-
1
-
-
80051679034
-
Is aging a drug target?
-
Goetzl EJ. Is aging a drug target? FASEB J 2011; 25: 2509-11.
-
(2011)
FASEB J
, vol.25
, pp. 2509-2511
-
-
Goetzl, E.J.1
-
2
-
-
0003859309
-
-
Appleton and Company, New York
-
Hall GS. Adolescence-Its Psychology and Its Relations to Physiology, Anthropology, Sociology, Sex, Crime, Religion and Education D. Appleton and Company, New York 1904
-
(1904)
Adolescence-Its Psychology and Its Relations to Physiology, Anthropology, Sociology, Sex, Crime, Religion and Education D
-
-
Hall, G.S.1
-
4
-
-
79958206937
-
Sirtuins, Aging, and Medicine
-
Guarente L. Sirtuins, Aging, and Medicine. N Engl J Med 2011; 364: 2235-44.
-
(2011)
N Engl J Med
, vol.364
, pp. 2235-2244
-
-
Guarente, L.1
-
5
-
-
84875955712
-
Aging genetics and aging
-
Rodriguez-Rodero S, Fernandez-Morera JL, Menéndez-Torre E, Calvanese V, Fernández AF, Fraga MF. Aging genetics and aging. Aging Dis 2011; 2: 186-95.
-
(2011)
Aging Dis
, vol.2
, pp. 186-195
-
-
Rodriguez-Rodero, S.1
Fernandez-Morera, J.L.2
Menéndez-Torre, E.3
Calvanese, V.4
Fernández, A.F.5
Fraga, M.F.6
-
7
-
-
0033015743
-
The aging paradox: Free radical theory of aging
-
Ashok BT, Ali R. The aging paradox: free radical theory of aging. Exp Gerontology 1999; 34: 293-303.
-
(1999)
Exp Gerontology
, vol.34
, pp. 293-303
-
-
Ashok, B.T.1
Ali, R.2
-
8
-
-
13944278132
-
Mitochondria, oxidants, aging
-
Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, aging. Cell 2005; 120: 483-95.
-
(2005)
Cell
, vol.120
, pp. 483-495
-
-
Balaban, R.S.1
Nemoto, S.2
Finkel, T.3
-
10
-
-
0036086130
-
Free radicals in the physiological control of cell function
-
Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47-95.
-
(2002)
Physiol Rev
, vol.82
, pp. 47-95
-
-
Droge, W.1
-
11
-
-
33846243745
-
An integrated view of oxidative stress in aging: Basic mechanisms, functional effects, and pathological considerations
-
Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 2006; 292: R18-36.
-
(2006)
Am J Physiol Regul Integr Comp Physiol
, vol.292
-
-
Kregel, K.C.1
Zhang, H.J.2
-
12
-
-
79952763586
-
Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine
-
Iqbal K, Jin SG, Pfeifer, GP, Szabo PE. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proceedings of the National Academy of Sciences 2011; 108: 3642-7.
-
(2011)
Proceedings of the National Academy of Sciences
, vol.108
, pp. 3642-3647
-
-
Iqbal, K.1
Jin, S.G.2
Pfeifer, G.P.3
Szabo, P.E.4
-
13
-
-
0023701018
-
Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases
-
Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 1988; 203: 971-83.
-
(1988)
J Mol Biol
, vol.203
, pp. 971-983
-
-
Bestor, T.1
Laudano, A.2
Mattaliano, R.3
Ingram, V.4
-
14
-
-
0242300612
-
DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation
-
Martinowich K, Hattori D, Wu H, et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003; 302: 890-3.
-
(2003)
Science
, vol.302
, pp. 890-893
-
-
Martinowich, K.1
Hattori, D.2
Wu, H.3
-
15
-
-
33644849860
-
Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase
-
Goyal, R, Reinhardt R, Jeltsch A. Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res 2006; 34: 1182-8.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 1182-1188
-
-
Goyal, R.1
Reinhardt, R.2
Jeltsch, A.3
-
16
-
-
0023279926
-
The inheritance of epigenetic defects
-
Holliday R. The inheritance of epigenetic defects. Science 1987; 238: 163-70.
-
(1987)
Science
, vol.238
, pp. 163-170
-
-
Holliday, R.1
-
17
-
-
0024552485
-
Human lymphocytes aged in vivo have reduced levels of methylation in transcriptionally active and inactive DNA
-
Drinkwater RD, Blake TJ, Morley AA, Turner DR. Human lymphocytes aged in vivo have reduced levels of methylation in transcriptionally active and inactive DNA. Mutat Res 1989; 219: 29-37.
-
(1989)
Mutat Res
, vol.219
, pp. 29-37
-
-
Drinkwater, R.D.1
Blake, T.J.2
Morley, A.A.3
Turner, D.R.4
-
18
-
-
33847076849
-
Chromatin modifications and their function
-
Kouzarides T. Chromatin modifications and their function. Cell 2007; 128: 693-705.
-
(2007)
Cell
, vol.128
, pp. 693-705
-
-
Kouzarides, T.1
-
19
-
-
33644923491
-
Carbonyl modification in rat liver histones:Decrease with age and increase by dietary restriction
-
Sharma R, Nakamura A, Takahashi R, Nakamoto H, Goto S. Carbonyl modification in rat liver histones:decrease with age and increase by dietary restriction. Free Radic Biol Med 2006; 40: 1179-84.
