, J.C.1    Dowd, G.J.2    Huang, J.3    Hilz, H.4    Moazed, D.5
  • 45
    • 0035951072 scopus 로고    scopus 로고
    • Chemistry of gene silencing: The mechanism of NAD+-dependent deacetylation reactions
    • Sauve AA, Celic I, Avalos J, Deng H, Boeke JD, Schramm VL. 2001. Chemistry of gene silencing: The mechanism of NAD+-dependent deacetylation reactions. Biochemistry 40:15456-63
    • (2001) Biochemistry , vol.40 , pp. 15456-15463
    • Sauve, A.A.1    Celic, I.2    Avalos, J.3    Deng, H.4    Boeke, J.D.5    Schramm, V.L.6
  • 46
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic?cells
    • Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, et al. 2006. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic?cells. Cell 126:941-54
    • (2006) Cell , vol.126 , pp. 941-954
    • Haigis, M.C.1    Mostoslavsky, R.2    Haigis, K.M.3    Fahie, K.4    Christodoulou, D.C.5
  • 47
    • 79959363092 scopus 로고    scopus 로고
    • SIRT6 promotes DNA repair under stress by activating PARP1
    • Mao Z, Hine C, Tian X, Van Meter M, Au M, et al. 2011. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332:1443-46
    • (2011) Science , vol.332 , pp. 1443-1446
    • Mao, Z.1    Hine, C.2    Tian, X.3    Van Meter, M.4    Au, M.5
  • 48
    • 20444409132 scopus 로고    scopus 로고
    • Mouse Sir2 homolog SIRT6 is a nuclear ADPribosyltransferase
    • Liszt G, Ford E, Kurtev M, Guarente L. 2005. Mouse Sir2 homolog SIRT6 is a nuclear ADPribosyltransferase. J. Biol. Chem. 280:21313-20
    • (2005) J. Biol. Chem. , vol.280 , pp. 21313-21320
    • Liszt, G.1    Ford, E.2    Kurtev, M.3    Guarente, L.4
  • 49
    • 26244436281 scopus 로고    scopus 로고
    • Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
    • Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. 2005. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16:4623-35
    • (2005) Mol. Biol. Cell , vol.16 , pp. 4623-4635
    • Michishita, E.1    Park, J.Y.2    Burneskis, J.M.3    Barrett, J.C.4    Horikawa, I.5
  • 50
    • 41949129135 scopus 로고    scopus 로고
    • Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2
    • Kowieski TM, Lee S, Denu JM. 2008. Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2. J. Biol. Chem. 283:5317-26
    • (2008) J. Biol. Chem. , vol.283 , pp. 5317-5326
    • Kowieski, T.M.1    Lee, S.2    Denu, J.M.3
  • 51
    • 65249091951 scopus 로고    scopus 로고
    • Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogs and 32P-NAD
    • Du J, Jiang H, Lin H. 2009. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogs and 32P-NAD. Biochemistry 48:2878-90
    • (2009) Biochemistry , vol.48 , pp. 2878-2890
    • Du, J.1    Jiang, H.2    Lin, H.3
  • 52
    • 84862573534 scopus 로고    scopus 로고
    • Protein lysine acylation and cysteine succination by intermediates of energy metabolism
    • Lin H, Su X, He B. 2012. Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem. Biol. 7:947-60
    • (2012) ACS Chem. Biol. , vol.7 , pp. 947-960
    • Lin, H.1    Su, X.2    He, B.3
  • 53
    • 84871107379 scopus 로고    scopus 로고
    • Mitochondrial protein acylation and intermediary metabolism: Regulation by sirtuins and implications for metabolic disease
    • Newman JC, He W, Verdin E. 2012. Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. J. Biol. Chem. 287:42436-43
    • (2012) J. Biol. Chem. , vol.287 , pp. 42436-42443
    • Newman, J.C.1    He, W.2    Verdin, E.3
  • 54
    • 30144431571 scopus 로고    scopus 로고
    • Sir2 protein deacetylases: Evidence for chemical intermediates and functions of a conserved histidine
    • Smith BC, Denu JM. 2006. Sir2 protein deacetylases: Evidence for chemical intermediates and functions of a conserved histidine. Biochemistry 45:272-82
    • (2006) Biochemistry , vol.45 , pp. 272-282
    • Smith, B.C.1    Denu, J.M.2
  • 56
    • 84861163510 scopus 로고    scopus 로고
    • Lysine succinylation and lysine malonylation in histones
    • Xie Z, Dai J, Dai L, Tan M, Cheng Z, et al. 2012. Lysine succinylation and lysine malonylation in histones. Mol. Cell. Proteom. 11:100-7
    • (2012) Mol. Cell. Proteom. , vol.11 , pp. 100-107
    • Xie, Z.1    Dai, J.2    Dai, L.3    Tan, M.4    Cheng, Z.5
  • 57
    • 0041571570 scopus 로고    scopus 로고
    • Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry
    • Sauve AA, Schramm VL. 2003. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry 42:9249-56
