-
1
-
-
0023340731
-
Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae
-
Rine J., Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 1987, 116:9-22.
-
(1987)
Genetics
, vol.116
, pp. 9-22
-
-
Rine, J.1
Herskowitz, I.2
-
2
-
-
77949887506
-
Mammalian sirtuins: biological insights and disease relevance
-
Haigis M.C., Sinclair D.A. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol Mech Dis 2010, 5:253-295.
-
(2010)
Annu Rev Pathol Mech Dis
, vol.5
, pp. 253-295
-
-
Haigis, M.C.1
Sinclair, D.A.2
-
3
-
-
84871119123
-
From sirtuin biology to human diseases: an update
-
Sebastian C., Satterstrom F.K., Haigis M.C., Mostoslavsky R. From sirtuin biology to human diseases: an update. J Biol Chem 2012, 287:42444-42452.
-
(2012)
J Biol Chem
, vol.287
, pp. 42444-42452
-
-
Sebastian, C.1
Satterstrom, F.K.2
Haigis, M.C.3
Mostoslavsky, R.4
-
4
-
-
67949102053
-
Recent progress in the biology and physiology of sirtuins
-
Finkel T., Deng C.-X., Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature 2009, 460:587-591.
-
(2009)
Nature
, vol.460
, pp. 587-591
-
-
Finkel, T.1
Deng, C.-X.2
Mostoslavsky, R.3
-
5
-
-
26244436281
-
Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
-
Michshita E., Park J.Y., Burneskis J.M., Barrett J.C., Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005, 16:4623-4635.
-
(2005)
Mol Biol Cell
, vol.16
, pp. 4623-4635
-
-
Michshita, E.1
Park, J.Y.2
Burneskis, J.M.3
Barrett, J.C.4
Horikawa, I.5
-
7
-
-
84882935541
-
Sirtuins' modulation of autophagy
-
Ng F., Tang B.L. Sirtuins' modulation of autophagy. J Cell Physiol 2013, 228:2262-2270.
-
(2013)
J Cell Physiol
, vol.228
, pp. 2262-2270
-
-
Ng, F.1
Tang, B.L.2
-
8
-
-
0027278557
-
Instability and decay of the primary structure of DNA
-
Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993, 362:709-715.
-
(1993)
Nature
, vol.362
, pp. 709-715
-
-
Lindahl, T.1
-
9
-
-
13944249618
-
DNA repair, genome stability, and aging
-
Lombard D.B., Chua K.F., Mostoslavsky R., Franco S., Gostissa M., Alt F.W. DNA repair, genome stability, and aging. Cell 2005, 120:497-512.
-
(2005)
Cell
, vol.120
, pp. 497-512
-
-
Lombard, D.B.1
Chua, K.F.2
Mostoslavsky, R.3
Franco, S.4
Gostissa, M.5
Alt, F.W.6
-
10
-
-
70349138701
-
The conserved role of sirtuins in chromatin regulation
-
Vaquero A. The conserved role of sirtuins in chromatin regulation. Int J Dev Biol 2009, 53:303-322.
-
(2009)
Int J Dev Biol
, vol.53
, pp. 303-322
-
-
Vaquero, A.1
-
11
-
-
78650747994
-
SIRT1 contributes to telomere maintenance and augments global homologous recombination
-
Palacios J.A., Herranz D., De Bonis M.L., Velasco S., Serrano M., Blasco M.A. SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol 2010, 191:1299-1313.
-
(2010)
J Cell Biol
, vol.191
, pp. 1299-1313
-
-
Palacios, J.A.1
Herranz, D.2
De Bonis, M.L.3
Velasco, S.4
Serrano, M.5
Blasco, M.A.6
-
12
-
-
41349090663
-
SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
-
Michishita E., McCord R.A., Berber E., Kioi M., Padilla-Nash H., Damian M., Cheung P., Kusumoto R., Kawahara T.L.A., Barrett J.C., et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008, 452:492-496.
-
(2008)
Nature
, vol.452
, pp. 492-496
-
-
Michishita, E.1
McCord, R.A.2
Berber, E.3
Kioi, M.4
Padilla-Nash, H.5
Damian, M.6
Cheung, P.7
Kusumoto, R.8
Kawahara, T.L.A.9
Barrett, J.C.10
-
13
-
-
79551580561
-
ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair
-
Cosentino C., Grieco D., Costanzo V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J 2010, 30:546-555.
-
(2010)
EMBO J
, vol.30
, pp. 546-555
-
-
Cosentino, C.1
Grieco, D.2
Costanzo, V.3
-
14
-
-
84876359638
-
SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
-
Jeong S.M., Xiao C., Finley L.W.S., Lahusen T., Souza A.L., Pierce K., Li Y.-H., Wang X., Laurent G., German N.J., et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 2013, 23:450-463.
-
(2013)
Cancer Cell
, vol.23
, pp. 450-463
-
-
Jeong, S.M.1
Xiao, C.2
Finley, L.W.S.3
Lahusen, T.4
Souza, A.L.5
Pierce, K.6
Li, Y.-H.7
Wang, X.8
Laurent, G.9
German, N.J.10
-
15
-
-
83455206803
-
Targeting sirtuin 1 to improve metabolism: all you need is NAD(+)?
