메뉴 건너뛰기




Volumn 14, Issue 6, 2013, Pages 666-675

Sirtuins family-recent development as a drug target for aging, metabolism, and age related diseases

Author keywords

Age related diseases; Aging; Drug target; Metabolism; Sirtuins

Indexed keywords

IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; PROTEIN P53; SIRTUIN; SIRTUIN 1; SIRTUIN 2; SIRTUIN 3; SIRTUIN 4; SIRTUIN 5; SIRTUIN 6; SIRTUIN 7;

EID: 84878550919     PISSN: 13894501     EISSN: 18735592     Source Type: Journal    
DOI: 10.2174/1389450111314060008     Document Type: Article
Times cited : (19)

References (166)
  • 1
    • 80051679034 scopus 로고    scopus 로고
    • Is aging a drug target?
    • Goetzl EJ. Is aging a drug target? FASEB J 2011; 25: 2509-11.
    • (2011) FASEB J , vol.25 , pp. 2509-2511
    • Goetzl, E.J.1
  • 4
    • 79958206937 scopus 로고    scopus 로고
    • Sirtuins, Aging, and Medicine
    • Guarente L. Sirtuins, Aging, and Medicine. N Engl J Med 2011; 364: 2235-44.
    • (2011) N Engl J Med , vol.364 , pp. 2235-2244
    • Guarente, L.1
  • 7
    • 0033015743 scopus 로고    scopus 로고
    • The aging paradox: Free radical theory of aging
    • Ashok BT, Ali R. The aging paradox: free radical theory of aging. Exp Gerontology 1999; 34: 293-303.
    • (1999) Exp Gerontology , vol.34 , pp. 293-303
    • Ashok, B.T.1    Ali, R.2
  • 8
    • 13944278132 scopus 로고    scopus 로고
    • Mitochondria, oxidants, aging
    • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, aging. Cell 2005; 120: 483-95.
    • (2005) Cell , vol.120 , pp. 483-495
    • Balaban, R.S.1    Nemoto, S.2    Finkel, T.3
  • 9
    • 8344282655 scopus 로고    scopus 로고
    • The role of oxidative damage and stress in aging
    • Bokov A, Chaudhuri A, Richardson A. The role of oxidative damage and stress in aging. Mech Ageing Dev 2004; 125: 811-26.
    • (2004) Mech Ageing Dev , vol.125 , pp. 811-826
    • Bokov, A.1    Chaudhuri, A.2    Richardson, A.3
  • 10
    • 0036086130 scopus 로고    scopus 로고
    • Free radicals in the physiological control of cell function
    • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47-95.
    • (2002) Physiol Rev , vol.82 , pp. 47-95
    • Droge, W.1
  • 11
    • 33846243745 scopus 로고    scopus 로고
    • An integrated view of oxidative stress in aging: Basic mechanisms, functional effects, and pathological considerations
    • Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 2006; 292: R18-36.
    • (2006) Am J Physiol Regul Integr Comp Physiol , vol.292
    • Kregel, K.C.1    Zhang, H.J.2
  • 12
    • 79952763586 scopus 로고    scopus 로고
    • Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine
    • Iqbal K, Jin SG, Pfeifer, GP, Szabo PE. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proceedings of the National Academy of Sciences 2011; 108: 3642-7.
    • (2011) Proceedings of the National Academy of Sciences , vol.108 , pp. 3642-3647
    • Iqbal, K.1    Jin, S.G.2    Pfeifer, G.P.3    Szabo, P.E.4
  • 13
    • 0023701018 scopus 로고
    • Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases
    • Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 1988; 203: 971-83.
    • (1988) J Mol Biol , vol.203 , pp. 971-983
    • Bestor, T.1    Laudano, A.2    Mattaliano, R.3    Ingram, V.4
  • 14
    • 0242300612 scopus 로고    scopus 로고
    • DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation
    • Martinowich K, Hattori D, Wu H, et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003; 302: 890-3.
    • (2003) Science , vol.302 , pp. 890-893
    • Martinowich, K.1    Hattori, D.2    Wu, H.3
  • 15
    • 33644849860 scopus 로고    scopus 로고
    • Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase
    • Goyal, R, Reinhardt R, Jeltsch A. Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res 2006; 34: 1182-8.
    • (2006) Nucleic Acids Res , vol.34 , pp. 1182-1188
    • Goyal, R.1    Reinhardt, R.2    Jeltsch, A.3
  • 16
    • 0023279926 scopus 로고
    • The inheritance of epigenetic defects
    • Holliday R. The inheritance of epigenetic defects. Science 1987; 238: 163-70.
    • (1987) Science , vol.238 , pp. 163-170
    • Holliday, R.1
  • 17
    • 0024552485 scopus 로고
    • Human lymphocytes aged in vivo have reduced levels of methylation in transcriptionally active and inactive DNA
    • Drinkwater RD, Blake TJ, Morley AA, Turner DR. Human lymphocytes aged in vivo have reduced levels of methylation in transcriptionally active and inactive DNA. Mutat Res 1989; 219: 29-37.
    • (1989) Mutat Res , vol.219 , pp. 29-37
    • Drinkwater, R.D.1    Blake, T.J.2    Morley, A.A.3    Turner, D.R.4
  • 18
    • 33847076849 scopus 로고    scopus 로고
    • Chromatin modifications and their function
    • Kouzarides T. Chromatin modifications and their function. Cell 2007; 128: 693-705.
    • (2007) Cell , vol.128 , pp. 693-705
    • Kouzarides, T.1
  • 19
    • 33644923491 scopus 로고    scopus 로고
    • Carbonyl modification in rat liver histones:Decrease with age and increase by dietary restriction
    • Sharma R, Nakamura A, Takahashi R, Nakamoto H, Goto S. Carbonyl modification in rat liver histones:decrease with age and increase by dietary restriction. Free Radic Biol Med 2006; 40: 1179-84.
    • (2006) Free Radic Biol Med , vol.40 , pp. 1179-1184
    • Sharma, R.1    Nakamura, A.2    Takahashi, R.3    Nakamoto, H.4    Goto, S.5
  • 20
    • 23044514669 scopus 로고    scopus 로고
    • Epigenetic differences arise during the lifetime of monozygotic twins
    • Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005; 102: 10604-9.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 10604-10609
    • Fraga, M.F.1    Ballestar, E.2    Paz, M.F.3
  • 21
    • 19944430797 scopus 로고    scopus 로고
    • Genomic maps and comparative analysis of histone modifications in human and mouse
    • Bernstein BE, Kamal M, Lindblad-Toh K, et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 2005; 120: 169-81.