-
(2006)
Free Radic Biol Med
, vol.40
, pp. 1179-1184
-
-
Sharma, R.1
Nakamura, A.2
Takahashi, R.3
Nakamoto, H.4
Goto, S.5
-
20
-
-
23044514669
-
Epigenetic differences arise during the lifetime of monozygotic twins
-
Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005; 102: 10604-9.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 10604-10609
-
-
Fraga, M.F.1
Ballestar, E.2
Paz, M.F.3
-
21
-
-
19944430797
-
Genomic maps and comparative analysis of histone modifications in human and mouse
-
Bernstein BE, Kamal M, Lindblad-Toh K, et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 2005; 120: 169-81.
-
(2005)
Cell
, vol.120
, pp. 169-181
-
-
Bernstein, B.E.1
Kamal, M.2
Lindblad-Toh, K.3
-
22
-
-
0037131426
-
Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging
-
Sarg B, Koutzamani E, Helliger W, Rundquist I, Lindner HH. Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem 2002; 277: 39195-201.
-
(2002)
J Biol Chem
, vol.277
, pp. 39195-39201
-
-
Sarg, B.1
Koutzamani, E.2
Helliger, W.3
Rundquist, I.4
Lindner, H.H.5
-
23
-
-
41349090663
-
SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
-
Michishita E, McCord RA, Berber E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008; 452: 492-6.
-
(2008)
Nature
, vol.452
, pp. 492-496
-
-
Michishita, E.1
McCord, R.A.2
Berber, E.3
-
24
-
-
34547875773
-
Sirtuins: Critical regulators at the crossroads between cancer and aging
-
Saunders LR, Verdin E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 2007; 26: 5489-504.
-
(2007)
Oncogene
, vol.26
, pp. 5489-5504
-
-
Saunders, L.R.1
Verdin, E.2
-
25
-
-
0030812917
-
Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily
-
Leipe DD, Landsman D. Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily. Nucleic Acids Res 1997; 25 (18): 3693-7.
-
(1997)
Nucleic Acids Res
, vol.25
, Issue.18
, pp. 3693-3697
-
-
Leipe, D.D.1
Landsman, D.2
-
26
-
-
3943054839
-
The Sir2 family of protein deacetylases
-
Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004; 73: 417-35.
-
(2004)
Annu Rev Biochem
, vol.73
, pp. 417-435
-
-
Blander, G.1
Guarente, L.2
-
27
-
-
77953257025
-
Aging and disease: Connections to sirtuins
-
Donmez G, Guarente L. Aging and disease: connections to sirtuins. Aging Cell 2010; 9: 285-90.
-
(2010)
Aging Cell
, vol.9
, pp. 285-290
-
-
Donmez, G.1
Guarente, L.2
-
28
-
-
77949887506
-
Mammalian sirtuins: Biological insights and disease relevance
-
Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010; 5: 253-95.
-
(2010)
Annu Rev Pathol
, vol.5
, pp. 253-295
-
-
Haigis, M.C.1
Sinclair, D.A.2
-
29
-
-
38449105997
-
The aging process and potential interventions to extend life expectancy
-
Tosato M, Zamboni V, Ferrini A, Cesari M. The aging process and potential interventions to extend life expectancy. Clin Interv Aging 2007; 2: 401-12.
-
(2007)
Clin Interv Aging
, vol.2
, pp. 401-412
-
-
Tosato, M.1
Zamboni, V.2
Ferrini, A.3
Cesari, M.4
-
32
-
-
0000055057
-
Pleiotropy, natural selection, and the evolution of senescence
-
Williams GC. Pleiotropy, natural selection, and the evolution of senescence. Evolution 1957; 11: 398-411.
-
(1957)
Evolution
, vol.11
, pp. 398-411
-
-
Williams, G.C.1
-
34
-
-
0142213542
-
The free radical theory of aging
-
Harman D. The free radical theory of aging. Antioxid Redox Signal 2003; 5: 557-61.
-
(2003)
Antioxid Redox Signal
, vol.5
, pp. 557-561
-
-
Harman, D.1
-
35
-
-
0018644035
-
MAR1-A regulator of the HMa and HMα locus in Saccharomyces cerevisiae
-
Klar AJ, Seymour F, Macleod K. MAR1-A regulator of the HMa and HMα locus in Saccharomyces cerevisiae. Genetics 1979; 93: 37-50.
-
(1979)
Genetics
, vol.93
, pp. 37-50
-
-
Klar, A.J.1
Seymour, F.2
Macleod, K.3
-
36
-
-
0018564390
-
Suppressor of mating-type locus mutations in Saccharomyces cerevisiae: Evidence for and identification of cryptic mating-type loci
-
Rine J, Strathern JN, Hicks JB, Herskowitz IA. suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci. Genetics 1979; 93: 877-901.
-
(1979)
Genetics
, vol.93
, pp. 877-901
-
-
Rine, J.1
Strathern, J.N.2
Hicks, J.B.3
Herskowitz, I.A.4
-
38
-
-
0021734287
-
Characterization of two genes required for the position-effect control of yeast mating-type genes
-
Shore D, Squire M, Nasmyth KA. Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J 1984; 3: 2817-23.
-
(1984)
EMBO J
, vol.3
, pp. 2817-2823
-
-
Shore, D.1
Squire, M.2
Nasmyth, K.A.3
-
39
-
-
0022342103
-
Map positions of yeast genes SIR1, SIR3 and SIR4
-
Ivy JM, Hicks JB, Klar AJ. Map positions of yeast genes SIR1, SIR3 and SIR4. Genetics 1985; 111: 735-44.
-
(1985)
Genetics
, vol.111
, pp. 735-744
-
-
Ivy, J.M.1
Hicks, J.B.2
Klar, A.J.3
-
40
-
-
0023340731
-
Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae
-
Rine J, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 1987; 116: 9-22.