-
Cantó C., Auwerx J. Targeting sirtuin 1 to improve metabolism: all you need is NAD(+)?. Pharmacol Rev 2012, 64:166-187.
-
(2012)
Pharmacol Rev
, vol.64
, pp. 166-187
-
-
Cantó, C.1
Auwerx, J.2
-
16
-
-
84891860991
-
The many faces of sirtuins: coupling of NAD metabolism, sirtuins and lifespan
-
Verdin E. The many faces of sirtuins: coupling of NAD metabolism, sirtuins and lifespan. Nat Med 2014, 20:25-27.
-
(2014)
Nat Med
, vol.20
, pp. 25-27
-
-
Verdin, E.1
-
17
-
-
84872276165
-
Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
-
Hebert A.S., Dittenhafer-Reed K.E., Yu W., Bailey D.J., Selen E.S., Boersma M.D., Carson J.J., Tonelli M., Balloon A.J., Higbee A.J., et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 2013, 49:186-199.
-
(2013)
Mol Cell
, vol.49
, pp. 186-199
-
-
Hebert, A.S.1
Dittenhafer-Reed, K.E.2
Yu, W.3
Bailey, D.J.4
Selen, E.S.5
Boersma, M.D.6
Carson, J.J.7
Tonelli, M.8
Balloon, A.J.9
Higbee, A.J.10
-
18
-
-
78651468722
-
Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
-
Someya S., Yu W., Hallows W.C., Xu J., Vann J.M., Leeuwenburgh C., Tanokura M., Denu J.M., Prolla T.A. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010, 143:802-812.
-
(2010)
Cell
, vol.143
, pp. 802-812
-
-
Someya, S.1
Yu, W.2
Hallows, W.C.3
Xu, J.4
Vann, J.M.5
Leeuwenburgh, C.6
Tanokura, M.7
Denu, J.M.8
Prolla, T.A.9
-
19
-
-
77956173286
-
SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity
-
Bao J., Scott I., Lu Z., Pang L., Dimond C.C., Gius D., Sack M.N. SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radical Biol Med 2010, 49:1230-1237.
-
(2010)
Free Radical Biol Med
, vol.49
, pp. 1230-1237
-
-
Bao, J.1
Scott, I.2
Lu, Z.3
Pang, L.4
Dimond, C.C.5
Gius, D.6
Sack, M.N.7
-
20
-
-
75349111140
-
Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
-
Cimen H., Han M.-J., Yang Y., Tong Q., Koc H., Koc E.C. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 2010, 49:304-311.
-
(2010)
Biochemistry
, vol.49
, pp. 304-311
-
-
Cimen, H.1
Han, M.-J.2
Yang, Y.3
Tong, Q.4
Koc, H.5
Koc, E.C.6
-
21
-
-
80051716282
-
Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
-
Finley L.W.S., Haas W., Desquiret-Dumas V., Wallace D.C., Procaccio V., Gygi S.P., Haigis M.C. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS ONE 2011, 6:e23295.
-
(2011)
PLoS ONE
, vol.6
-
-
Finley, L.W.S.1
Haas, W.2
Desquiret-Dumas, V.3
Wallace, D.C.4
Procaccio, V.5
Gygi, S.P.6
Haigis, M.C.7
-
22
-
-
80052291180
-
Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
-
Jing E., Emanuelli B., Hirschey M.D., Boucher J., Lee K.Y., Lombard D., Verdin E.M., Kahn C.R. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci U S A 2011, 108:14608-14613.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 14608-14613
-
-
Jing, E.1
Emanuelli, B.2
Hirschey, M.D.3
Boucher, J.4
Lee, K.Y.5
Lombard, D.6
Verdin, E.M.7
Kahn, C.R.8
-
23
-
-
84891506172
-
Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
-
Jing E., O'Neill B.T., Rardin M.J., Kleinridders A., Ilkeyeva O.R., Ussar S., Bain J.R., Lee K.Y., Verdin E.M., Newgard C.B., et al. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 2013, 62:3404-3417.
-
(2013)
Diabetes
, vol.62
, pp. 3404-3417
-
-
Jing, E.1
O'Neill, B.T.2
Rardin, M.J.3
Kleinridders, A.4
Ilkeyeva, O.R.5
Ussar, S.6
Bain, J.R.7
Lee, K.Y.8
Verdin, E.M.9
Newgard, C.B.10
-
24
-
-
84879059766
-
SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage
-
Tseng A.H.H., Shieh S.-S., Wang D.L. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radical Biol Med 2013, 63:222-234.
-
(2013)
Free Radical Biol Med
, vol.63
, pp. 222-234
-
-
Tseng, A.H.H.1
Shieh, S.-S.2
Wang, D.L.3
-
25
-
-
84861161546
-
SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis
-
Haigis M.C., Deng C.X., Finley L.W.S., Kim H.S., Gius D. SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis. Cancer Res 2012, 72:2468-2472.
-
(2012)
Cancer Res
, vol.72
, pp. 2468-2472
-
-
Haigis, M.C.1
Deng, C.X.2
Finley, L.W.S.3
Kim, H.S.4
Gius, D.5
-
26
-
-
74049094817
-
SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
-
Kim H.-S., Patel K., Muldoon-Jacobs K., Bisht K.S., Aykin-Burns N., Pennington J.D., van der Meer R., Nguyen P., Savage J., Owens K.M., et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010, 17:41-52.