    • (2005) Cell , vol.120 , pp. 169-181
    • Bernstein, B.E.1    Kamal, M.2    Lindblad-Toh, K.3
  • 22
    • 0037131426 scopus 로고    scopus 로고
    • Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging
    • Sarg B, Koutzamani E, Helliger W, Rundquist I, Lindner HH. Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem 2002; 277: 39195-201.
    • (2002) J Biol Chem , vol.277 , pp. 39195-39201
    • Sarg, B.1    Koutzamani, E.2    Helliger, W.3    Rundquist, I.4    Lindner, H.H.5
  • 23
    • 41349090663 scopus 로고    scopus 로고
    • SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
    • Michishita E, McCord RA, Berber E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008; 452: 492-6.
    • (2008) Nature , vol.452 , pp. 492-496
    • Michishita, E.1    McCord, R.A.2    Berber, E.3
  • 24
    • 34547875773 scopus 로고    scopus 로고
    • Sirtuins: Critical regulators at the crossroads between cancer and aging
    • Saunders LR, Verdin E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 2007; 26: 5489-504.
    • (2007) Oncogene , vol.26 , pp. 5489-5504
    • Saunders, L.R.1    Verdin, E.2
  • 25
    • 0030812917 scopus 로고    scopus 로고
    • Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily
    • Leipe DD, Landsman D. Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily. Nucleic Acids Res 1997; 25 (18): 3693-7.
    • (1997) Nucleic Acids Res , vol.25 , Issue.18 , pp. 3693-3697
    • Leipe, D.D.1    Landsman, D.2
  • 26
    • 3943054839 scopus 로고    scopus 로고
    • The Sir2 family of protein deacetylases
    • Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004; 73: 417-35.
    • (2004) Annu Rev Biochem , vol.73 , pp. 417-435
    • Blander, G.1    Guarente, L.2
  • 27
    • 77953257025 scopus 로고    scopus 로고
    • Aging and disease: Connections to sirtuins
    • Donmez G, Guarente L. Aging and disease: connections to sirtuins. Aging Cell 2010; 9: 285-90.
    • (2010) Aging Cell , vol.9 , pp. 285-290
    • Donmez, G.1    Guarente, L.2
  • 28
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: Biological insights and disease relevance
    • Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010; 5: 253-95.
    • (2010) Annu Rev Pathol , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 29
    • 38449105997 scopus 로고    scopus 로고
    • The aging process and potential interventions to extend life expectancy
    • Tosato M, Zamboni V, Ferrini A, Cesari M. The aging process and potential interventions to extend life expectancy. Clin Interv Aging 2007; 2: 401-12.
    • (2007) Clin Interv Aging , vol.2 , pp. 401-412
    • Tosato, M.1    Zamboni, V.2    Ferrini, A.3    Cesari, M.4
  • 32
    • 0000055057 scopus 로고
    • Pleiotropy, natural selection, and the evolution of senescence
    • Williams GC. Pleiotropy, natural selection, and the evolution of senescence. Evolution 1957; 11: 398-411.
    • (1957) Evolution , vol.11 , pp. 398-411
    • Williams, G.C.1
  • 34
    • 0142213542 scopus 로고    scopus 로고
    • The free radical theory of aging
    • Harman D. The free radical theory of aging. Antioxid Redox Signal 2003; 5: 557-61.
    • (2003) Antioxid Redox Signal , vol.5 , pp. 557-561
    • Harman, D.1
  • 35
    • 0018644035 scopus 로고
    • MAR1-A regulator of the HMa and HMα locus in Saccharomyces cerevisiae
    • Klar AJ, Seymour F, Macleod K. MAR1-A regulator of the HMa and HMα locus in Saccharomyces cerevisiae. Genetics 1979; 93: 37-50.
    • (1979) Genetics , vol.93 , pp. 37-50
    • Klar, A.J.1    Seymour, F.2    Macleod, K.3
  • 36
    • 0018564390 scopus 로고
    • Suppressor of mating-type locus mutations in Saccharomyces cerevisiae: Evidence for and identification of cryptic mating-type loci
    • Rine J, Strathern JN, Hicks JB, Herskowitz IA. suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci. Genetics 1979; 93: 877-901.
    • (1979) Genetics , vol.93 , pp. 877-901
    • Rine, J.1    Strathern, J.N.2    Hicks, J.B.3    Herskowitz, I.A.4
  • 38
    • 0021734287 scopus 로고
    • Characterization of two genes required for the position-effect control of yeast mating-type genes
    • Shore D, Squire M, Nasmyth KA. Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J 1984; 3: 2817-23.
    • (1984) EMBO J , vol.3 , pp. 2817-2823
    • Shore, D.1    Squire, M.2    Nasmyth, K.A.3
  • 39
    • 0022342103 scopus 로고
    • Map positions of yeast genes SIR1, SIR3 and SIR4
    • Ivy JM, Hicks JB, Klar AJ. Map positions of yeast genes SIR1, SIR3 and SIR4. Genetics 1985; 111: 735-44.
    • (1985) Genetics , vol.111 , pp. 735-744
    • Ivy, J.M.1    Hicks, J.B.2    Klar, A.J.3
  • 40
    • 0023340731 scopus 로고
    • Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae
    • Rine J, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 1987; 116: 9-22.
    • (1987) Genetics , vol.116 , pp. 9-22
    • Rine, J.1    Herskowitz, I.2
  • 41
    • 42449128019 scopus 로고    scopus 로고
    • Where in the cell is SIRT3? Functional localization of an NAD+-dependent protein deacetylase
    • Hallows WC, Albaugh BN, Denu JM. Where in the cell is SIRT3? Functional localization of an NAD+-dependent protein deacetylase, Biochem J 2008: 411: 11-3.
    • (2008) Biochem J , vol.411 , pp. 11-13
    • Hallows, W.C.1    Albaugh, B.N.2    Denu, J.M.3
  • 42
    • 0013072999 scopus 로고    scopus 로고
    • Calorie restriction, aging, and cancer prevention: Mechanisms of action and applicability to humans
    • Hursting SD, Lavigne JA, Berrigan D, Perkins, SN, Barrett JC. Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu Rev Med 2003: 54: 131-52.