    • (2003) Biochemistry , vol.42 , pp. 9249-9256
    • Sauve, A.A.1    Schramm, V.L.2
  • 58
    • 0037166269 scopus 로고    scopus 로고
    • Structural identification of 2-and 3-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of NAD+-dependent histone/protein deacetylases
    • Jackson MD, Denu JM. 2002. Structural identification of 2-and 3-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of NAD+-dependent histone/protein deacetylases. J. Biol. Chem. 277:18535-44
    • (2002) J. Biol. Chem. , vol.277 , pp. 18535-18544
    • Jackson, M.D.1    Denu, J.M.2
  • 59
    • 0346435109 scopus 로고    scopus 로고
    • Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases
    • Jackson MD, Schmidt MT, Oppenheimer NJ, Denu JM. 2003. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. J. Biol. Chem. 278:50985-98
    • (2003) J. Biol. Chem. , vol.278 , pp. 50985-50998
    • Jackson, M.D.1    Schmidt, M.T.2    Oppenheimer, N.J.3    Denu, J.M.4
  • 60
    • 37349110743 scopus 로고    scopus 로고
    • Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide
    • Smith BC, Denu JM. 2007. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide. Biochemistry 46:14478-86
    • (2007) Biochemistry , vol.46 , pp. 14478-14486
    • Smith, B.C.1    Denu, J.M.2
  • 61
    • 50849135494 scopus 로고    scopus 로고
    • Structural insights into intermediate steps in the Sir2 deacetylation reaction
    • Hawse WF, Hoff KG, Fatkins DG, Daines A, Zubkova OV, et al. 2008. Structural insights into intermediate steps in the Sir2 deacetylation reaction. Structure 16:1368-77
    • (2008) Structure , vol.16 , pp. 1368-1377
    • Hawse, W.F.1    Hoff, K.G.2    Fatkins, D.G.3    Daines, A.4    Zubkova, O.V.5
  • 62
    • 33745534953 scopus 로고    scopus 로고
    • Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide
    • Hoff KG, Avalos JL, Sens K, Wolberger C. 2006. Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide. Structure 14:1231-40
    • (2006) Structure , vol.14 , pp. 1231-1240
    • Hoff, K.G.1    Avalos, J.L.2    Sens, K.3    Wolberger, C.4
  • 63
    • 0242626891 scopus 로고    scopus 로고
    • Structure of the yeastHst2 protein deacetylase in ternary complex with 2-O-acetyl ADP ribose and histone peptide
    • Zhao K, Chai X, MarmorsteinR. 2003. Structure of the yeastHst2 protein deacetylase in ternary complex with 2-O-acetyl ADP ribose and histone peptide. Structure 11:1403-11
    • (2003) Structure , vol.11 , pp. 1403-1411
    • Zhao, K.1    Chai, X.2    Marmorstein, R.3
  • 65
    • 52249090638 scopus 로고    scopus 로고
    • Plasmodium falciparum Sir2 is anNAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase
    • French JB, Cen Y, Sauve AA. 2008. Plasmodium falciparum Sir2 is anNAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase. Biochemistry 47:10227-39
    • (2008) Biochemistry , vol.47 , pp. 10227-10239
    • French, J.B.1    Cen, Y.2    Sauve, A.A.3
  • 66
    • 33846113751 scopus 로고    scopus 로고
    • N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage
    • Jiang T, Zhou X, Taghizadeh K, Dong M, Dedon PC. 2007. N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage. PNAS 104:60-65
    • (2007) PNAS , vol.104 , pp. 60-65
    • Jiang, T.1    Zhou, X.2    Taghizadeh, K.3    Dong, M.4    Dedon, P.C.5
  • 67
    • 77956246695 scopus 로고    scopus 로고
    • Transition state of ADP-ribosylation of acetyllysine catalyzed by Archaeoglobus fulgidus Sir2 determined by kinetic isotope effects and computational approaches
    • Cen Y, Sauve AA. 2010. Transition state of ADP-ribosylation of acetyllysine catalyzed by Archaeoglobus fulgidus Sir2 determined by kinetic isotope effects and computational approaches. J. Am. Chem. Soc. 132:12286-98
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 12286-12298
    • Cen, Y.1    Sauve, A.A.2
  • 68
    • 77953289094 scopus 로고    scopus 로고
    • Structural basis for sirtuin function: What we know and what we don't
    • Sanders BD, Jackson B, Marmorstein R. 2010. Structural basis for sirtuin function: what we know and what we don't. Biochim. Biophys. Acta 1804:1604-16
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 1604-1616
    • Sanders, B.D.1    Jackson, B.2    Marmorstein, R.3
  • 69
    • 0018072848 scopus 로고
    • The taxonomy of binding sites in proteins
    • Rossmann MG, Argos P. 1978. The taxonomy of binding sites in proteins. Mol. Cell. Biochem. 21:161-82