-
(2010)
Cancer Cell
, vol.17
, pp. 41-52
-
-
Kim, H.-S.1
Patel, K.2
Muldoon-Jacobs, K.3
Bisht, K.S.4
Aykin-Burns, N.5
Pennington, J.D.6
van der Meer, R.7
Nguyen, P.8
Savage, J.9
Owens, K.M.10
-
27
-
-
79959819034
-
SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production
-
Bell E.L., Emerling B.M., Ricoult S.J.H., Guarente L. SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production. Oncogene 2011, 30:2986-2996.
-
(2011)
Oncogene
, vol.30
, pp. 2986-2996
-
-
Bell, E.L.1
Emerling, B.M.2
Ricoult, S.J.H.3
Guarente, L.4
-
28
-
-
79952501323
-
SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization
-
Finley L.W.S., Carracedo A., Lee J., Souza A., Egia A., Zhang J., Teruya-Feldstein J., Moreira P.I., Cardoso S.M., Clish C.B., et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 2011, 19:416-428.
-
(2011)
Cancer Cell
, vol.19
, pp. 416-428
-
-
Finley, L.W.S.1
Carracedo, A.2
Lee, J.3
Souza, A.4
Egia, A.5
Zhang, J.6
Teruya-Feldstein, J.7
Moreira, P.I.8
Cardoso, S.M.9
Clish, C.B.10
-
29
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis R.J., Lum J.J., Hatzivassiliou G., Thompson C.B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008, 7:11-20.
-
(2008)
Cell Metab
, vol.7
, pp. 11-20
-
-
DeBerardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
Thompson, C.B.4
-
30
-
-
84877720366
-
The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
-
Csibi A., Fendt S.-M., Li C., Poulogiannis G., Choo A.Y., Chapski D.J., Jeong S.M., Dempsey J.M., Parkhitko A., Morrison T., et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 2013, 153:840-854.
-
(2013)
Cell
, vol.153
, pp. 840-854
-
-
Csibi, A.1
Fendt, S.-M.2
Li, C.3
Poulogiannis, G.4
Choo, A.Y.5
Chapski, D.J.6
Jeong, S.M.7
Dempsey, J.M.8
Parkhitko, A.9
Morrison, T.10
-
31
-
-
81055122671
-
Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
-
Du J., Zhou Y., Su X., Yu J.J., Khan S., Jiang H., Kim J., Woo J., Kim J.H., Choi B.H., et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011, 334:806-809.
-
(2011)
Science
, vol.334
, pp. 806-809
-
-
Du, J.1
Zhou, Y.2
Su, X.3
Yu, J.J.4
Khan, S.5
Jiang, H.6
Kim, J.7
Woo, J.8
Kim, J.H.9
Choi, B.H.10
-
32
-
-
84880791239
-
SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
-
Park J., Chen Y., Tishkoff D.X., Peng C., Tan M., Dai L., Xie Z., Zhang Y., Zwaans B.M.M., Skinner M.E., et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 2013, 50:919-930.
-
(2013)
Mol Cell
, vol.50
, pp. 919-930
-
-
Park, J.1
Chen, Y.2
Tishkoff, D.X.3
Peng, C.4
Tan, M.5
Dai, L.6
Xie, Z.7
Zhang, Y.8
Zwaans, B.M.M.9
Skinner, M.E.10
-
33
-
-
79952274786
-
SIRT6: a master epigenetic gatekeeper of glucose metabolism
-
Zhong L., Mostoslavsky R. SIRT6: a master epigenetic gatekeeper of glucose metabolism. Transcription 2010, 1:17-21.
-
(2010)
Transcription
, vol.1
, pp. 17-21
-
-
Zhong, L.1
Mostoslavsky, R.2
-
34
-
-
31044445366
-
Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
-
Mostoslavsky R., Chua K.F., Lombard D.B., Pang W.W., Fischer M.R., Gellon L., Liu P., Mostoslavsky G., Franco S., Murphy M.M., et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006, 124:315-329.
-
(2006)
Cell
, vol.124
, pp. 315-329
-
-
Mostoslavsky, R.1
Chua, K.F.2
Lombard, D.B.3
Pang, W.W.4
Fischer, M.R.5
Gellon, L.6
Liu, P.7
Mostoslavsky, G.8
Franco, S.9
Murphy, M.M.10
-
35
-
-
74549142287
-
The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1a
-
Zhong L., Urso A.D., Toiber D., Sebastian C., Henry R.E., Vadysirisack D.D., Guimaraes A., Marinelli B., Wikstrom J.D., Nir T., et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1a. Cell 2010, 140:280-293.
-
(2010)
Cell
, vol.140
, pp. 280-293
-
-
Zhong, L.1
Urso, A.D.2
Toiber, D.3
Sebastian, C.4
Henry, R.E.5
Vadysirisack, D.D.6
Guimaraes, A.7
Marinelli, B.8
Wikstrom, J.D.9
Nir, T.10
-
36
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science 1956, 123:309-314.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
37
-
-
84870874690
-
The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism
-
Sebastian C., Zwaans B.M.M., Silberman D.M., Gymrek M., Goren A., Zhong L., Ram O., Truelove J., Guimaraes A.R., Toiber D., et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 2012, 151:1185-1199.