    • (2003) Annu Rev Med , vol.54 , pp. 131-152
    • Hursting, S.D.1    Lavigne, J.A.2    Berrigan, D.3    Perkins, S.N.4    Barrett, J.C.5
  • 43
    • 67949102053 scopus 로고    scopus 로고
    • Recent progress in the biology and physiology of sirtuins
    • Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature 2009; 460: 587-91.
    • (2009) Nature , vol.460 , pp. 587-591
    • Finkel, T.1    Deng, C.X.2    Mostoslavsky, R.3
  • 44
    • 0028897013 scopus 로고
    • Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae
    • Kennedy BK, Austriaco NR, Jr, Zhang J, Guarente L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 1995; 80: 485-96.
    • (1995) Cell , vol.80 , pp. 485-496
    • Kennedy, B.K.1    Austriaco Jr., N.R.2    Zhang, J.3    Guarente, L.4
  • 45
    • 0033214237 scopus 로고    scopus 로고
    • The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
    • Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13: 2570-80.
    • (1999) Genes Dev , vol.13 , pp. 2570-2580
    • Kaeberlein, M.1    McVey, M.2    Guarente, L.3
  • 46
    • 8644224064 scopus 로고    scopus 로고
    • Sir2mediates longevity in the fly through a pathway related to calorie restriction
    • Rogina B, Helfand SL. Sir2mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 2004; 101: 15998-6003.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 15998-16003
    • Rogina, B.1    Helfand, S.L.2
  • 48
    • 84875636532 scopus 로고    scopus 로고
    • Sirtuins: The molecular basis of beneficial effects of physical activity
    • Pucci B, Villanova L, Sansone L, et al. Sirtuins: the molecular basis of beneficial effects of physical activity. Intern Emerg Med. 2013; 8: 23-5.
    • (2013) Intern Emerg Med , vol.8 , pp. 23-25
    • Pucci, B.1    Villanova, L.2    Sansone, L.3
  • 49
    • 3943054839 scopus 로고    scopus 로고
    • The Sir2 family of protein deacetylases
    • Blander G, Guarente, L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004; 73: 417-35.
    • (2004) Annu Rev Biochem , vol.73 , pp. 417-435
    • Blander, G.1    Guarente, L.2
  • 50
    • 0033887456 scopus 로고    scopus 로고
    • Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
    • Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochemical & Biophysical Research Communications. 2000; 273: 793-8.
    • (2000) Biochemical & Biophysical Research Communications , vol.273 , pp. 793-798
    • Frye, R.A.1
  • 52
    • 77149176653 scopus 로고    scopus 로고
    • Structural analysis of trypanosomal sirtuin: An insight for selective drug design
    • Kaur S, Shivange AV, Roy N. Structural analysis of trypanosomal sirtuin: an insight for selective drug design. Mol Divers 2010; 14: 169-78.
    • (2010) Mol Divers , vol.14 , pp. 169-178
    • Kaur, S.1    Shivange, A.V.2    Roy, N.3
  • 53
    • 2942564591 scopus 로고    scopus 로고
    • Sirtuins: Sir2-related NAD-dependent protein deacetylases
    • North BJ, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 2004; 5: 224.
    • (2004) Genome Biol , vol.5 , pp. 224
    • North, B.J.1    Verdin, E.2
  • 54
    • 53249121556 scopus 로고    scopus 로고
    • Sirtuins--novel therapeutic targets to treat age-associated diseases
    • Lavu S, Boss O, Elliott PJ, Lambert PD. Sirtuins--novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov 2008; 7: 841-53.
    • (2008) Nat Rev Drug Discov , vol.7 , pp. 841-853
    • Lavu, S.1    Boss, O.2    Elliott, P.J.3    Lambert, P.D.4
  • 55
    • 34547875013 scopus 로고    scopus 로고
    • NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs
    • Vaquero A, Sternglanz R, Reinberg D. NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 2007; 26: 5505-20.
    • (2007) Oncogene , vol.26 , pp. 5505-5520
    • Vaquero, A.1    Sternglanz, R.2    Reinberg, D.3
  • 57
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403: 795-800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 58
    • 12944283150 scopus 로고    scopus 로고
    • A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family
    • Smith JS, Brachmann CB, Celic I, et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA 2000; 97: 6658-66.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 6658-6666
    • Smith, J.S.1    Brachmann, C.B.2    Celic, I.3
  • 59
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
    • Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006; 126: 941-54.
    • (2006) Cell , vol.126 , pp. 941-954
    • Haigis, M.C.1    Mostoslavsky, R.2    Haigis, K.M.3
  • 60
    • 20444409132 scopus 로고    scopus 로고
    • Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
    • Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 2005; 280: 21313-20.
    • (2005) J Biol Chem , vol.280 , pp. 21313-21320
    • Liszt, G.1    Ford, E.2    Kurtev, M.3    Guarente, L.4
  • 61
    • 0035913903 scopus 로고    scopus 로고
    • hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase
    • Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107: 149-59.
    • (2001) Cell , vol.107 , pp. 149-159
    • Vaziri, H.1    Dessain, S.K.2    Ng, E.E.3
  • 62
    • 0034687694 scopus 로고    scopus 로고
    • Silent information regulator 2 family of NADdependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
    • Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NADdependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA 2000; 97: 14178-82.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 14178-14182
    • Tanner, K.G.1    Landry, J.2    Sternglanz, R.3    Denu, J.M.4
  • 63
    • 0034193776 scopus 로고    scopus 로고
    • Sir2 links chromatin silencing, metabolism, and aging
    • Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 2000; 14: 1021-6.
    • (2000) Genes Dev , vol.14 , pp. 1021-1026
    • Guarente, L.1
  • 64
    • 27744596999 scopus 로고    scopus 로고
    • Sir2 blocks extreme life-span extension
    • Fabrizio P, Gattazzo C, Battistella L, et al. Sir2 blocks extreme life-span extension. Cell 2005; 123: 655-67.
    • (2005) Cell , vol.123 , pp. 655-667
    • Fabrizio, P.1    Gattazzo, C.2    Battistella, L.3
  • 65
    • 8644224064 scopus 로고    scopus 로고
    • Sir2 mediates longevity in the fly through a pathway related to calorie restriction
    • Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 2004; 101: 15998-6003.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 15998-16003
    • Rogina, B.1    Helfand, S.L.2
  • 66
    • 67649356581 scopus 로고    scopus 로고
    • DSir2 and Dmp53 interact to mediate aspects of CR-dependent life span extension in D. melanogaster
    • Bauer JH, Morris SNS, Chang C, Flatt T, Wood JG, Helfand SL. dSir2 and Dmp53 interact to mediate aspects of CR-dependent life span extension in D. melanogaster. Aging 2009; 1: 38-49.