    • (1978) Mol. Cell. Biochem. , vol.21 , pp. 161-182
    • Rossmann, M.G.1    Argos, P.2
  • 71
    • 0035917536 scopus 로고    scopus 로고
    • Crystal structure of a SIR2 homolog-NAD complex
    • Min J, Landry J, Sternglanz R, Xu R-M. 2001. Crystal structure of a SIR2 homolog-NAD complex. Cell 105:269-79
    • (2001) Cell , vol.105 , pp. 269-279
    • Min, J.1    Landry, J.2    Sternglanz, R.3    Xu, R.-M.4
  • 74
    • 1642297558 scopus 로고    scopus 로고
    • Structural basis for the mechanism and regulation of Sir2 enzymes
    • Avalos J, Boeke JD, Wolberger C. 2004. Structural basis for the mechanism and regulation of Sir2 enzymes. Mol. Cell 13:639-48
    • (2004) Mol. Cell , vol.13 , pp. 639-648
    • Avalos, J.1    Boeke, J.D.2    Wolberger, C.3
  • 75
    • 0043244921 scopus 로고    scopus 로고
    • Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state
    • Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, et al. 2003. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol. Cell 12:51-62
    • (2003) Mol. Cell , vol.12 , pp. 51-62
    • Fulco, M.1    Schiltz, R.L.2    Iezzi, S.3    King, M.T.4    Zhao, P.5
  • 76
    • 1542298916 scopus 로고    scopus 로고
    • Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli
    • Zhao K, Chai X, Marmorstein R. 2004. Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli. J. Mol. Biol. 337:731-41
    • (2004) J. Mol. Biol. , vol.337 , pp. 731-741
    • Zhao, K.1    Chai, X.2    Marmorstein, R.3
  • 77
    • 33847635635 scopus 로고    scopus 로고
    • Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin
    • Schuetz A, Min J, Antoshenko T, Wang C-L, Allali-Hassani A, et al. 2007. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 15:377-89
    • (2007) Structure , vol.15 , pp. 377-389
    • Schuetz, A.1    Min, J.2    Antoshenko, T.3    Wang, C.-L.4    Allali-Hassani, A.5
  • 78
    • 3343024449 scopus 로고    scopus 로고
    • Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases
    • Borra MT, Langer MR, Slama JT, Denu JM. 2004. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases. Biochemistry 43:9877-87
    • (2004) Biochemistry , vol.43 , pp. 9877-9887
    • Borra, M.T.1    Langer, M.R.2    Slama, J.T.3    Denu, J.M.4
  • 79
    • 2942534101 scopus 로고    scopus 로고
    • Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases
    • Zhao K, Harshaw R, Chai X, Marmorstein R. 2004. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases. PNAS USA 101:8563-68
    • (2004) PNAS USA , vol.101 , pp. 8563-8568
    • Zhao, K.1    Harshaw, R.2    Chai, X.3    Marmorstein, R.4
  • 80
    • 84865225339 scopus 로고    scopus 로고
    • The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5)
    • Zhou Y, Zhang H, He B, Du J, Lin H, et al. 2012. The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5). J. Biol. Chem. 287:28307-14
    • (2012) J. Biol. Chem. , vol.287 , pp. 28307-28314
    • Zhou, Y.1    Zhang, H.2    He, B.3    Du, J.4    Lin, H.5
  • 81
    • 0037023326 scopus 로고    scopus 로고
    • The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation
    • Bell SD, Botting CH, Wardleworth BN, Jackson SP, White MF. 2002. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 296:148-51
    • (2002) Science , vol.296 , pp. 148-151
    • Bell, S.D.1    Botting, C.H.2    Wardleworth, B.N.3    Jackson, S.P.4    White, M.F.5
  • 82
    • 0037166274 scopus 로고    scopus 로고
    • Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels
    • Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Cohen H, et al. 2002. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J. Biol. Chem. 277:18881-90
    • (2002) J. Biol. Chem. , vol.277 , pp. 18881-18890
    • Anderson, R.M.1    Bitterman, K.J.2    Wood, J.G.3    Medvedik, O.4    Cohen, H.5
  • 83
    • 4544243684 scopus 로고    scopus 로고
    • Coenzyme specificity of Sir2 protein deacetylases: Implications for physiological regulation
    • SchmidtMT, Smith BC, JacksonMD, Denu JM. 2004. Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J. Biol. Chem. 279:40122-29
    • (2004) J. Biol. Chem. , vol.279 , pp. 40122-40129
    • Schmidt, M.T.1    Smith, B.C.2    Jackson, M.D.3    Denu, J.M.4
  • 84
    • 0037221445 scopus 로고    scopus 로고
    • Linking chromatin function with metabolic networks: Sir2 family of NAD+-dependent deacetylases