-
(2012)
Cell
, vol.151
, pp. 1185-1199
-
-
Sebastian, C.1
Zwaans, B.M.M.2
Silberman, D.M.3
Gymrek, M.4
Goren, A.5
Zhong, L.6
Ram, O.7
Truelove, J.8
Guimaraes, A.R.9
Toiber, D.10
-
38
-
-
84869082071
-
Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin
-
Min L., Ji Y., Bakiri L., Qiu Z., Cen J., Chen X., Chen L., Scheuch H., Zheng H., Qin L., et al. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat Cell Biol 2012, 14:1203-1211.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 1203-1211
-
-
Min, L.1
Ji, Y.2
Bakiri, L.3
Qiu, Z.4
Cen, J.5
Chen, X.6
Chen, L.7
Scheuch, H.8
Zheng, H.9
Qin, L.10
-
39
-
-
84883223984
-
Sirtuin-6-dependent genetic and epigenetic alterations are associated with poor clinical outcome in hepatocellular carcinoma patients
-
Marquardt J.U., Fischer K., Baus K., Kashyap A., Ma S., Krupp M., Linke M., Teufel A., Zechner U., Strand D., et al. Sirtuin-6-dependent genetic and epigenetic alterations are associated with poor clinical outcome in hepatocellular carcinoma patients. Hepatology 2013, 58:1054-1064.
-
(2013)
Hepatology
, vol.58
, pp. 1054-1064
-
-
Marquardt, J.U.1
Fischer, K.2
Baus, K.3
Kashyap, A.4
Ma, S.5
Krupp, M.6
Linke, M.7
Teufel, A.8
Zechner, U.9
Strand, D.10
-
40
-
-
84871676013
-
The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis
-
Dominy J.E., Lee Y., Jedrychowski M.P., Chim H., Jurczak M.J., Camporez J.P., Ruan H.-B., Feldman J., Pierce K., Mostoslavsky R., et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol Cell 2012, 48:900-913.
-
(2012)
Mol Cell
, vol.48
, pp. 900-913
-
-
Dominy, J.E.1
Lee, Y.2
Jedrychowski, M.P.3
Chim, H.4
Jurczak, M.J.5
Camporez, J.P.6
Ruan, H.-B.7
Feldman, J.8
Pierce, K.9
Mostoslavsky, R.10
-
41
-
-
77953291369
-
Sirtuins regulate key aspects of lipid metabolism
-
Lomb D.J., Laurent G., Haigis M.C. Sirtuins regulate key aspects of lipid metabolism. Biochim Biophys Acta 2010, 1804:1652-1657.
-
(2010)
Biochim Biophys Acta
, vol.1804
, pp. 1652-1657
-
-
Lomb, D.J.1
Laurent, G.2
Haigis, M.C.3
-
42
-
-
77958595135
-
SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
-
Ponugoti B., Kim D.H., Xiao Z., Smith Z., Miao J., Zang M., Wu S.Y., Chiang C.M., Veenstra T.D., Kemper J.K. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 2010, 285:33959-33970.
-
(2010)
J Biol Chem
, vol.285
, pp. 33959-33970
-
-
Ponugoti, B.1
Kim, D.H.2
Xiao, Z.3
Smith, Z.4
Miao, J.5
Zang, M.6
Wu, S.Y.7
Chiang, C.M.8
Veenstra, T.D.9
Kemper, J.K.10
-
43
-
-
77954488637
-
Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP
-
Walker A.K., Yang F., Jiang K., Ji J.-Y., Watts J.L., Purushotham A., Boss O., Hirsch M.L., Ribich S., Smith J.J., et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 2010, 24:1403-1417.
-
(2010)
Genes Dev
, vol.24
, pp. 1403-1417
-
-
Walker, A.K.1
Yang, F.2
Jiang, K.3
Ji, J.-Y.4
Watts, J.L.5
Purushotham, A.6
Boss, O.7
Hirsch, M.L.8
Ribich, S.9
Smith, J.J.10
-
44
-
-
34547906123
-
Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1
-
Rodgers J.T., Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci U S A 2007, 104:12861-12866.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 12861-12866
-
-
Rodgers, J.T.1
Puigserver, P.2
-
45
-
-
77954515012
-
+/- mice: a role of lipid mobilization and inflammation
-
+/- mice: a role of lipid mobilization and inflammation. Endocrinology 2010, 151:2504-2514.
-
(2010)
Endocrinology
, vol.151
, pp. 2504-2514
-
-
Xu, F.1
Gao, Z.2
Zhang, J.3
Rivera, C.A.4
Yin, J.5
Weng, J.6
Ye, J.7
-
46
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham A., Schug T.T., Xu Q., Surapureddi S., Guo X., Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009, 9:327-338.
-
(2009)
Cell Metab
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
Li, X.6
-
47
-
-
84255198350
-
The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+)
-
Gerhart-Hines Z., Dominy J.E., Blättler S.M., Jedrychowski M.P., Banks A.S., Lim J.-H., Chim H., Gygi S.P., Puigserver P. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Mol Cell 2011, 44:851-863.