    • (2009) Aging , vol.1 , pp. 38-49
    • Bauer, J.H.1    Morris, S.N.S.2    Chang, C.3    Flatt, T.4    Wood, J.G.5    Helfand, S.L.6
  • 67
    • 8644224064 scopus 로고    scopus 로고
    • Sir2 mediates longevity in the fly through a pathway related to calorie restriction
    • Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 2004; 101: 15998-6003.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 15998-16003
    • Rogina, B.1    Helfand, S.L.2
  • 68
    • 84858000209 scopus 로고    scopus 로고
    • The sirtuin SIRT6 regulates lifespan in male mice
    • Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012; 483: 218-21.
    • (2012) Nature , vol.483 , pp. 218-221
    • Kanfi, Y.1    Naiman, S.2    Amir, G.3
  • 70
    • 0034703217 scopus 로고    scopus 로고
    • Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
    • Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae Science 2000; 289: 2126-8.
    • (2000) Science , vol.289 , pp. 2126-2128
    • Lin, S.J.1    Defossez, P.A.2    Guarente, L.3
  • 71
    • 0037130175 scopus 로고    scopus 로고
    • Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration
    • Lin SJ, Kaeberlein M, Andalis AA, et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 2002; 418: 344-8.
    • (2002) Nature , vol.418 , pp. 344-348
    • Lin, S.J.1    Kaeberlein, M.2    Andalis, A.A.3
  • 72
    • 0000432845 scopus 로고
    • On the influence of food and temperature upon the duration of life
    • Loeb J, Northrop JH. On the influence of food and temperature upon the duration of life. J Biol Chem 1917; 32: 103-21.
    • (1917) J Biol Chem , vol.32 , pp. 103-121
    • Loeb, J.1    Northrop, J.H.2
  • 73
    • 0000125953 scopus 로고
    • Effect of delayed and resumed growth on the longevity of a fish (Lebistes reticulatus, Peters) in captivity
    • Comfort A. Effect of delayed and resumed growth on the longevity of a fish (Lebistes reticulatus, Peters) in captivity. Gerontologia 1963; 49: 150-5.
    • (1963) Gerontologia , vol.49 , pp. 150-155
    • Comfort, A.1
  • 74
    • 0024580038 scopus 로고
    • Life extension by dietary restriction in the bowl and doily spider
    • Austad SN. Life extension by dietary restriction in the bowl and doily spider, Frontinella pyramitela Exp Gerontol 1989; 24: 83-9.
    • (1989) Frontinella Pyramitela Exp Gerontol , vol.24 , pp. 83-89
    • Austad, S.N.1
  • 75
    • 8644224064 scopus 로고    scopus 로고
    • Sir2 mediates longevity in the fly through a pathway related to calorie restriction
    • Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci 2004; 101: 15998-6003.
    • (2004) Proc Natl Acad Sci , vol.101 , pp. 15998-16003
    • Rogina, B.1    Helfand, S.L.2
  • 76
    • 28244475950 scopus 로고    scopus 로고
    • Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/ FOXO
    • Wang Y, Tissenbaum HA. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/ FOXO. Mech Ageing Dev 2006; 127: 48-56.
    • (2006) Mech Ageing Dev , vol.127 , pp. 48-56
    • Wang, Y.1    Tissenbaum, H.A.2
  • 77
    • 0033214237 scopus 로고    scopus 로고
    • The SIR2/ 3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
    • Kaeberlein M, McVey M, Guarente L. The SIR2/ 3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & Dev 1999; 13: 2570-80.
    • (1999) Genes & Dev , vol.13 , pp. 2570-2580
    • Kaeberlein, M.1    McVey, M.2    Guarente, L.3
  • 78
    • 19344374925 scopus 로고    scopus 로고
    • Sir2-independent life span extension by calorie restriction in yeast
    • Kaeberlein M, Kirkland KT, Fields S, Kennedy BK. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2004; 2: E296.
    • (2004) PLoS Biol , vol.2
    • Kaeberlein, M.1    Kirkland, K.T.2    Fields, S.3    Kennedy, B.K.4
  • 79
    • 77953589623 scopus 로고    scopus 로고
    • dSir2 mediates the increased spontaneous physical activity in flies on calorie restriction
    • Parashar V, Rogina B. dSir2 mediates the increased spontaneous physical activity in flies on calorie restriction. Aging (Albany NY). 2009; 1: 529-41.
    • (2009) Aging (Albany NY) , vol.1 , pp. 529-541
    • Parashar, V.1    Rogina, B.2
  • 80
    • 67649356581 scopus 로고    scopus 로고
    • DSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogaster
    • Bauer JH, Morris SN, Chang C, Flatt T, Wood JG, Helfand SL. dSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogaster. Aging (Albany NY). 2009; 1: 38-48.
    • (2009) Aging (Albany NY) , vol.1 , pp. 38-48
    • Bauer, J.H.1    Morris, S.N.2    Chang, C.3    Flatt, T.4    Wood, J.G.5    Helfand, S.L.6
  • 81
    • 84883451566 scopus 로고    scopus 로고
    • Maintaining good hearing: Calorie restriction, Sirt3, and glutathione
    • pii: S0531-5565: 00045-4
    • Han C, Someya S. Maintaining good hearing: Calorie restriction, Sirt3, and glutathione. Exp Gerontol 2013; pii: S0531-5565: 00045-4.
    • (2013) Exp Gerontol
    • Han, C.1    Someya, S.2
  • 82
    • 84876190692 scopus 로고    scopus 로고
    • Genome maintenance and transcription integrity in aging and disease
    • Wolters S, Schumacher B. Genome maintenance and transcription integrity in aging and disease. Front Genet 2013; 4: 19.
    • (2013) Front Genet , vol.4 , pp. 19
    • Wolters, S.1    Schumacher, B.2
  • 84
    • 67949102053 scopus 로고    scopus 로고
    • Recent progress in the biology and physiology of sirtuins
    • Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature 2009; 460: 587-91.
    • (2009) Nature , vol.460 , pp. 587-591
    • Finkel, T.1    Deng, C.X.2    Mostoslavsky, R.3
  • 85
    • 13944253348 scopus 로고    scopus 로고
    • Calorie restriction-the SIR2 connection
    • Guarente L, Picard F. Calorie restriction-the SIR2 connection. Cell 2005; 120: 473-82.