-
(1987)
Genetics
, vol.116
, pp. 9-22
-
-
Rine, J.1
Herskowitz, I.2
-
41
-
-
42449128019
-
Where in the cell is SIRT3? Functional localization of an NAD+-dependent protein deacetylase
-
Hallows WC, Albaugh BN, Denu JM. Where in the cell is SIRT3? Functional localization of an NAD+-dependent protein deacetylase, Biochem J 2008: 411: 11-3.
-
(2008)
Biochem J
, vol.411
, pp. 11-13
-
-
Hallows, W.C.1
Albaugh, B.N.2
Denu, J.M.3
-
42
-
-
0013072999
-
Calorie restriction, aging, and cancer prevention: Mechanisms of action and applicability to humans
-
Hursting SD, Lavigne JA, Berrigan D, Perkins, SN, Barrett JC. Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu Rev Med 2003: 54: 131-52.
-
(2003)
Annu Rev Med
, vol.54
, pp. 131-152
-
-
Hursting, S.D.1
Lavigne, J.A.2
Berrigan, D.3
Perkins, S.N.4
Barrett, J.C.5
-
43
-
-
67949102053
-
Recent progress in the biology and physiology of sirtuins
-
Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature 2009; 460: 587-91.
-
(2009)
Nature
, vol.460
, pp. 587-591
-
-
Finkel, T.1
Deng, C.X.2
Mostoslavsky, R.3
-
44
-
-
0028897013
-
Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae
-
Kennedy BK, Austriaco NR, Jr, Zhang J, Guarente L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 1995; 80: 485-96.
-
(1995)
Cell
, vol.80
, pp. 485-496
-
-
Kennedy, B.K.1
Austriaco Jr., N.R.2
Zhang, J.3
Guarente, L.4
-
45
-
-
0033214237
-
The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13: 2570-80.
-
(1999)
Genes Dev
, vol.13
, pp. 2570-2580
-
-
Kaeberlein, M.1
McVey, M.2
Guarente, L.3
-
46
-
-
8644224064
-
Sir2mediates longevity in the fly through a pathway related to calorie restriction
-
Rogina B, Helfand SL. Sir2mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 2004; 101: 15998-6003.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 15998-16003
-
-
Rogina, B.1
Helfand, S.L.2
-
48
-
-
84875636532
-
Sirtuins: The molecular basis of beneficial effects of physical activity
-
Pucci B, Villanova L, Sansone L, et al. Sirtuins: the molecular basis of beneficial effects of physical activity. Intern Emerg Med. 2013; 8: 23-5.
-
(2013)
Intern Emerg Med
, vol.8
, pp. 23-25
-
-
Pucci, B.1
Villanova, L.2
Sansone, L.3
-
49
-
-
3943054839
-
The Sir2 family of protein deacetylases
-
Blander G, Guarente, L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004; 73: 417-35.
-
(2004)
Annu Rev Biochem
, vol.73
, pp. 417-435
-
-
Blander, G.1
Guarente, L.2
-
50
-
-
0033887456
-
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
-
Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochemical & Biophysical Research Communications. 2000; 273: 793-8.
-
(2000)
Biochemical & Biophysical Research Communications
, vol.273
, pp. 793-798
-
-
Frye, R.A.1
-
52
-
-
77149176653
-
Structural analysis of trypanosomal sirtuin: An insight for selective drug design
-
Kaur S, Shivange AV, Roy N. Structural analysis of trypanosomal sirtuin: an insight for selective drug design. Mol Divers 2010; 14: 169-78.
-
(2010)
Mol Divers
, vol.14
, pp. 169-178
-
-
Kaur, S.1
Shivange, A.V.2
Roy, N.3
-
53
-
-
2942564591
-
Sirtuins: Sir2-related NAD-dependent protein deacetylases
-
North BJ, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 2004; 5: 224.
-
(2004)
Genome Biol
, vol.5
, pp. 224
-
-
North, B.J.1
Verdin, E.2
-
54
-
-
53249121556
-
Sirtuins--novel therapeutic targets to treat age-associated diseases
-
Lavu S, Boss O, Elliott PJ, Lambert PD. Sirtuins--novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov 2008; 7: 841-53.
-
(2008)
Nat Rev Drug Discov
, vol.7
, pp. 841-853
-
-
Lavu, S.1
Boss, O.2
Elliott, P.J.3
Lambert, P.D.4
-
55
-
-
34547875013
-
NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs
-
Vaquero A, Sternglanz R, Reinberg D. NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 2007; 26: 5505-20.
-
(2007)
Oncogene
, vol.26
, pp. 5505-5520
-
-
Vaquero, A.1
Sternglanz, R.2
Reinberg, D.3
-
56
-
-
0034705129
-
The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases
-
Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA 2000; 97: 5807-11.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 5807-5811
-
-
Landry, J.1
Sutton, A.2
Tafrov, S.T.3
Heller, R.C.4
Stebbins, J.5
Pillus, L.6
Sternglanz, R.7
-
57
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403: 795-800.
-
(2000)
Nature
, vol.403
, pp. 795-800
-
-
Imai, S.1
Armstrong, C.M.2
Kaeberlein, M.3
Guarente, L.4
-
58
-
-
12944283150
-
A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family
-
Smith JS, Brachmann CB, Celic I, et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA 2000; 97: 6658-66.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 6658-6666
-
-
Smith, J.S.1
Brachmann, C.B.2
Celic, I.3
-
59
-
-
33748316536
-
SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
-
Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006; 126: 941-54.
-
(2006)
Cell
, vol.126
, pp. 941-954
-
-
Haigis, M.C.1
Mostoslavsky, R.2
Haigis, K.M.3
-
60
-
-
20444409132
-
Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
-
Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 2005; 280: 21313-20.