-
(2011)
Mol Cell
, vol.44
, pp. 851-863
-
-
Gerhart-Hines, Z.1
Dominy, J.E.2
Blättler, S.M.3
Jedrychowski, M.P.4
Banks, A.S.5
Lim, J.-H.6
Chim, H.7
Gygi, S.P.8
Puigserver, P.9
-
48
-
-
84874817589
-
Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1 complex
-
Lim J.H., Gerhart-Hines Z., Dominy J.E., Lee Y., Kim S., Tabata M., Xiang Y.K., Puigserver P. Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1 complex. J Biol Chem 2013, 288:7117-7126.
-
(2013)
J Biol Chem
, vol.288
, pp. 7117-7126
-
-
Lim, J.H.1
Gerhart-Hines, Z.2
Dominy, J.E.3
Lee, Y.4
Kim, S.5
Tabata, M.6
Xiang, Y.K.7
Puigserver, P.8
-
49
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Hirschey M.D., Shimazu T., Goetzman E., Jing E., Schwer B., Lombard D.B., Grueter C.A., Harris C., Biddinger S., Ilkayeva O.R., et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
Shimazu, T.2
Goetzman, E.3
Jing, E.4
Schwer, B.5
Lombard, D.B.6
Grueter, C.A.7
Harris, C.8
Biddinger, S.9
Ilkayeva, O.R.10
-
50
-
-
82455212901
-
SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
-
Hirschey M.D., Shimazu T., Jing E., Grueter C.A., Collins A.M., Aouizerat B., Stančáková A., Goetzman E., Lam M.M., Schwer B., et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell 2011, 44:177-190.
-
(2011)
Mol Cell
, vol.44
, pp. 177-190
-
-
Hirschey, M.D.1
Shimazu, T.2
Jing, E.3
Grueter, C.A.4
Collins, A.M.5
Aouizerat, B.6
Stančáková, A.7
Goetzman, E.8
Lam, M.M.9
Schwer, B.10
-
51
-
-
84888329025
-
Sirtuin 3 (SIRT3) protein regulates long-chain Acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site
-
Bharathi S.S., Zhang Y., Mohsen A.W., Uppala R., Balasubramani M., Schreiber E., Uechi G., Beck M.E., Rardin M.J., Vockley J., et al. Sirtuin 3 (SIRT3) protein regulates long-chain Acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J Biol Chem 2013, 288:33837-33847.
-
(2013)
J Biol Chem
, vol.288
, pp. 33837-33847
-
-
Bharathi, S.S.1
Zhang, Y.2
Mohsen, A.W.3
Uppala, R.4
Balasubramani, M.5
Schreiber, E.6
Uechi, G.7
Beck, M.E.8
Rardin, M.J.9
Vockley, J.10
-
52
-
-
77957762687
-
SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
-
Nasrin N., Wu X., Fortier E., Feng Y., Bare O.C., Chen S., Ren X., Wu Z., Streeper R.S., Bordone L. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem 2010, 285:31995-32002.
-
(2010)
J Biol Chem
, vol.285
, pp. 31995-32002
-
-
Nasrin, N.1
Wu, X.2
Fortier, E.3
Feng, Y.4
Bare, O.C.5
Chen, S.6
Ren, X.7
Wu, Z.8
Streeper, R.S.9
Bordone, L.10
-
53
-
-
84878891625
-
SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
-
Laurent G., German N.J., Saha A.K., de Boer V.C.J., Davies M., Koves T.R., Dephoure N., Fischer F., Boanca G., Vaitheesvaran B., et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell 2013, 50:686-698.
-
(2013)
Mol Cell
, vol.50
, pp. 686-698
-
-
Laurent, G.1
German, N.J.2
Saha, A.K.3
de Boer, V.C.J.4
Davies, M.5
Koves, T.R.6
Dephoure, N.7
Fischer, F.8
Boanca, G.9
Vaitheesvaran, B.10
-
54
-
-
77956315551
-
Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
-
Kim H.-S., Xiao C., Wang R.-H., Lahusen T., Xu X., Vassilopoulos A., Vazquez-Ortiz G., Jeong W.-I., Park O., Ki S.H., et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab 2010, 12:224-236.
-
(2010)
Cell Metab
, vol.12
, pp. 224-236
-
-
Kim, H.-S.1
Xiao, C.2
Wang, R.-H.3
Lahusen, T.4
Xu, X.5
Vassilopoulos, A.6
Vazquez-Ortiz, G.7
Jeong, W.-I.8
Park, O.9
Ki, S.H.10
-
55
-
-
84885637201
-
FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression
-
Tao H., Xiong X., DePinho R.A., Deng C.X., Dong X.C. FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. J Biol Chem 2013, 288:29252-29259.
-
(2013)
J Biol Chem
, vol.288
, pp. 29252-29259
-
-
Tao, H.1
Xiong, X.2
DePinho, R.A.3
Deng, C.X.4
Dong, X.C.5
-
56
-
-
84884134120
-
Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6
-
Tao H., Xiong X., DePinho R.A., Deng C.X., Dong X.C. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. J Lipid Res 2013, 54:2745-2753.