    • (2005) Cell , vol.120 , pp. 473-482
    • Guarente, L.1    Picard, F.2
  • 87
    • 34250897968 scopus 로고    scopus 로고
    • SIRT1 regulates the function of the Nijmegen breakage syndrome protein
    • Yuan Z, Zhang X, Sengupta N, Lane WS, Seto E. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell 2007; 27: 149-62.
    • (2007) Mol Cell , vol.27 , pp. 149-162
    • Yuan, Z.1    Zhang, X.2    Sengupta, N.3    Lane, W.S.4    Seto, E.5
  • 88
    • 53149137486 scopus 로고    scopus 로고
    • Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice
    • Wang RH, Sengupta K, Li C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 2008; 14: 312-23.
    • (2008) Cancer Cell , vol.14 , pp. 312-323
    • Wang, R.H.1    Sengupta, K.2    Li, C.3
  • 89
    • 84863981612 scopus 로고    scopus 로고
    • Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging
    • Jia G, Su L, Singhal S, Liu X. Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging. Mol Cell Biochem. 2012; 364: 345-50.
    • (2012) Mol Cell Biochem , vol.364 , pp. 345-350
    • Jia, G.1    Su, L.2    Singhal, S.3    Liu, X.4
  • 90
    • 0000567961 scopus 로고    scopus 로고
    • Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat
    • Barzilai N, Banerjee S, Hawkins M, Chen W, Rossetti L. Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat. J Clin Invest 1998; 101: 1353-61.
    • (1998) J Clin Invest , vol.101 , pp. 1353-1361
    • Barzilai, N.1    Banerjee, S.2    Hawkins, M.3    Chen, W.4    Rossetti, L.5
  • 93
    • 25144454432 scopus 로고    scopus 로고
    • Increased dosage of mammalian Sir2 in pancreatic ß cells enhances glucose-stimulated insulin secretion in mice
    • Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic ß cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005; 2: 105-17.
    • (2005) Cell Metab , vol.2 , pp. 105-117
    • Moynihan, K.A.1    Grimm, A.A.2    Plueger, M.M.3
  • 94
    • 33244486764 scopus 로고    scopus 로고
    • Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic ß cells
    • Bordone L, Motta MC, Picard F, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic ß cells. PLoS Biol 2006; 4: 31.
    • (2006) PLoS Biol , vol.4 , pp. 31
    • Bordone, L.1    Motta, M.C.2    Picard, F.3
  • 95
    • 18144411313 scopus 로고    scopus 로고
    • SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1a
    • Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1a. J Biol Chem 2005; 280: 16456-60.
    • (2005) J Biol Chem , vol.280 , pp. 16456-16460
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 97
    • 84855757015 scopus 로고    scopus 로고
    • Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation
    • Xue L, Xu F, Meng L, et al. Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation. FEBS Lett 2012; 586: 137-42.
    • (2012) FEBS Lett , vol.586 , pp. 137-142
    • Xue, L.1    Xu, F.2    Meng, L.3
  • 98
    • 84871107379 scopus 로고    scopus 로고
    • Mitochondrial protein acylation and intermediary metabolism: Regulation by sirtuins and implications for metabolic disease
    • Newman JC, He W, Verdin E. Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. J Biol Chem 2012; 287: 42436-43.
    • (2012) J Biol Chem , vol.287 , pp. 42436-42443
    • Newman, J.C.1    He, W.2    Verdin, E.3
  • 99
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
    • Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006; 126: 941-54.
    • (2006) Cell , vol.126 , pp. 941-954
    • Haigis, M.C.1    Mostoslavsky, R.2    Haigis, K.M.3
  • 100
    • 65249087389 scopus 로고    scopus 로고
    • SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009; 137: 560-70.
    • (2009) Cell , vol.137 , pp. 560-570
    • Nakagawa, T.1    Lomb, D.J.2    Haigis, M.C.3    Guarente, L.4
  • 101
    • 77249128352 scopus 로고    scopus 로고
    • Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1
    • Ogura M, Nakamura Y, Tanaka D, et al. Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1. Biochem Biophys Res Commun 2010; 393: 73-8.
    • (2010) Biochem Biophys Res Commun , vol.393 , pp. 73-78
    • Ogura, M.1    Nakamura, Y.2    Tanaka, D.3
  • 102
    • 33646197298 scopus 로고    scopus 로고
    • Biochemical and molecular basis of insulin resistance
    • Chakraborty C. Biochemical and molecular basis of insulin resistance. Curr Protein Pept Sci 2006; 7: 113-21.
    • (2006) Curr Protein Pept Sci , vol.7 , pp. 113-121
    • Chakraborty, C.1
  • 103
    • 79551649916 scopus 로고    scopus 로고
    • Landscape mapping of functional proteins in insulin signal transduction and insulin resistance: A network-based protein-protein interaction analysis
    • Chakraborty C, Roy SS, Hsu MJ, Agoramoorthy G. Landscape mapping of functional proteins in insulin signal transduction and insulin resistance: a network-based protein-protein interaction analysis. PLoS One 2011; 6: e16388.
    • (2011) PLoS One , vol.6
    • Chakraborty, C.1    Roy, S.S.2    Hsu, M.J.3    Agoramoorthy, G.4
  • 104
    • 34548857700 scopus 로고    scopus 로고
    • SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B
    • Sun C, Zhang F, Ge X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007; 6: 307-19.
    • (2007) Cell Metab , vol.6 , pp. 307-319
    • Sun, C.1    Zhang, F.2    Ge, X.3
  • 105
    • 62749133315 scopus 로고    scopus 로고
    • SIRT1, is it a tumor promoter or tumor suppressor
    • Deng CX. SIRT1, is it a tumor promoter or tumor suppressor? Int. J. Biol. Sci 2009; 5: 147-52.
    • (2009) Int. J. Biol. Sci , vol.5 , pp. 147-152
    • Deng, C.X.1
  • 106
    • 0033581321 scopus 로고    scopus 로고
    • Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation
    • Zhu H, Guo Q, Mattson MP. Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation. Brain Res 1999; 842: 224-9.
    • (1999) Brain Res , vol.842 , pp. 224-229
    • Zhu, H.1    Guo, Q.2    Mattson, M.P.3
  • 107
    • 14644421534 scopus 로고    scopus 로고
    • Caloric restriction attenuates Aß-deposition in Alzheimer transgenic models
    • Patel NV, Gordon MN, Connor KE, et al. Caloric restriction attenuates Aß-deposition in Alzheimer transgenic models. Neurobiol. Aging 2005; 26: 995-1000.