-
(2005)
J Biol Chem
, vol.280
, pp. 21313-21320
-
-
Liszt, G.1
Ford, E.2
Kurtev, M.3
Guarente, L.4
-
61
-
-
0035913903
-
hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase
-
Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107: 149-59.
-
(2001)
Cell
, vol.107
, pp. 149-159
-
-
Vaziri, H.1
Dessain, S.K.2
Ng, E.E.3
-
62
-
-
0034687694
-
Silent information regulator 2 family of NADdependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
-
Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NADdependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA 2000; 97: 14178-82.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 14178-14182
-
-
Tanner, K.G.1
Landry, J.2
Sternglanz, R.3
Denu, J.M.4
-
63
-
-
0034193776
-
Sir2 links chromatin silencing, metabolism, and aging
-
Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 2000; 14: 1021-6.
-
(2000)
Genes Dev
, vol.14
, pp. 1021-1026
-
-
Guarente, L.1
-
64
-
-
27744596999
-
Sir2 blocks extreme life-span extension
-
Fabrizio P, Gattazzo C, Battistella L, et al. Sir2 blocks extreme life-span extension. Cell 2005; 123: 655-67.
-
(2005)
Cell
, vol.123
, pp. 655-667
-
-
Fabrizio, P.1
Gattazzo, C.2
Battistella, L.3
-
65
-
-
8644224064
-
Sir2 mediates longevity in the fly through a pathway related to calorie restriction
-
Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 2004; 101: 15998-6003.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 15998-16003
-
-
Rogina, B.1
Helfand, S.L.2
-
66
-
-
67649356581
-
DSir2 and Dmp53 interact to mediate aspects of CR-dependent life span extension in D. melanogaster
-
Bauer JH, Morris SNS, Chang C, Flatt T, Wood JG, Helfand SL. dSir2 and Dmp53 interact to mediate aspects of CR-dependent life span extension in D. melanogaster. Aging 2009; 1: 38-49.
-
(2009)
Aging
, vol.1
, pp. 38-49
-
-
Bauer, J.H.1
Morris, S.N.S.2
Chang, C.3
Flatt, T.4
Wood, J.G.5
Helfand, S.L.6
-
67
-
-
8644224064
-
Sir2 mediates longevity in the fly through a pathway related to calorie restriction
-
Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 2004; 101: 15998-6003.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 15998-16003
-
-
Rogina, B.1
Helfand, S.L.2
-
68
-
-
84858000209
-
The sirtuin SIRT6 regulates lifespan in male mice
-
Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012; 483: 218-21.
-
(2012)
Nature
, vol.483
, pp. 218-221
-
-
Kanfi, Y.1
Naiman, S.2
Amir, G.3
-
69
-
-
77954018074
-
Dietary interventions to extend life span and health span based on calorie restriction
-
Minor RK, Allard JS, Younts CM, Ward TM, de Cabo R. Dietary interventions to extend life span and health span based on calorie restriction. J Gerontol A Biol Sci Med Sci 2010; 65: 695-703.
-
(2010)
J Gerontol a Biol Sci Med Sci
, vol.65
, pp. 695-703
-
-
Minor, R.K.1
Allard, J.S.2
Younts, C.M.3
Ward, T.M.4
de Cabo, R.5
-
70
-
-
0034703217
-
Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
-
Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae Science 2000; 289: 2126-8.
-
(2000)
Science
, vol.289
, pp. 2126-2128
-
-
Lin, S.J.1
Defossez, P.A.2
Guarente, L.3
-
71
-
-
0037130175
-
Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration
-
Lin SJ, Kaeberlein M, Andalis AA, et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 2002; 418: 344-8.
-
(2002)
Nature
, vol.418
, pp. 344-348
-
-
Lin, S.J.1
Kaeberlein, M.2
Andalis, A.A.3
-
72
-
-
0000432845
-
On the influence of food and temperature upon the duration of life
-
Loeb J, Northrop JH. On the influence of food and temperature upon the duration of life. J Biol Chem 1917; 32: 103-21.
-
(1917)
J Biol Chem
, vol.32
, pp. 103-121
-
-
Loeb, J.1
Northrop, J.H.2
-
73
-
-
0000125953
-
Effect of delayed and resumed growth on the longevity of a fish (Lebistes reticulatus, Peters) in captivity
-
Comfort A. Effect of delayed and resumed growth on the longevity of a fish (Lebistes reticulatus, Peters) in captivity. Gerontologia 1963; 49: 150-5.
-
(1963)
Gerontologia
, vol.49
, pp. 150-155
-
-
Comfort, A.1
-
74
-
-
0024580038
-
Life extension by dietary restriction in the bowl and doily spider
-
Austad SN. Life extension by dietary restriction in the bowl and doily spider, Frontinella pyramitela Exp Gerontol 1989; 24: 83-9.
-
(1989)
Frontinella Pyramitela Exp Gerontol
, vol.24
, pp. 83-89
-
-
Austad, S.N.1
-
75
-
-
8644224064
-
Sir2 mediates longevity in the fly through a pathway related to calorie restriction
-
Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci 2004; 101: 15998-6003.
-
(2004)
Proc Natl Acad Sci
, vol.101
, pp. 15998-16003
-
-
Rogina, B.1
Helfand, S.L.2
-
76
-
-
28244475950
-
Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/ FOXO
-
Wang Y, Tissenbaum HA. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/ FOXO. Mech Ageing Dev 2006; 127: 48-56.