-
(2013)
J Lipid Res
, vol.54
, pp. 2745-2753
-
-
Tao, H.1
Xiong, X.2
DePinho, R.A.3
Deng, C.X.4
Dong, X.C.5
-
57
-
-
84884150671
-
Multiple regulatory layers of SREBP1/2 by SIRT6
-
Elhanati S., Kanfi Y., Varvak A., Roichman A., Carmel-Gross I., Barth S., Gibor G., Cohen H.Y. Multiple regulatory layers of SREBP1/2 by SIRT6. Cell Rep 2013, 4:905-912.
-
(2013)
Cell Rep
, vol.4
, pp. 905-912
-
-
Elhanati, S.1
Kanfi, Y.2
Varvak, A.3
Roichman, A.4
Carmel-Gross, I.5
Barth, S.6
Gibor, G.7
Cohen, H.Y.8
-
58
-
-
84858000209
-
The sirtuin SIRT6 regulates lifespan in male mice
-
Kanfi Y., Naiman S., Amir G., Peshti V., Zinman G., Nahum L., Bar-Joseph Z., Cohen H.Y. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012, 483:218-221.
-
(2012)
Nature
, vol.483
, pp. 218-221
-
-
Kanfi, Y.1
Naiman, S.2
Amir, G.3
Peshti, V.4
Zinman, G.5
Nahum, L.6
Bar-Joseph, Z.7
Cohen, H.Y.8
-
59
-
-
84875881601
-
SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine
-
Jiang H., Khan S., Wang Y., Charron G., He B., Sebastian C., Du J., Kim R., Ge E., Mostoslavsky R., et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013, 496:110-113.
-
(2013)
Nature
, vol.496
, pp. 110-113
-
-
Jiang, H.1
Khan, S.2
Wang, Y.3
Charron, G.4
He, B.5
Sebastian, C.6
Du, J.7
Kim, R.8
Ge, E.9
Mostoslavsky, R.10
-
60
-
-
84886686038
-
Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins [internet]
-
Feldman J.L., Baeza J., Denu J.M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins [internet]. J Biol Chem 2013, 288:31350-31356.
-
(2013)
J Biol Chem
, vol.288
, pp. 31350-31356
-
-
Feldman, J.L.1
Baeza, J.2
Denu, J.M.3
-
61
-
-
84887613799
-
SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease
-
Shin J., He M., Liu Y., Paredes S., Villanova L., Brown K., Qiu X., Nabavi N., Mohrin M., Wojnoonski K., et al. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep 2013, 5:654-665.
-
(2013)
Cell Rep
, vol.5
, pp. 654-665
-
-
Shin, J.1
He, M.2
Liu, Y.3
Paredes, S.4
Villanova, L.5
Brown, K.6
Qiu, X.7
Nabavi, N.8
Mohrin, M.9
Wojnoonski, K.10
-
62
-
-
84863453769
-
SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
-
Barber M.F., Michishita-Kioi E., Xi Y., Tasselli L., Kioi M., Moqtaderi Z., Tennen R.I., Paredes S., Young N.L., Chen K., et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 2013, 487:114-118.
-
(2013)
Nature
, vol.487
, pp. 114-118
-
-
Barber, M.F.1
Michishita-Kioi, E.2
Xi, Y.3
Tasselli, L.4
Kioi, M.5
Moqtaderi, Z.6
Tennen, R.I.7
Paredes, S.8
Young, N.L.9
Chen, K.10
-
63
-
-
80053920774
-
Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
-
Yoshino J., Mills K.F., Yoon M.J., Imai S.-I. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 2011, 14:528-536.
-
(2011)
Cell Metab
, vol.14
, pp. 528-536
-
-
Yoshino, J.1
Mills, K.F.2
Yoon, M.J.3
Imai, S.-I.4
-
64
-
-
84862022077
-
The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
-
Cantó C., Houtkooper R.H., Pirinen E., Youn D.Y., Oosterveer M.H., Cen Y., Fernandez-Marcos P.J., Yamamoto H., Andreux P.A., Cettour-Rose P., et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 2012, 15:838-847.
-
(2012)
Cell Metab
, vol.15
, pp. 838-847
-
-
Cantó, C.1
Houtkooper, R.H.2
Pirinen, E.3
Youn, D.Y.4
Oosterveer, M.H.5
Cen, Y.6
Fernandez-Marcos, P.J.7
Yamamoto, H.8
Andreux, P.A.9
Cettour-Rose, P.10
-
65
-
-
84893442805
-
Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
-
Gomes A.P., Price N.L., Ling A.J.Y., Moslehi J.J., Montgomery M.K., Rajman L., White J.P., Teodoro J.S., Wrann C.D., Hubbard B.P., et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 2013, 155:1624-1638.
-
(2013)
Cell
, vol.155
, pp. 1624-1638
-
-
Gomes, A.P.1
Price, N.L.2
Ling, A.J.Y.3
Moslehi, J.J.4
Montgomery, M.K.5
Rajman, L.6
White, J.P.7
Teodoro, J.S.8
Wrann, C.D.9
Hubbard, B.P.10
-
66
-
-
0035902108
-
Genome maintenance mechanisms for preventing cancer
-
Hoeijmakers J.-H.J. Genome maintenance mechanisms for preventing cancer. Nature 2001, 411:366-374.