    • (2005) Neurobiol. Aging , vol.26 , pp. 995-1000
    • Patel, N.V.1    Gordon, M.N.2    Connor, K.E.3
  • 108
    • 0033566286 scopus 로고    scopus 로고
    • Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease
    • Duan W, Mattson MP. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J Neurosci Res 1999; 57: 195-206.
    • (1999) J Neurosci Res , vol.57 , pp. 195-206
    • Duan, W.1    Mattson, M.P.2
  • 109
    • 33751113602 scopus 로고    scopus 로고
    • Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction
    • Haigis MC, Guarente LP. Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes Dev 2006; 20: 2913-21.
    • (2006) Genes Dev , vol.20 , pp. 2913-2921
    • Haigis, M.C.1    Guarente, L.P.2
  • 110
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: Biological insights and disease relevance
    • Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Ann Review Pathol. 2010; 5: 253-95.
    • (2010) Ann Review Pathol , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 111
    • 77953257025 scopus 로고    scopus 로고
    • Aging and disease: Connections to sirtuins
    • Donmez G, Guarente L. Aging and disease: connections to sirtuins. Aging Cell 2010; 9: 285-90.
    • (2010) Aging Cell , vol.9 , pp. 285-290
    • Donmez, G.1    Guarente, L.2
  • 112
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: Biological insights and disease relevance
    • Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010; 5: 253-95.
    • (2010) Annu Rev Pathol , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 113
    • 84867880208 scopus 로고    scopus 로고
    • SIRT1 in metabolic syndrome: Where to target matters
    • Wang Y, Xu C, Liang Y, Vanhoutte PM. SIRT1 in metabolic syndrome: where to target matters. Pharmacol Ther 2012; 136: 305-18.
    • (2012) Pharmacol Ther , vol.136 , pp. 305-318
    • Wang, Y.1    Xu, C.2    Liang, Y.3    Vanhoutte, P.M.4
  • 114
    • 84865318675 scopus 로고    scopus 로고
    • Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo
    • Zhao Y, Luo P, Guo Q, et al. Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Exp Neurol 2012; 237: 489-98.
    • (2012) Exp Neurol , vol.237 , pp. 489-498
    • Zhao, Y.1    Luo, P.2    Guo, Q.3
  • 115
    • 84874709843 scopus 로고    scopus 로고
    • SIRT1 and SIRT2: Emerging targets in neurodegeneration
    • Donmez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 2013; 5: 344-52.
    • (2013) EMBO Mol Med , vol.5 , pp. 344-352
    • Donmez, G.1    Outeiro, T.F.2
  • 116
    • 84888004300 scopus 로고    scopus 로고
    • Sirt1 Promotes Axonogenesis by Deacetylation of Akt and Inactivation of GSK3
    • Epub ahead of print
    • Li XH, Chen C, Tu Y, et al. Sirt1 Promotes Axonogenesis by Deacetylation of Akt and Inactivation of GSK3. Mol Neurobiol 2013;[Epub ahead of print].
    • (2013) Mol Neurobiol
    • Li, X.H.1    Chen, C.2    Tu, Y.3
  • 117
    • 84883829745 scopus 로고    scopus 로고
    • Cross-talk between SIRT1 and p66Shc in vascular diseases
    • pii: S1050-1738: 00017-0
    • Chen HZ, Wan YZ, Liu DP. Cross-talk between SIRT1 and p66Shc in vascular diseases. Trends Cardiovasc Med 2013; pii: S1050-1738: 00017-0.
    • (2013) Trends Cardiovasc Med
    • Chen, H.Z.1    Wan, Y.Z.2    Liu, D.P.3
  • 118
    • 84873809257 scopus 로고    scopus 로고
    • Peripheral blood monocyte Sirt1 expression is reduced in patients with coronary artery disease
    • Breitenstein A, Wyss CA, Spescha RD, et al. Peripheral blood monocyte Sirt1 expression is reduced in patients with coronary artery disease. PLoS One 2013; 8: e53106.
    • (2013) PLoS One , vol.8
    • Breitenstein, A.1    Wyss, C.A.2    Spescha, R.D.3
  • 119
    • 84878531104 scopus 로고    scopus 로고
    • Anti-aging molecule, Sirt1: A novel therapeutic target for diabetic nephropathy
    • Kume S, Kitada M, Kanasaki K, Maegawa H, Koya D. Anti-aging molecule, Sirt1: a novel therapeutic target for diabetic nephropathy. Arch Pharm Res 2013; 36: 230-6.
    • (2013) Arch Pharm Res , vol.36 , pp. 230-236
    • Kume, S.1    Kitada, M.2    Kanasaki, K.3    Maegawa, H.4    Koya, D.5
  • 120
    • 84862778684 scopus 로고    scopus 로고
    • SIRT1 overexpression decreases cisplatin-induced acetylation of NF-κB p65 subunit and cytotoxicity in renal proximal tubule cells
    • Mar 9
    • Jung YJ, Lee JE, Lee AS, et al. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-κB p65 subunit and cytotoxicity in renal proximal tubule cells. Biochem Biophys Res Commun. 2012 Mar 9; 419: 206-10.
    • (2012) Biochem Biophys Res Commun , vol.419 , pp. 206-210
    • Jung, Y.J.1    Lee, J.E.2    Lee, A.S.3
  • 121
    • 84865145752 scopus 로고    scopus 로고
    • The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats
    • Wu L, Zhang Y, Ma X, Zhang N, Qin G. The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats. Mol Biol Rep 2012; 39: 9085-93.
    • (2012) Mol Biol Rep , vol.39 , pp. 9085-9093
    • Wu, L.1    Zhang, Y.2    Ma, X.3    Zhang, N.4    Qin, G.5
  • 122
    • 84872858887 scopus 로고    scopus 로고
    • The guardian: Metabolic and tumoursuppressive effects of SIRT6
    • Lerrer B, Cohen HY. The guardian: metabolic and tumoursuppressive effects of SIRT6. EMBO J 2013; 32: 7-8.
    • (2013) EMBO J , vol.32 , pp. 7-8
    • Lerrer, B.1    Cohen, H.Y.2
  • 123
    • 84870874690 scopus 로고    scopus 로고
    • The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism
    • Sebastián C, Zwaans BM, Silberman DM, et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 2012; 151: 1185-99.