-
(2006)
Mech Ageing Dev
, vol.127
, pp. 48-56
-
-
Wang, Y.1
Tissenbaum, H.A.2
-
77
-
-
0033214237
-
The SIR2/ 3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
Kaeberlein M, McVey M, Guarente L. The SIR2/ 3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & Dev 1999; 13: 2570-80.
-
(1999)
Genes & Dev
, vol.13
, pp. 2570-2580
-
-
Kaeberlein, M.1
McVey, M.2
Guarente, L.3
-
79
-
-
77953589623
-
dSir2 mediates the increased spontaneous physical activity in flies on calorie restriction
-
Parashar V, Rogina B. dSir2 mediates the increased spontaneous physical activity in flies on calorie restriction. Aging (Albany NY). 2009; 1: 529-41.
-
(2009)
Aging (Albany NY)
, vol.1
, pp. 529-541
-
-
Parashar, V.1
Rogina, B.2
-
80
-
-
67649356581
-
DSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogaster
-
Bauer JH, Morris SN, Chang C, Flatt T, Wood JG, Helfand SL. dSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogaster. Aging (Albany NY). 2009; 1: 38-48.
-
(2009)
Aging (Albany NY)
, vol.1
, pp. 38-48
-
-
Bauer, J.H.1
Morris, S.N.2
Chang, C.3
Flatt, T.4
Wood, J.G.5
Helfand, S.L.6
-
81
-
-
84883451566
-
Maintaining good hearing: Calorie restriction, Sirt3, and glutathione
-
pii: S0531-5565: 00045-4
-
Han C, Someya S. Maintaining good hearing: Calorie restriction, Sirt3, and glutathione. Exp Gerontol 2013; pii: S0531-5565: 00045-4.
-
(2013)
Exp Gerontol
-
-
Han, C.1
Someya, S.2
-
82
-
-
84876190692
-
Genome maintenance and transcription integrity in aging and disease
-
Wolters S, Schumacher B. Genome maintenance and transcription integrity in aging and disease. Front Genet 2013; 4: 19.
-
(2013)
Front Genet
, vol.4
, pp. 19
-
-
Wolters, S.1
Schumacher, B.2
-
84
-
-
67949102053
-
Recent progress in the biology and physiology of sirtuins
-
Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature 2009; 460: 587-91.
-
(2009)
Nature
, vol.460
, pp. 587-591
-
-
Finkel, T.1
Deng, C.X.2
Mostoslavsky, R.3
-
85
-
-
13944253348
-
Calorie restriction-the SIR2 connection
-
Guarente L, Picard F. Calorie restriction-the SIR2 connection. Cell 2005; 120: 473-82.
-
(2005)
Cell
, vol.120
, pp. 473-482
-
-
Guarente, L.1
Picard, F.2
-
87
-
-
34250897968
-
SIRT1 regulates the function of the Nijmegen breakage syndrome protein
-
Yuan Z, Zhang X, Sengupta N, Lane WS, Seto E. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell 2007; 27: 149-62.
-
(2007)
Mol Cell
, vol.27
, pp. 149-162
-
-
Yuan, Z.1
Zhang, X.2
Sengupta, N.3
Lane, W.S.4
Seto, E.5
-
88
-
-
53149137486
-
Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice
-
Wang RH, Sengupta K, Li C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 2008; 14: 312-23.
-
(2008)
Cancer Cell
, vol.14
, pp. 312-323
-
-
Wang, R.H.1
Sengupta, K.2
Li, C.3
-
89
-
-
84863981612
-
Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging
-
Jia G, Su L, Singhal S, Liu X. Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging. Mol Cell Biochem. 2012; 364: 345-50.
-
(2012)
Mol Cell Biochem
, vol.364
, pp. 345-350
-
-
Jia, G.1
Su, L.2
Singhal, S.3
Liu, X.4
-
90
-
-
0000567961
-
Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat
-
Barzilai N, Banerjee S, Hawkins M, Chen W, Rossetti L. Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat. J Clin Invest 1998; 101: 1353-61.
-
(1998)
J Clin Invest
, vol.101
, pp. 1353-1361
-
-
Barzilai, N.1
Banerjee, S.2
Hawkins, M.3
Chen, W.4
Rossetti, L.5
-
91
-
-
0035979492
-
Caloric restriction alters the feeding response of key metabolic enzyme genes
-
Dhahbi JM, Mote PL, Wingo J, Rowley BC, Cao SX, Walford RL, Spindler SR. Caloric restriction alters the feeding response of key metabolic enzyme genes. Mech Ageing Dev 2001; 122: 1033-48.
-
(2001)
Mech Ageing Dev
, vol.122
, pp. 1033-1048
-
-
Dhahbi, J.M.1
Mote, P.L.2
Wingo, J.3
Rowley, B.C.4
Cao, S.X.5
Walford, R.L.6
Spindler, S.R.7
-
93
-
-
25144454432
-
Increased dosage of mammalian Sir2 in pancreatic ß cells enhances glucose-stimulated insulin secretion in mice
-
Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic ß cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005; 2: 105-17.
-
(2005)
Cell Metab
, vol.2
, pp. 105-117
-
-
Moynihan, K.A.1
Grimm, A.A.2
Plueger, M.M.3
-
94
-
-
33244486764
-
Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic ß cells
-
Bordone L, Motta MC, Picard F, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic ß cells. PLoS Biol 2006; 4: 31.
-
(2006)
PLoS Biol
, vol.4
, pp. 31
-
-
Bordone, L.1
Motta, M.C.2
Picard, F.3
-
95
-
-
18144411313
-
SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1a
-
Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1a. J Biol Chem 2005; 280: 16456-60.