-
(2001)
Nature
, vol.411
, pp. 366-374
-
-
Hoeijmakers, J.-H.J.1
-
67
-
-
53149137486
-
DNA impaired, damage response, genome instability, and tumorigenesis in SIRT1 mutant mice
-
Wang R.-H., Sengupta K., Li C., Kim H.-S., Cao L., Xiao C., Kim S., Xu X., Zheng Y., Chilton B., et al. DNA impaired, damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 2008, 14:312-323.
-
(2008)
Cancer Cell
, vol.14
, pp. 312-323
-
-
Wang, R.-H.1
Sengupta, K.2
Li, C.3
Kim, H.-S.4
Cao, L.5
Xiao, C.6
Kim, S.7
Xu, X.8
Zheng, Y.9
Chilton, B.10
-
68
-
-
34250897968
-
SIRT1 regulates the function of the Nijmegen breakage syndrome protein
-
Yuan Z., Zhang X., Sengupta N., Lane W.S., Seto E. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell 2007, 27:149-162.
-
(2007)
Mol Cell
, vol.27
, pp. 149-162
-
-
Yuan, Z.1
Zhang, X.2
Sengupta, N.3
Lane, W.S.4
Seto, E.5
-
69
-
-
56749156405
-
SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging
-
Oberdoerffer P., Michan S., McVay M., Mostoslavsky R., Vann J., Park S.-K., Hartlerode A., Stegmuller J., Hafner A., Loerch P., et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 2008, 135:907-918.
-
(2008)
Cell
, vol.135
, pp. 907-918
-
-
Oberdoerffer, P.1
Michan, S.2
McVay, M.3
Mostoslavsky, R.4
Vann, J.5
Park, S.-K.6
Hartlerode, A.7
Stegmuller, J.8
Hafner, A.9
Loerch, P.10
-
70
-
-
43149118368
-
Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation
-
Li K., Casta A., Wang R., Lozada E., Fan W., Kane S., Ge Q., Gu W., Orren D., Luo J. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem 2008, 283:7590-7598.
-
(2008)
J Biol Chem
, vol.283
, pp. 7590-7598
-
-
Li, K.1
Casta, A.2
Wang, R.3
Lozada, E.4
Fan, W.5
Kane, S.6
Ge, Q.7
Gu, W.8
Orren, D.9
Luo, J.10
-
71
-
-
84880921439
-
SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons
-
Dobbin M.M., Madabhushi R., Pan L., Chen Y., Kim D., Gao J., Ahanonu B., Pao P.-C., Qiu Y., Zhao Y., et al. SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nat Neurosci 2013, 16:1008-1015.
-
(2013)
Nat Neurosci
, vol.16
, pp. 1008-1015
-
-
Dobbin, M.M.1
Madabhushi, R.2
Pan, L.3
Chen, Y.4
Kim, D.5
Gao, J.6
Ahanonu, B.7
Pao, P.-C.8
Qiu, Y.9
Zhao, Y.10
-
72
-
-
77955501963
-
SIRT1 regulates UV-induced DNA repair through deacetylating XPA
-
Fan W., Luo J. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol Cell 2010, 39:247-258.
-
(2010)
Mol Cell
, vol.39
, pp. 247-258
-
-
Fan, W.1
Luo, J.2
-
73
-
-
78651105018
-
Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C
-
Ming M., Shea C.R., Guo X., Li X., Soltani K., Han W., He Y.-Y. Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C. Proc Natl Acad Sci U S A 2010, 107:22623-22628.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 22623-22628
-
-
Ming, M.1
Shea, C.R.2
Guo, X.3
Li, X.4
Soltani, K.5
Han, W.6
He, Y.-Y.7
-
74
-
-
0037405043
-
Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle
-
Dryden S.C., Nahhas F.A., Nowak J.E., Goustin A.S., Tainsky M.A. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 2003, 23:3173-3185.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 3173-3185
-
-
Dryden, S.C.1
Nahhas, F.A.2
Nowak, J.E.3
Goustin, A.S.4
Tainsky, M.A.5
-
75
-
-
84882418252
-
SIRT2 directs the replication stress response through CDK9 deacetylation
-
Zhang H., Park S.-H., Pantazides B.G., Karpiuk O., Warren M.D., Hardy C.W., Duong D.M., Park S.-J., Kim H.-S., Vassilopoulos A., et al. SIRT2 directs the replication stress response through CDK9 deacetylation. Proc Natl Acad Sci U S A 2013, 110:13546-13551.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 13546-13551
-
-
Zhang, H.1
Park, S.-H.2
Pantazides, B.G.3
Karpiuk, O.4
Warren, M.D.5
Hardy, C.W.6
Duong, D.M.7
Park, S.-J.8
Kim, H.-S.9
Vassilopoulos, A.10
-
76
-
-
84875309392
-
The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation
-
Serrano L., Martínez-Redondo P., Marazuela-Duque A., Vazquez B.N., Dooley S.J., Voigt P., Beck D.B., Kane-Goldsmith N., Tong Q., Rabanal R.M., et al. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev 2013, 27:639-653.