    • (2012) Cell , vol.151 , pp. 1185-1199
    • Sebastián, C.1    Zwaans, B.M.2    Silberman, D.M.3
  • 124
    • 84870363221 scopus 로고    scopus 로고
    • The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses
    • Bauer I, Grozio A, Lasigliè D, et al. The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses. J Biol Chem 2012; 287(49): 40924-37.
    • (2012) J Biol Chem , vol.287 , Issue.49 , pp. 40924-40937
    • Bauer, I.1    Grozio, A.2    Lasigliè, D.3
  • 125
    • 84869082071 scopus 로고    scopus 로고
    • Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin
    • Min L, Ji Y, Bakiri L, et al. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat Cell Biol 2012; 14(11): 1203-11.
    • (2012) Nat Cell Biol , vol.14 , Issue.11 , pp. 1203-1211
    • Min, L.1    Ji, Y.2    Bakiri, L.3
  • 126
    • 84878550317 scopus 로고    scopus 로고
    • SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer
    • [Epub ahead of print]
    • Khongkow M, Olmos Y, Gong C, et al. SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Carcinogenesis. 2013 [Epub ahead of print].
    • (2013) Carcinogenesis
    • Khongkow, M.1    Olmos, Y.2    Gong, C.3
  • 127
    • 33744466971 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription
    • Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes & Dev 2006; 20: 1075-80.
    • (2006) Genes & Dev , vol.20 , pp. 1075-1080
    • Ford, E.1    Voit, R.2    Liszt, G.3    Magin, C.4    Grummt, I.5    Guarente, L.6
  • 128
    • 41449083867 scopus 로고    scopus 로고
    • Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
    • Vakhrusheva O, Smolka C, Gajawada P, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 2008; 102: 703-10.
    • (2008) Circ Res , vol.102 , pp. 703-710
    • Vakhrusheva, O.1    Smolka, C.2    Gajawada, P.3
  • 129
    • 0037291214 scopus 로고    scopus 로고
    • The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
    • North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003; 11(2): 437-44.
    • (2003) Mol Cell , vol.11 , Issue.2 , pp. 437-444
    • North, B.J.1    Marshall, B.L.2    Borra, M.T.3    Denu, J.M.4    Verdin, E.5
  • 130
    • 26244436281 scopus 로고    scopus 로고
    • Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
    • Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005; 16: 4623-35.
    • (2005) Mol Biol Cell , vol.16 , pp. 4623-4635
    • Michishita, E.1    Park, J.Y.2    Burneskis, J.M.3    Barrett, J.C.4    Horikawa, I.5
  • 133
    • 84870999850 scopus 로고    scopus 로고
    • The NAD-dependent deacetylase SIRT2 is required for programmed necrosis
    • Narayan N, Lee IH, Borenstein R, et al. The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature 2012; 492: 199-204.
    • (2012) Nature , vol.492 , pp. 199-204
    • Narayan, N.1    Lee, I.H.2    Borenstein, R.3
  • 135
    • 65549113750 scopus 로고    scopus 로고
    • CBP/p300-mediated acetylation of histone H3 on lysine 56
    • Das C, Lucia MS, Hansen KC, Tyler JK. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 2009; 459: 113-7.
    • (2009) Nature , vol.459 , pp. 113-117
    • Das, C.1    Lucia, M.S.2    Hansen, K.C.3    Tyler, J.K.4
  • 136
    • 10744232772 scopus 로고    scopus 로고
    • Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly
    • Rose G, Dato S, Altomare K, et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol 2003; 38: 1065-70.
    • (2003) Exp Gerontol , vol.38 , pp. 1065-1070
    • Rose, G.1    Dato, S.2    Altomare, K.3
  • 137
    • 79953799195 scopus 로고    scopus 로고
    • Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer
    • Alhazzazi TY, Kamarajan P, Joo N, et al. Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 2011; 117: 1670-8.
    • (2011) Cancer , vol.117 , pp. 1670-1678
    • Alhazzazi, T.Y.1    Kamarajan, P.2    Joo, N.3
  • 138
    • 84866912720 scopus 로고    scopus 로고
    • Salvianolic acid A protects the peripheral nerve function in diabetic rats through regulation of the AMPK-PGC1_-Sirt3 axis
    • Yu X, Zhang L, Yang X, et al. Salvianolic acid A protects the peripheral nerve function in diabetic rats through regulation of the AMPK-PGC1_-Sirt3 axis. Molecules 2012; 17: 11216-28.
    • (2012) Molecules , vol.17 , pp. 11216-11228
    • Yu, X.1    Zhang, L.2    Yang, X.3
  • 139
    • 84876359638 scopus 로고    scopus 로고
    • SIRT4 Has Tumor-Suppressive Activity and Regulates the Cellular Metabolic Response to DNA Damage by Inhibiting Mitochondrial Glutamine Metabolism
    • pii: S1535-6108: 00078-0
    • Jeong SM, Xiao C, Finley LW, et al. SIRT4 Has Tumor-Suppressive Activity and Regulates the Cellular Metabolic Response to DNA Damage by Inhibiting Mitochondrial Glutamine Metabolism. Cancer Cell 2013: pii: S1535-6108: 00078-0.
    • (2013) Cancer Cell
    • Jeong, S.M.1    Xiao, C.2    Finley, L.W.3
  • 140
    • 77957762687 scopus 로고    scopus 로고
    • SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
    • Nasrin N, Wu X, Fortier E, et al. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem. 2010; 285: 31995-2002.
    • (2010) J Biol Chem , vol.285 , pp. 31995-32002
    • Nasrin, N.1    Wu, X.2    Fortier, E.3
  • 141
    • 34247143352 scopus 로고    scopus 로고
    • DNA pooling: A comprehensive, multi-stage association analysis of ACSL6 and SIRT5 polymorphisms in schizophrenia
    • Chowdari KV, Northup A, Pless L, et al. DNA pooling: a comprehensive, multi-stage association analysis of ACSL6 and SIRT5 polymorphisms in schizophrenia. Genes Brain Behav 2007; 6: 229-39.
    • (2007) Genes Brain Behav , vol.6 , pp. 229-239
    • Chowdari, K.V.1    Northup, A.2    Pless, L.3
  • 142
    • 77953285831 scopus 로고    scopus 로고
    • Function and regulation of the mitochondrial sirtuin isoform Sirt5 in Mammalia
    • Gertz M, Steegborn C. Function and regulation of the mitochondrial sirtuin isoform Sirt5 in Mammalia. Biochim Biophys Acta 2010; 1804: 1658-65.