-
(2005)
J Biol Chem
, vol.280
, pp. 16456-16460
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
96
-
-
14544282413
-
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nature 2005; 434: 113-8.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
97
-
-
84855757015
-
Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation
-
Xue L, Xu F, Meng L, et al. Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation. FEBS Lett 2012; 586: 137-42.
-
(2012)
FEBS Lett
, vol.586
, pp. 137-142
-
-
Xue, L.1
Xu, F.2
Meng, L.3
-
98
-
-
84871107379
-
Mitochondrial protein acylation and intermediary metabolism: Regulation by sirtuins and implications for metabolic disease
-
Newman JC, He W, Verdin E. Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. J Biol Chem 2012; 287: 42436-43.
-
(2012)
J Biol Chem
, vol.287
, pp. 42436-42443
-
-
Newman, J.C.1
He, W.2
Verdin, E.3
-
99
-
-
33748316536
-
SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
-
Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006; 126: 941-54.
-
(2006)
Cell
, vol.126
, pp. 941-954
-
-
Haigis, M.C.1
Mostoslavsky, R.2
Haigis, K.M.3
-
100
-
-
65249087389
-
SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
-
Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009; 137: 560-70.
-
(2009)
Cell
, vol.137
, pp. 560-570
-
-
Nakagawa, T.1
Lomb, D.J.2
Haigis, M.C.3
Guarente, L.4
-
101
-
-
77249128352
-
Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1
-
Ogura M, Nakamura Y, Tanaka D, et al. Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1. Biochem Biophys Res Commun 2010; 393: 73-8.
-
(2010)
Biochem Biophys Res Commun
, vol.393
, pp. 73-78
-
-
Ogura, M.1
Nakamura, Y.2
Tanaka, D.3
-
102
-
-
33646197298
-
Biochemical and molecular basis of insulin resistance
-
Chakraborty C. Biochemical and molecular basis of insulin resistance. Curr Protein Pept Sci 2006; 7: 113-21.
-
(2006)
Curr Protein Pept Sci
, vol.7
, pp. 113-121
-
-
Chakraborty, C.1
-
103
-
-
79551649916
-
Landscape mapping of functional proteins in insulin signal transduction and insulin resistance: A network-based protein-protein interaction analysis
-
Chakraborty C, Roy SS, Hsu MJ, Agoramoorthy G. Landscape mapping of functional proteins in insulin signal transduction and insulin resistance: a network-based protein-protein interaction analysis. PLoS One 2011; 6: e16388.
-
(2011)
PLoS One
, vol.6
-
-
Chakraborty, C.1
Roy, S.S.2
Hsu, M.J.3
Agoramoorthy, G.4
-
104
-
-
34548857700
-
SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B
-
Sun C, Zhang F, Ge X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007; 6: 307-19.
-
(2007)
Cell Metab
, vol.6
, pp. 307-319
-
-
Sun, C.1
Zhang, F.2
Ge, X.3
-
105
-
-
62749133315
-
SIRT1, is it a tumor promoter or tumor suppressor
-
Deng CX. SIRT1, is it a tumor promoter or tumor suppressor? Int. J. Biol. Sci 2009; 5: 147-52.
-
(2009)
Int. J. Biol. Sci
, vol.5
, pp. 147-152
-
-
Deng, C.X.1
-
106
-
-
0033581321
-
Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation
-
Zhu H, Guo Q, Mattson MP. Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation. Brain Res 1999; 842: 224-9.
-
(1999)
Brain Res
, vol.842
, pp. 224-229
-
-
Zhu, H.1
Guo, Q.2
Mattson, M.P.3
-
107
-
-
14644421534
-
Caloric restriction attenuates Aß-deposition in Alzheimer transgenic models
-
Patel NV, Gordon MN, Connor KE, et al. Caloric restriction attenuates Aß-deposition in Alzheimer transgenic models. Neurobiol. Aging 2005; 26: 995-1000.
-
(2005)
Neurobiol. Aging
, vol.26
, pp. 995-1000
-
-
Patel, N.V.1
Gordon, M.N.2
Connor, K.E.3
-
108
-
-
0033566286
-
Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease
-
Duan W, Mattson MP. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J Neurosci Res 1999; 57: 195-206.
-
(1999)
J Neurosci Res
, vol.57
, pp. 195-206
-
-
Duan, W.1
Mattson, M.P.2
-
109
-
-
33751113602
-
Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction
-
Haigis MC, Guarente LP. Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes Dev 2006; 20: 2913-21.
-
(2006)
Genes Dev
, vol.20
, pp. 2913-2921
-
-
Haigis, M.C.1
Guarente, L.P.2
-
110
-
-
77949887506
-
Mammalian sirtuins: Biological insights and disease relevance
-
Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Ann Review Pathol. 2010; 5: 253-95.
-
(2010)
Ann Review Pathol
, vol.5
, pp. 253-295
-
-
Haigis, M.C.1
Sinclair, D.A.2
-
111
-
-
77953257025
-
Aging and disease: Connections to sirtuins
-
Donmez G, Guarente L. Aging and disease: connections to sirtuins. Aging Cell 2010; 9: 285-90.
-
(2010)
Aging Cell
, vol.9
, pp. 285-290
-
-
Donmez, G.1
Guarente, L.2
-
112
-
-
77949887506
-
Mammalian sirtuins: Biological insights and disease relevance
-
Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010; 5: 253-95.
-
(2010)
Annu Rev Pathol
, vol.5
, pp. 253-295
-
-
Haigis, M.C.1
Sinclair, D.A.2
-
113
-
-
84867880208
-
SIRT1 in metabolic syndrome: Where to target matters
-
Wang Y, Xu C, Liang Y, Vanhoutte PM. SIRT1 in metabolic syndrome: where to target matters. Pharmacol Ther 2012; 136: 305-18.