-
(2013)
Genes Dev
, vol.27
, pp. 639-653
-
-
Serrano, L.1
Martínez-Redondo, P.2
Marazuela-Duque, A.3
Vazquez, B.N.4
Dooley, S.J.5
Voigt, P.6
Beck, D.B.7
Kane-Goldsmith, N.8
Tong, Q.9
Rabanal, R.M.10
-
77
-
-
78650248160
-
Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
-
Tao R., Coleman M.C., Pennington J.D., Ozden O., Park S.-H., Jiang H., Kim H.-S., Flynn C.R., Hill S., Hayes McDonald W., et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 2010, 40:893-904.
-
(2010)
Mol Cell
, vol.40
, pp. 893-904
-
-
Tao, R.1
Coleman, M.C.2
Pennington, J.D.3
Ozden, O.4
Park, S.-H.5
Jiang, H.6
Kim, H.-S.7
Flynn, C.R.8
Hill, S.9
Hayes McDonald, W.10
-
78
-
-
78649521247
-
Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
-
Qiu X., Brown K., Hirschey M.D., Verdin E., Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 2010, 12:662-667.
-
(2010)
Cell Metab
, vol.12
, pp. 662-667
-
-
Qiu, X.1
Brown, K.2
Hirschey, M.D.3
Verdin, E.4
Chen, D.5
-
79
-
-
79957979314
-
Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS
-
Chen Y., Zhang J., Lin Y., Lei Q., Guan K.-L., Zhao S., Xiong Y. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 2011, 12:534-541.
-
(2011)
EMBO Rep
, vol.12
, pp. 534-541
-
-
Chen, Y.1
Zhang, J.2
Lin, Y.3
Lei, Q.4
Guan, K.-L.5
Zhao, S.6
Xiong, Y.7
-
80
-
-
66049150672
-
SIRT6 stabilizes DNA-dependent Protein Kinase at chromatin for DNA double-strand break repair
-
McCord R.A., Michishita E., Hong T., Berber E., Boxer L.D., Kusumoto R., Guan S., Shi X., Gozani O., Burlingame A.L., et al. SIRT6 stabilizes DNA-dependent Protein Kinase at chromatin for DNA double-strand break repair. Aging (Albany NY) 2009, 1:109.
-
(2009)
Aging (Albany NY)
, vol.1
, pp. 109
-
-
McCord, R.A.1
Michishita, E.2
Hong, T.3
Berber, E.4
Boxer, L.D.5
Kusumoto, R.6
Guan, S.7
Shi, X.8
Gozani, O.9
Burlingame, A.L.10
-
81
-
-
69249221533
-
Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6
-
Michishita E., McCord R.A., Boxer L.D., Barber M.F., Hong T., Gozani O., Chua K.F. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 2009, 8:2664-2666.
-
(2009)
Cell Cycle
, vol.8
, pp. 2664-2666
-
-
Michishita, E.1
McCord, R.A.2
Boxer, L.D.3
Barber, M.F.4
Hong, T.5
Gozani, O.6
Chua, K.F.7
-
82
-
-
77956550868
-
Human SIRT6 promotes DNA end resection through CtIP deacetylation
-
Kaidi A., Weinert B.T., Choudhary C., Jackson S.P. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 2010, 329:1348-1353.
-
(2010)
Science
, vol.329
, pp. 1348-1353
-
-
Kaidi, A.1
Weinert, B.T.2
Choudhary, C.3
Jackson, S.P.4
-
83
-
-
79959363092
-
SIRT6 promotes DNA, repair under stress by activating PARP1
-
Mao Z., Hine C., Tian X., Van Meter M., Au M., Vaidya A., Seluanov A., Gorbunova V. SIRT6 promotes DNA, repair under stress by activating PARP1. Science 2011, 332:1443-1446.
-
(2011)
Science
, vol.332
, pp. 1443-1446
-
-
Mao, Z.1
Hine, C.2
Tian, X.3
Van Meter, M.4
Au, M.5
Vaidya, A.6
Seluanov, A.7
Gorbunova, V.8
-
84
-
-
84882630603
-
SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling
-
Toiber D., Erdel F., Bouazoune K., Silberman D.M., Zhong L., Mulligan P., Sebastian C., Cosentino C., Martinez-Pastor B., Giacosa S., et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell 2013, 51:454-468.
-
(2013)
Mol Cell
, vol.51
, pp. 454-468
-
-
Toiber, D.1
Erdel, F.2
Bouazoune, K.3
Silberman, D.M.4
Zhong, L.5
Mulligan, P.6
Sebastian, C.7
Cosentino, C.8
Martinez-Pastor, B.9
Giacosa, S.10
-
85
-
-
84877616759
-
A tale of metabolites: the cross-talk between chromatin and energy metabolism
-
Martinez-Pastor B., Cosentino C., Mostoslavsky R. A tale of metabolites: the cross-talk between chromatin and energy metabolism. Cancer Discov 2013, 3:497-501.
-
(2013)
Cancer Discov
, vol.3
, pp. 497-501
-
-
Martinez-Pastor, B.1
Cosentino, C.2
Mostoslavsky, R.3
-
86
-
-
84886056389
-
Metabolic modulation of chromatin: implications for DNA repair and genomic integrity
-
Liu J., Kim J., Oberdoerffer P. Metabolic modulation of chromatin: implications for DNA repair and genomic integrity. Front Genet 2013, 4:1-11.
-
(2013)
Front Genet
, vol.4
, pp. 1-11
-
-
Liu, J.1
Kim, J.2
Oberdoerffer, P.3
|