    • Denu JM. 2003. Linking chromatin function with metabolic networks: Sir2 family of NAD+-dependent deacetylases. Trends Biochem. Sci. 28:41-48
    • (2003) Trends Biochem. Sci. , vol.28 , pp. 41-48
    • Denu, J.M.1
  • 85
    • 15244355745 scopus 로고    scopus 로고
    • Mechanism of sirtuin inhibition by nicotinamide: Altering the NAD+ cosubstrate specificity of a Sir2 enzyme
    • Avalos JL, Bever KM, Wolberger C. 2005. Mechanism of sirtuin inhibition by nicotinamide: Altering the NAD+ cosubstrate specificity of a Sir2 enzyme. Mol. Cell 17:855-68
    • (2005) Mol. Cell , vol.17 , pp. 855-868
    • Avalos, J.L.1    Bever, K.M.2    Wolberger, C.3
  • 86
    • 13944258164 scopus 로고    scopus 로고
    • Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition
    • Sauve AA, Moir RD, Schramm VL, Willis IM. 2005. Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition. Mol. Cell 17:595-601
    • (2005) Mol. Cell , vol.17 , pp. 595-601
    • Sauve, A.A.1    Moir, R.D.2    Schramm, V.L.3    Willis, I.M.4
  • 87
    • 0030798245 scopus 로고    scopus 로고
    • Histone acetylation in chromatin structure and transcription
    • Grunstein M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389:349-52
    • (1997) Nature , vol.389 , pp. 349-352
    • Grunstein, M.1
  • 88
    • 0347457075 scopus 로고    scopus 로고
    • Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine
    • Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC. 2002. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390-92
    • (2002) Science , vol.298 , pp. 2390-2392
    • Starai, V.J.1    Celic, I.2    Cole, R.N.3    Boeke, J.D.4    Escalante-Semerena, J.C.5
  • 89
    • 37549067781 scopus 로고    scopus 로고
    • Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases
    • Smith BC, Denu JM. 2007. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases. J. Biol. Chem. 282:37256-65
    • (2007) J. Biol. Chem. , vol.282 , pp. 37256-37265
    • Smith, B.C.1    Denu, J.M.2
  • 90
    • 61849108746 scopus 로고    scopus 로고
    • Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software
    • Zhang K, Chen Y, Zhang Z, Zhao Y. 2008. Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. J. Proteome Res. 8:900-6
    • (2008) J. Proteome Res. , vol.8 , pp. 900-906
    • Zhang, K.1    Chen, Y.2    Zhang, Z.3    Zhao, Y.4
  • 91
    • 59149086584 scopus 로고    scopus 로고
    • Molecular characterization of propionyllysines in non-histone proteins
    • Cheng Z, Tang Y, Chen Y, Kim S, Liu H, et al. 2009. Molecular characterization of propionyllysines in non-histone proteins. Mol. Cell. Proteom. 8:45-52
    • (2009) Mol. Cell. Proteom. , vol.8 , pp. 45-52
    • Cheng, Z.1    Tang, Y.2    Chen, Y.3    Kim, S.4    Liu, H.5
  • 92
    • 70450277232 scopus 로고    scopus 로고
    • Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells
    • Liu B, Lin Y, Darwanto A, Song X, Xu G, Zhang K. 2009. Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells. J. Biol. Chem. 284:32288-95
    • (2009) J. Biol. Chem. , vol.284 , pp. 32288-32295
    • Liu, B.1    Lin, Y.2    Darwanto, A.3    Song, X.4    Xu, G.5    Zhang, K.6
  • 94
    • 65249087389 scopus 로고    scopus 로고
    • SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • Nakagawa T, Lomb DJ, Haigis MC, Guarente L. 2009. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cyclE. Cell 137:560-70
    • (2009) Cell , vol.137 , pp. 560-570
    • Nakagawa, T.1    Lomb, D.J.2    Haigis, M.C.3    Guarente, L.4
  • 95
    • 84937517955 scopus 로고    scopus 로고
    • SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target
    • Nishida Y, Rardin MJ, Carrico C, He W, Sahu AK, et al. 2015. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol. Cell 59:321-32
    • (2015) Mol. Cell , vol.59 , pp. 321-332
    • Nishida, Y.1    Rardin, M.J.2    Carrico, C.3    He, W.4    Sahu, A.K.5
  • 96
    • 84928979016 scopus 로고    scopus 로고
    • Alternate deacylating specificities of the archaeal sirtuins Sir2Af1 and Sir2Af2
    • Ringel AE, Roman C, Wolberger C. 2014. Alternate deacylating specificities of the archaeal sirtuins Sir2Af1 and Sir2Af2. Protein Sci. 23:1686-97
    • (2014) Protein Sci. , vol.23 , pp. 1686-1697
    • Ringel, A.E.1    Roman, C.2    Wolberger, C.3
  • 97
    • 41349090663 scopus 로고    scopus 로고
    • SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
    • Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, et al. 2008. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492-96
    • (2008) Nature , vol.452 , pp. 492-496
    • Michishita, E.1    McCord, R.A.2    Berber, E.3    Kioi, M.4    Padilla-Nash, H.5
  • 98
    • 69249221533 scopus 로고    scopus 로고
    • Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6
    • Michishita E, McCord RA, Boxer LD, Barber MF, Hong T, et al. 2009. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 8:2664-66
    • (2009) Cell Cycle , vol.8 , pp. 2664-2666
    • Michishita, E.1    McCord, R.A.2    Boxer, L.D.3    Barber, M.F.4    Hong, T.5
  • 99
    • 69249229772 scopus 로고    scopus 로고
    • The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability
    • Yang B, Zwaans BMM, Eckersdorff M, Lombard DB. 2009. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle 8:2662-63
    • (2009) Cell Cycle , vol.8 , pp. 2662-2663
    • Yang, B.1    Zwaans, B.M.M.2    Eckersdorff, M.3    Lombard, D.B.4
  • 100
    • 77956550868 scopus 로고    scopus 로고
    • Human SIRT6 promotes DNA end resection through CtIP deacetylation
    • Kaidi A, Weinert BT, Choudhary C, Jackson SP. 2010. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329:1348-53
    • (2010) Science , vol.329 , pp. 1348-1353
    • Kaidi, A.1    Weinert, B.T.2    Choudhary, C.3    Jackson, S.P.4
  • 101
    • 78650724968 scopus 로고    scopus 로고
    • Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity
    • Schwer B, Schumacher B, Lombard DB, Xiao C, Kurtev MV, et al. 2010. Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. PNAS 107:21790-94
    • (2010) PNAS , vol.107 , pp. 21790-21794
    • Schwer, B.1    Schumacher, B.2    Lombard, D.B.3    Xiao, C.4    Kurtev, M.V.5
  • 103
    • 0026698088 scopus 로고
    • Myristyl acylation of the tumor necrosis factor ?precursor on specific lysine residues
    • Stevenson FT, Bursten SL, Locksley RM, Lovett DH. 1992. Myristyl acylation of the tumor necrosis factor ?precursor on specific lysine residues. J. Exp. Med. 176:1053-62
    • (1992) J. Exp. Med. , vol.176 , pp. 1053-1062
    • Stevenson, F.T.1    Bursten, S.L.2    Locksley, R.M.3    Lovett, D.H.4
  • 104
    • 59649117804 scopus 로고    scopus 로고
    • Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner
    • Van Gool F, Galli M, Gueydan C, Kruys V, Prevot P-P, et al. 2009. Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nat. Med. 15:206-10
    • (2009) Nat. Med. , vol.15 , pp. 206-210
    • Van Gool, F.1    Galli, M.2    Gueydan, C.3    Kruys, V.4    Prevot, P.-P.5
  • 105
    • 84923337675 scopus 로고    scopus 로고
    • Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies
    • Teng Y-B, Jing H, Aramsangtienchai P, He B, Khan S, et al. 2015. Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies. Sci. Rep. 5:8529
    • (2015) Sci. Rep. , vol.5 , pp. 8529
    • Teng, Y.-B.1    Jing, H.2    Aramsangtienchai, P.3    He, B.4    Khan, S.5
  • 106
    • 84929600711 scopus 로고    scopus 로고
    • Kinetic and structural basis for acyl-group selectivity and NAD+ dependence in sirtuin-catalyzed deacylation
    • Feldman JL, Dittenhafer-Reed KE, Kudo N, Thelen JN, Ito A, et al. 2015. Kinetic and structural basis for acyl-group selectivity and NAD+ dependence in sirtuin-catalyzed deacylation. Biochemistry 54:3037-50
    • (2015) Biochemistry , vol.54 , pp. 3037-3050
    • Feldman, J.L.1    Dittenhafer-Reed, K.E.2    Kudo, N.3    Thelen, J.N.4    Ito, A.5
  • 107
    • 84919933749 scopus 로고    scopus 로고
    • Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity
    • Mathias RA, Greco TM, Oberstein A, Budayeva HG, Chakrabarti R, et al. 2014. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159:1615-25
    • (2014) Cell , vol.159 , pp. 1615-1625
    • Mathias, R.A.1    Greco, T.M.2    Oberstein, A.3    Budayeva, H.G.4    Chakrabarti, R.5
  • 108
    • 84996553972 scopus 로고    scopus 로고
    • Identification of 'erasers' for lysine crotonylated histone marks using a chemical proteomics approach
    • Bao X, Wang Y, Li X, Li XM, Liu Z, et al. 2014. Identification of 'erasers' for lysine crotonylated histone marks using a chemical proteomics approach. ELife 3:e02999
    • (2014) ELife , vol.3 , pp. e02999
    • Bao, X.1    Wang, Y.2    Li, X.3    Li, X.M.4    Liu, Z.5
  • 109
    • 39149121854 scopus 로고    scopus 로고
    • N formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function