-
(2012)
Pharmacol Ther
, vol.136
, pp. 305-318
-
-
Wang, Y.1
Xu, C.2
Liang, Y.3
Vanhoutte, P.M.4
-
114
-
-
84865318675
-
Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo
-
Zhao Y, Luo P, Guo Q, et al. Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Exp Neurol 2012; 237: 489-98.
-
(2012)
Exp Neurol
, vol.237
, pp. 489-498
-
-
Zhao, Y.1
Luo, P.2
Guo, Q.3
-
115
-
-
84874709843
-
SIRT1 and SIRT2: Emerging targets in neurodegeneration
-
Donmez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 2013; 5: 344-52.
-
(2013)
EMBO Mol Med
, vol.5
, pp. 344-352
-
-
Donmez, G.1
Outeiro, T.F.2
-
116
-
-
84888004300
-
Sirt1 Promotes Axonogenesis by Deacetylation of Akt and Inactivation of GSK3
-
Epub ahead of print
-
Li XH, Chen C, Tu Y, et al. Sirt1 Promotes Axonogenesis by Deacetylation of Akt and Inactivation of GSK3. Mol Neurobiol 2013;[Epub ahead of print].
-
(2013)
Mol Neurobiol
-
-
Li, X.H.1
Chen, C.2
Tu, Y.3
-
117
-
-
84883829745
-
Cross-talk between SIRT1 and p66Shc in vascular diseases
-
pii: S1050-1738: 00017-0
-
Chen HZ, Wan YZ, Liu DP. Cross-talk between SIRT1 and p66Shc in vascular diseases. Trends Cardiovasc Med 2013; pii: S1050-1738: 00017-0.
-
(2013)
Trends Cardiovasc Med
-
-
Chen, H.Z.1
Wan, Y.Z.2
Liu, D.P.3
-
118
-
-
84873809257
-
Peripheral blood monocyte Sirt1 expression is reduced in patients with coronary artery disease
-
Breitenstein A, Wyss CA, Spescha RD, et al. Peripheral blood monocyte Sirt1 expression is reduced in patients with coronary artery disease. PLoS One 2013; 8: e53106.
-
(2013)
PLoS One
, vol.8
-
-
Breitenstein, A.1
Wyss, C.A.2
Spescha, R.D.3
-
119
-
-
84878531104
-
Anti-aging molecule, Sirt1: A novel therapeutic target for diabetic nephropathy
-
Kume S, Kitada M, Kanasaki K, Maegawa H, Koya D. Anti-aging molecule, Sirt1: a novel therapeutic target for diabetic nephropathy. Arch Pharm Res 2013; 36: 230-6.
-
(2013)
Arch Pharm Res
, vol.36
, pp. 230-236
-
-
Kume, S.1
Kitada, M.2
Kanasaki, K.3
Maegawa, H.4
Koya, D.5
-
120
-
-
84862778684
-
SIRT1 overexpression decreases cisplatin-induced acetylation of NF-κB p65 subunit and cytotoxicity in renal proximal tubule cells
-
Mar 9
-
Jung YJ, Lee JE, Lee AS, et al. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-κB p65 subunit and cytotoxicity in renal proximal tubule cells. Biochem Biophys Res Commun. 2012 Mar 9; 419: 206-10.
-
(2012)
Biochem Biophys Res Commun
, vol.419
, pp. 206-210
-
-
Jung, Y.J.1
Lee, J.E.2
Lee, A.S.3
-
121
-
-
84865145752
-
The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats
-
Wu L, Zhang Y, Ma X, Zhang N, Qin G. The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats. Mol Biol Rep 2012; 39: 9085-93.
-
(2012)
Mol Biol Rep
, vol.39
, pp. 9085-9093
-
-
Wu, L.1
Zhang, Y.2
Ma, X.3
Zhang, N.4
Qin, G.5
-
122
-
-
84872858887
-
The guardian: Metabolic and tumoursuppressive effects of SIRT6
-
Lerrer B, Cohen HY. The guardian: metabolic and tumoursuppressive effects of SIRT6. EMBO J 2013; 32: 7-8.
-
(2013)
EMBO J
, vol.32
, pp. 7-8
-
-
Lerrer, B.1
Cohen, H.Y.2
-
123
-
-
84870874690
-
The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism
-
Sebastián C, Zwaans BM, Silberman DM, et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 2012; 151: 1185-99.
-
(2012)
Cell
, vol.151
, pp. 1185-1199
-
-
Sebastián, C.1
Zwaans, B.M.2
Silberman, D.M.3
-
124
-
-
84870363221
-
The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses
-
Bauer I, Grozio A, Lasigliè D, et al. The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses. J Biol Chem 2012; 287(49): 40924-37.
-
(2012)
J Biol Chem
, vol.287
, Issue.49
, pp. 40924-40937
-
-
Bauer, I.1
Grozio, A.2
Lasigliè, D.3
-
125
-
-
84869082071
-
Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin
-
Min L, Ji Y, Bakiri L, et al. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat Cell Biol 2012; 14(11): 1203-11.
-
(2012)
Nat Cell Biol
, vol.14
, Issue.11
, pp. 1203-1211
-
-
Min, L.1
Ji, Y.2
Bakiri, L.3
-
126
-
-
84878550317
-
SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer
-
[Epub ahead of print]
-
Khongkow M, Olmos Y, Gong C, et al. SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Carcinogenesis. 2013 [Epub ahead of print].