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 1658-1665
    • Gertz, M.1    Steegborn, C.2
  • 144
    • 0035914304 scopus 로고    scopus 로고
    • Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening
    • Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 2001; 276: 38837-43.
    • (2001) J Biol Chem , vol.276 , pp. 38837-38843
    • Grozinger, C.M.1    Chao, E.D.2    Blackwell, H.E.3    Moazed, D.4    Schreiber, S.L.5
  • 145
    • 36749087548 scopus 로고    scopus 로고
    • Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
    • Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450: 712-6.
    • (2007) Nature , vol.450 , pp. 712-716
    • Milne, J.C.1    Lambert, P.D.2    Schenk, S.3
  • 146
    • 69949096844 scopus 로고    scopus 로고
    • Study of 1,4-dihydropyridine structural scaffold: Discovery of novel sirtuin activators and inhibitors
    • Mai A, Valente S, Meade S, et al. Study of 1,4-dihydropyridine structural scaffold: discovery of novel sirtuin activators and inhibitors. J Med Chem 2009; 52: 5496-504.
    • (2009) J Med Chem , vol.52 , pp. 5496-5504
    • Mai, A.1    Valente, S.2    Meade, S.3
  • 148
    • 84860477354 scopus 로고    scopus 로고
    • SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
    • Price NL, Gomes AP, Ling AJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 2012; 15: 675-90.
    • (2012) Cell Metab , vol.15 , pp. 675-690
    • Price, N.L.1    Gomes, A.P.2    Ling, A.J.3
  • 149
    • 84872008953 scopus 로고    scopus 로고
    • Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy
    • Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci (Lond) 2013; 124: 153-64
    • (2013) Clin Sci (Lond) , vol.124 , pp. 153-164
    • Kitada, M.1    Kume, S.2    Takeda-Watanabe, A.3    Kanasaki, K.4    Koya, D.5
  • 151
    • 81155155536 scopus 로고    scopus 로고
    • The QKI-PLP pathway controls SIRT2 abundance in CNS myelin
    • Zhu H, Zhao L, Wang E, et al. The QKI-PLP pathway controls SIRT2 abundance in CNS myelin. Glia 2012; 60: 69-82.
    • (2012) Glia , vol.60 , pp. 69-82
    • Zhu, H.1    Zhao, L.2    Wang, E.3
  • 152
    • 80055085172 scopus 로고    scopus 로고
    • Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling
    • Beirowski B, Gustin J, Armour SM, et al. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci USA 2011; 108: E952- E961.
    • (2011) Proc Natl Acad Sci USA , vol.108
    • Beirowski, B.1    Gustin, J.2    Armour, S.M.3
  • 153
    • 79959906869 scopus 로고    scopus 로고
    • Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase
    • Jiang W, Wang S, Xiao M, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell 2011; 43: 33-44.
    • (2011) Mol Cell , vol.43 , pp. 33-44
    • Jiang, W.1    Wang, S.2    Xiao, M.3
  • 155
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • Hirschey MD, Shimazu T, Goetzman E, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010; 464: 121-5.
    • (2010) Nature , vol.464 , pp. 121-125
    • Hirschey, M.D.1    Shimazu, T.2    Goetzman, E.3
  • 156
    • 17144424946 scopus 로고    scopus 로고
    • SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes
    • Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 2005; 280: 13560-7.
    • (2005) J Biol Chem , vol.280 , pp. 13560-13567
    • Shi, T.1    Wang, F.2    Stieren, E.3    Tong, Q.4
  • 157
    • 78751513117 scopus 로고    scopus 로고
    • Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
    • Kendrick AA, Choudhury M, Rahman SM, et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J 2011; 433: 505-14.
    • (2011) Biochem J , vol.433 , pp. 505-514
    • Kendrick, A.A.1    Choudhury, M.2    Rahman, S.M.3
  • 159
    • 34249083199 scopus 로고    scopus 로고
    • Sirtuins in mammals: Insights into their biological function
    • Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J 2007; 404: 1-13.
    • (2007) Biochem J , vol.404 , pp. 1-13
    • Michan, S.1    Sinclair, D.2
  • 160
    • 77953933813 scopus 로고    scopus 로고
    • Urea cycle regulation by mitochondrial sirtuin, SIRT5
    • Nakagawa T, Guarente L. Urea cycle regulation by mitochondrial sirtuin, SIRT5. Aging (Albany NY) 2009; 1: 578-81.
    • (2009) Aging (Albany NY) , vol.1 , pp. 578-581
    • Nakagawa, T.1    Guarente, L.2
  • 161
    • 65249087389 scopus 로고    scopus 로고
    • SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009; 137: 560-70.
    • (2009) Cell , vol.137 , pp. 560-570
    • Nakagawa, T.1    Lomb, D.J.2    Haigis, M.C.3    Guarente, L.4
  • 162
    • 84878680994 scopus 로고    scopus 로고
    • Sirtuin 6: A review of biological effects and potential therapeutic properties
    • [Epub ahead of print]
    • Beauharnois JM, Bolívar BE, Welch JT. Sirtuin 6: a review of biological effects and potential therapeutic properties. Mol Biosyst 2013.[Epub ahead of print].
    • (2013) Mol Biosyst
    • Beauharnois, J.M.1    Bolívar, B.E.2    Welch, J.T.3
  • 163
    • 84875881601 scopus 로고    scopus 로고
    • SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine
    • Sebastian C, Du J, Kim R, et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013; 496: 110-3.
    • (2013) Nature , vol.496 , pp. 110-113
    • Sebastian, C.1    Du, J.2    Kim, R.3
  • 165
    • 84861140340 scopus 로고    scopus 로고
    • Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription
    • M111.015156
    • Tsai YC, Greco TM, Boonmee A, Miteva Y, Cristea IM. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol Cell Proteomics 2012; 11: M111.015156.
    • Mol Cell Proteomics , vol.11 , Issue.2012
    • Tsai, Y.C.1    Greco, T.M.2    Boonmee, A.3    Miteva, Y.4    Cristea, I.M.5
  • 166
    • 84863453769 scopus 로고    scopus 로고
    • SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
    • Barber MF, Michishita-Kioi E, Xi Y, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 2012; 487: 114-8.
    • (2012) Nature , vol.487 , pp. 114-118
    • Barber, M.F.1    Michishita-Kioi, E.2    Xi, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.