    • Wísniewski JR, Zougman A, Mann M. 2008. N formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucl. Acids Res. 36:570-77
    • (2008) Nucl. Acids Res. , vol.36 , pp. 570-577
    • Wísniewski, J.R.1    Zougman, A.2    Mann, M.3
  • 110
    • 84881077601 scopus 로고    scopus 로고
    • Functional lysine modification by an intrinsically reactive primary glycolytic metabolite
    • Moellering RE, Cravatt BF. 2013. Functional lysine modification by an intrinsically reactive primary glycolytic metabolite. Science 341:549-53
    • (2013) Science , vol.341 , pp. 549-553
    • Moellering, R.E.1    Cravatt, B.F.2
  • 112
    • 84884163378 scopus 로고    scopus 로고
    • An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms
    • Rauh D, Fischer F, Gertz M, Lakshminarasimhan M, Bergbrede T, et al. 2013. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms. Nat. Commun. 4:2327
    • (2013) Nat. Commun. , vol.4 , pp. 2327
    • Rauh, D.1    Fischer, F.2    Gertz, M.3    Lakshminarasimhan, M.4    Bergbrede, T.5
  • 113
    • 30144435945 scopus 로고    scopus 로고
    • SIRT1 top 40 hits: Use of one-bead, one-compound acetyl-peptide libraries and quantum dots to probe deacetylase specificity
    • Garske AL, Denu JM. 2006. SIRT1 top 40 hits: use of one-bead, one-compound acetyl-peptide libraries and quantum dots to probe deacetylase specificity. Biochemistry 45:94-101
    • (2006) Biochemistry , vol.45 , pp. 94-101
    • Garske, A.L.1    Denu, J.M.2
  • 114
    • 84922810755 scopus 로고    scopus 로고
    • The E. Coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites
    • AbouElfetouh A, Kuhn ML, Hu LI, Scholle MD, Sorensen DJ, et al. 2015. The E. Coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites. MicrobiologyOpen 4:66-83
    • (2015) MicrobiologyOpen , vol.4 , pp. 66-83
    • AbouElfetouh, A.1    Kuhn, M.L.2    Hu, L.I.3    Scholle, M.D.4    Sorensen, D.J.5
  • 115
  • 116
    • 84872276165 scopus 로고    scopus 로고
    • Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
    • Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, et al. 2013. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 49:186-99
    • (2013) Mol. Cell , vol.49 , pp. 186-199
    • Hebert, A.S.1    Dittenhafer-Reed, K.E.2    Yu, W.3    Bailey, D.J.4    Selen, E.S.5
  • 117
    • 27744569240 scopus 로고    scopus 로고
    • Unstructured conformations are a substrate requirement for the Sir2 family of NAD-dependent protein deacetylases
    • Khan AN, Lewis PN. 2005. Unstructured conformations are a substrate requirement for the Sir2 family of NAD-dependent protein deacetylases. J. Biol. Chem. 280:36073-78
    • (2005) J. Biol. Chem. , vol.280 , pp. 36073-36078
    • Khan, A.N.1    Lewis, P.N.2
  • 118
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, et al. 2010. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464:121-25
    • (2010) Nature , vol.464 , pp. 121-125
    • Hirschey, M.D.1    Shimazu, T.2    Goetzman, E.3    Jing, E.4    Schwer, B.5
  • 119
    • 84888329025 scopus 로고    scopus 로고
    • Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site
    • Bharathi SS, Zhang Y, Mohsen AW, Uppala R, Balasubramani M, et al. 2013. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J. Biol. Chem. 288:33837-47
    • (2013) J. Biol. Chem. , vol.288 , pp. 33837-33847
    • Bharathi, S.S.1    Zhang, Y.2    Mohsen, A.W.3    Uppala, R.4    Balasubramani, M.5
  • 120
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
    • Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E. 2006. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. PNAS 103:10224-29
    • (2006) PNAS , vol.103 , pp. 10224-10229
    • Schwer, B.1    Bunkenborg, J.2    Verdin, R.O.3    Andersen, J.S.4    Verdin, E.5
  • 121
    • 58149090925 scopus 로고    scopus 로고
    • SIRT6 links histone H3 lysine 9 deacetylation to NF-?B-dependent gene expression and organismal life span
    • Kawahara TLA, Michishita E, Adler AS, Damian M, Berber E, et al. 2009. SIRT6 links histone H3 lysine 9 deacetylation to NF-?B-dependent gene expression and organismal life span. Cell 136:62-74
    • (2009) Cell , vol.136 , pp. 62-74
    • Kawahara, T.L.A.1    Michishita, E.2    Adler, A.S.3    Damian, M.4    Berber, E.5
  • 122
    • 74549142287 scopus 로고    scopus 로고
    • The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1?
    • Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE, et al. 2010. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1?. Cell 140:280-93
    • (2010) Cell , vol.140 , pp. 280-293
    • Zhong, L.1    D'Urso, A.2    Toiber, D.3    Sebastian, C.4    Henry, R.E.5
  • 123
    • 84870874690 scopus 로고    scopus 로고
    • The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism
    • Sebastián C, Zwaans BMM, Silberman DM, Gymrek M, Goren A, et al. 2012. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151:1185-99
    • (2012) Cell , vol.151 , pp. 1185-1199
    • Sebastián, C.1    Zwaans, B.M.M.2    Silberman, D.M.3    Gymrek, M.4    Goren, A.5
  • 124
    • 84863453769 scopus 로고    scopus 로고
    • SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
    • Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, et al. 2012. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114-18
    • (2012) Nature , vol.487 , pp. 114-118
    • Barber, M.F.1    Michishita-Kioi, E.2    Xi, Y.3    Tasselli, L.4    Kioi, M.5
  • 125
    • 36849009695 scopus 로고    scopus 로고
    • Plasmodium falciparum Sir2: An unusual sirtuin with dual histone deacetylase and ADP-ribosyltransferase activity
    • Merrick CJ, Duraisingh MT. 2007. Plasmodium falciparum Sir2: An unusual sirtuin with dual histone deacetylase and ADP-ribosyltransferase activity. Eukaryot. Cell 6:2081-91
    • (2007) Eukaryot. Cell , vol.6 , pp. 2081-2091
    • Merrick, C.J.1    Duraisingh, M.T.2
  • 126
    • 70450225307 scopus 로고    scopus 로고
    • Structure-based mechanism of ADP-ribosylation by sirtuins
    • Hawse WF, Wolberger C. 2009. Structure-based mechanism of ADP-ribosylation by sirtuins. J. Biol. Chem. 284:33654-61
    • (2009) J. Biol. Chem. , vol.284 , pp. 33654-33661
    • Hawse, W.F.1    Wolberger, C.2
  • 128
    • 84937519320 scopus 로고    scopus 로고
    • Identification of a class of protein ADP-ribosylating sirtuins in microbial pathogens
    • Rack JGM, Morra R, Barkauskaite E, Kraehenbuehl R, Ariza A, et al. 2015. Identification of a class of protein ADP-ribosylating sirtuins in microbial pathogens. Mol. Cell 59:309-20
    • (2015) Mol. Cell , vol.59 , pp. 309-320
    • Rack, J.G.M.1    Morra, R.2    Barkauskaite, E.3    Kraehenbuehl, R.4    Ariza, A.5
  • 131
    • 84858000209 scopus 로고    scopus 로고
    • The sirtuin SIRT6 regulates lifespan in male mice
    • Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, et al. 2012. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218-21
    • (2012) Nature , vol.483 , pp. 218-221
    • Kanfi, Y.1    Naiman, S.2    Amir, G.3    Peshti, V.4    Zinman, G.5
  • 132
    • 84885155285 scopus 로고    scopus 로고
    • Widespread and enzyme-independent N acetylation and N succinylation of proteins in the chemical conditions of the mitochondrial matrix
    • Wagner GR, Payne RM. 2013. Widespread and enzyme-independent N acetylation and N succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288:29036-45
    • (2013) J. Biol. Chem. , vol.288 , pp. 29036-29045
    • Wagner, G.R.1    Payne, R.M.2
  • 133
    • 84888604134 scopus 로고    scopus 로고
    • Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: Chemical and metabolic logic of acetyl-lysine modifications
    • Ghanta S, Grossmann RE, Brenner C. 2013. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications. Crit. Rev. Biochem. Mol. Biol. 48:561-74
    • (2013) Crit. Rev. Biochem. Mol. Biol. , vol.48 , pp. 561-574
    • Ghanta, S.1    Grossmann, R.E.2    Brenner, C.3
  • 134
    • 79959906869 scopus 로고    scopus 로고
    • Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase
    • Jiang W, Wang S, Xiao M, Lin Y, Zhou L, et al. 2011. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol. Cell 43:33-44
    • (2011) Mol. Cell , vol.43 , pp. 33-44
    • Jiang, W.1    Wang, S.2    Xiao, M.3    Lin, Y.4    Zhou, L.5
  • 135
    • 0034968667 scopus 로고    scopus 로고
    • Structure and function of histone acetyltransferases
    • Marmorstein R. 2001. Structure and function of histone acetyltransferases. Cell. Mol. Life Sci. 58:693-703
    • (2001) Cell. Mol. Life Sci. , vol.58 , pp. 693-703
    • Marmorstein, R.1
  • 136
    • 84860192261 scopus 로고    scopus 로고
    • Identification of a molecular component of the mitochondrial acetyltransferase programme: A novel role for GCN5L1
    • Scott I, Webster BR, Li JH, Sack MN. 2012. Identification of a molecular component of the mitochondrial acetyltransferase programme: A novel role for GCN5L1. Biochem. J. 443:655-61
    • (2012) Biochem. J. , vol.443 , pp. 655-661
    • Scott, I.1    Webster, B.R.2    Li, J.H.3    Sack, M.N.4
  • 137
    • 84894263431 scopus 로고    scopus 로고
    • Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex
    • Fan J, Shan C, Kang HB, Elf S, Xie J, et al. 2014. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol. Cell 53:534-48
    • (2014) Mol. Cell , vol.53 , pp. 534-548
    • Fan, J.1    Shan, C.2    Kang, H.B.3    Elf, S.4    Xie, J.5
  • 138
    • 84906791699 scopus 로고    scopus 로고
    • Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth
    • Shan C, Elf S, Ji Q, Kang HB, Zhou L, et al. 2014. Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth. Mol. Cell 55:552-65
    • (2014) Mol. Cell , vol.55 , pp. 552-565
    • Shan, C.1    Elf, S.2    Ji, Q.3    Kang, H.B.4    Zhou, L.5
  • 139
    • 84935831609 scopus 로고    scopus 로고
    • Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines
    • Gibson GE, Xu H, Chen HL, Chen W, Denton TT, Zhang S. 2015. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines. J. Neurochem. 134:86-96
    • (2015) J. Neurochem. , vol.134 , pp. 86-96
    • Gibson, G.E.1    Xu, H.2    Chen, H.L.3    Chen, W.4    Denton, T.T.5    Zhang, S.6
  • 140
    • 0022578928 scopus 로고
    • Determination of short-chain acyl-coenzyme A esters by high-performance liquid chromatography
    • Hosokawa Y, Shimomura Y, Harris RA, Ozawa T. 1986. Determination of short-chain acyl-coenzyme A esters by high-performance liquid chromatography. Anal. Biochem. 153:45-49
    • (1986) Anal. Biochem. , vol.153 , pp. 45-49
    • Hosokawa, Y.1    Shimomura, Y.2    Harris, R.A.3    Ozawa, T.4
  • 141
    • 0021961854 scopus 로고
    • Separation and measurement of short-chain coenzyme-A compounds in rat liver by reversed-phase high-performance liquid chromatography
    • King MT, Reiss PD. 1985. Separation and measurement of short-chain coenzyme-A compounds in rat liver by reversed-phase high-performance liquid chromatography. Anal. Biochem. 146:173-79
    • (1985) Anal. Biochem. , vol.146 , pp. 173-179
    • King, M.T.1    Reiss, P.D.2
  • 142
    • 34249989455 scopus 로고    scopus 로고
    • Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phaseHPLC/MS
    • Gao L, ChiouW, Tang H, Cheng X, CampHS, Burns DJ. 2007. Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phaseHPLC/MS. J. Chromatogr. B 853:303-13
    • (2007) J. Chromatogr. B , vol.853 , pp. 303-313
    • Gao, L.1    Chiou, W.2    Tang, H.3    Cheng, X.4    Camp, H.S.5    Burns, D.J.6
  • 143
    • 75349111140 scopus 로고    scopus 로고
    • Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
    • Cimen H, Han M-J, Yang Y, Tong Q, Koc H, Koc EC. 2010. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49:304-11
    • (2010) Biochemistry , vol.49 , pp. 304-311
    • Cimen, H.1    Han, M.-J.2    Yang, Y.3    Tong, Q.4    Koc, H.5    Koc, E.C.6
  • 145
    • 77955810448 scopus 로고    scopus 로고
    • Site-specific introduction of an acetyl-lysine mimic into peptides and proteins by cysteine alkylation
    • Huang R, Holbert MA, Tarrant MK, Curtet S, Colquhoun DR, et al. 2010. Site-specific introduction of an acetyl-lysine mimic into peptides and proteins by cysteine alkylation. J. Am. Chem. Soc. 132:9986-87
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 9986-9987
    • Huang, R.1    Holbert, M.A.2    Tarrant, M.K.3    Curtet, S.4    Colquhoun, D.R.5
  • 147
    • 40949099577 scopus 로고    scopus 로고
    • Genetically encoding N acetyllysine in recombinant proteins
    • Neumann H, Peak-Chew SY, Chin JW. 2008. Genetically encoding N acetyllysine in recombinant proteins. Nat. Chem. Biol. 4:232-34
    • (2008) Nat. Chem. Biol. , vol.4 , pp. 232-234
    • Neumann, H.1    Peak-Chew, S.Y.2    Chin, J.W.3
  • 148
    • 77951298744 scopus 로고    scopus 로고
    • Acetylation regulates cyclophilin A catalysis, immunosuppression and HIV isomerization
    • Lammers M, Neumann H, Chin JW, James LC. 2010. Acetylation regulates cyclophilin A catalysis, immunosuppression and HIV isomerization. Nat. Chem. Biol. 6:331-37
    • (2010) Nat. Chem. Biol. , vol.6 , pp. 331-337
    • Lammers, M.1    Neumann, H.2    Chin, J.W.3    James, L.C.4
  • 149
    • 77949757079 scopus 로고    scopus 로고
    • A convenient method for genetic incorporation of multiple noncanonical amino acids into one protein in Escherichia coli
    • Huang Y, Russell WK, Wan W, Pai P-J, Russell DH, Liu W. 2010. A convenient method for genetic incorporation of multiple noncanonical amino acids into one protein in Escherichia coli. Mol. BioSyst. 6:683-86
    • (2010) Mol. BioSyst. , vol.6 , pp. 683-686
    • Huang, Y.1    Russell, W.K.2    Wan, W.3    Pai, P.-J.4    Russell, D.H.5    Liu, W.6
  • 150
    • 84859951790 scopus 로고    scopus 로고
    • SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status
    • Yu W, Dittenhafer-Reed KE, Denu JM. 2012. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J. Biol. Chem. 287:14078-86
    • (2012) J. Biol. Chem. , vol.287 , pp. 14078-14086
    • Yu, W.1    Dittenhafer-Reed, K.E.2    Denu, J.M.3
  • 151
    • 84870906814 scopus 로고    scopus 로고
    • Synthesis of N-propionyl-, N-butyryl-, and N-crotonyllysine containing histone H3 using the pyrrolysine system
    • Gattner MJ, Vrabel M, Carell T. 2013. Synthesis of N-propionyl-, N-butyryl-, and N-crotonyllysine containing histone H3 using the pyrrolysine system. Chem. Commun. 49:379-81
    • (2013) Chem. Commun. , vol.49 , pp. 379-381
    • Gattner, M.J.1    Vrabel, M.2    Carell, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.