-
(2013)
Carcinogenesis
-
-
Khongkow, M.1
Olmos, Y.2
Gong, C.3
-
127
-
-
33744466971
-
Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription
-
Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes & Dev 2006; 20: 1075-80.
-
(2006)
Genes & Dev
, vol.20
, pp. 1075-1080
-
-
Ford, E.1
Voit, R.2
Liszt, G.3
Magin, C.4
Grummt, I.5
Guarente, L.6
-
128
-
-
41449083867
-
Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
-
Vakhrusheva O, Smolka C, Gajawada P, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 2008; 102: 703-10.
-
(2008)
Circ Res
, vol.102
, pp. 703-710
-
-
Vakhrusheva, O.1
Smolka, C.2
Gajawada, P.3
-
129
-
-
0037291214
-
The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
-
North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003; 11(2): 437-44.
-
(2003)
Mol Cell
, vol.11
, Issue.2
, pp. 437-444
-
-
North, B.J.1
Marshall, B.L.2
Borra, M.T.3
Denu, J.M.4
Verdin, E.5
-
130
-
-
26244436281
-
Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
-
Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005; 16: 4623-35.
-
(2005)
Mol Biol Cell
, vol.16
, pp. 4623-4635
-
-
Michishita, E.1
Park, J.Y.2
Burneskis, J.M.3
Barrett, J.C.4
Horikawa, I.5
-
131
-
-
0034437608
-
Sir2: An NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging
-
Imai S, Johnson FB, Marciniak RA, McVey M, Park PU, Guarente L. Sir2: An NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging. Cold Spring Harb Symp Quant Biol 2000; 65: 297-302.
-
(2000)
Cold Spring Harb Symp Quant Biol
, vol.65
, pp. 297-302
-
-
Imai, S.1
Johnson, F.B.2
Marciniak, R.A.3
McVey, M.4
Park, P.U.5
Guarente, L.6
-
132
-
-
84855769254
-
SIRT2 activity is required for the survival of C6 glioma cells
-
He X, Nie H, Hong Y, Sheng C, Xia W, Ying W. SIRT2 activity is required for the survival of C6 glioma cells. Biochem Biophys Res Commun 2012; 417: 468-72.
-
(2012)
Biochem Biophys Res Commun
, vol.417
, pp. 468-472
-
-
He, X.1
Nie, H.2
Hong, Y.3
Sheng, C.4
Xia, W.5
Ying, W.6
-
133
-
-
84870999850
-
The NAD-dependent deacetylase SIRT2 is required for programmed necrosis
-
Narayan N, Lee IH, Borenstein R, et al. The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature 2012; 492: 199-204.
-
(2012)
Nature
, vol.492
, pp. 199-204
-
-
Narayan, N.1
Lee, I.H.2
Borenstein, R.3
-
135
-
-
65549113750
-
CBP/p300-mediated acetylation of histone H3 on lysine 56
-
Das C, Lucia MS, Hansen KC, Tyler JK. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 2009; 459: 113-7.
-
(2009)
Nature
, vol.459
, pp. 113-117
-
-
Das, C.1
Lucia, M.S.2
Hansen, K.C.3
Tyler, J.K.4
-
136
-
-
10744232772
-
Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly
-
Rose G, Dato S, Altomare K, et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol 2003; 38: 1065-70.
-
(2003)
Exp Gerontol
, vol.38
, pp. 1065-1070
-
-
Rose, G.1
Dato, S.2
Altomare, K.3
-
137
-
-
79953799195
-
Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer
-
Alhazzazi TY, Kamarajan P, Joo N, et al. Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 2011; 117: 1670-8.
-
(2011)
Cancer
, vol.117
, pp. 1670-1678
-
-
Alhazzazi, T.Y.1
Kamarajan, P.2
Joo, N.3
-
138
-
-
84866912720
-
Salvianolic acid A protects the peripheral nerve function in diabetic rats through regulation of the AMPK-PGC1_-Sirt3 axis
-
Yu X, Zhang L, Yang X, et al. Salvianolic acid A protects the peripheral nerve function in diabetic rats through regulation of the AMPK-PGC1_-Sirt3 axis. Molecules 2012; 17: 11216-28.
-
(2012)
Molecules
, vol.17
, pp. 11216-11228
-
-
Yu, X.1
Zhang, L.2
Yang, X.3
-
139
-
-
84876359638
-
SIRT4 Has Tumor-Suppressive Activity and Regulates the Cellular Metabolic Response to DNA Damage by Inhibiting Mitochondrial Glutamine Metabolism
-
pii: S1535-6108: 00078-0
-
Jeong SM, Xiao C, Finley LW, et al. SIRT4 Has Tumor-Suppressive Activity and Regulates the Cellular Metabolic Response to DNA Damage by Inhibiting Mitochondrial Glutamine Metabolism. Cancer Cell 2013: pii: S1535-6108: 00078-0.
-
(2013)
Cancer Cell
-
-
Jeong, S.M.1
Xiao, C.2
Finley, L.W.3
-
140
-
-
77957762687
-
SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
-
Nasrin N, Wu X, Fortier E, et al. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem. 2010; 285: 31995-2002.
-
(2010)
J Biol Chem
, vol.285
, pp. 31995-32002
-
-
Nasrin, N.1
Wu, X.2
Fortier, E.3
-
141
-
-
34247143352
-
DNA pooling: A comprehensive, multi-stage association analysis of ACSL6 and SIRT5 polymorphisms in schizophrenia
-
Chowdari KV, Northup A, Pless L, et al. DNA pooling: a comprehensive, multi-stage association analysis of ACSL6 and SIRT5 polymorphisms in schizophrenia. Genes Brain Behav 2007; 6: 229-39.
-
(2007)
Genes Brain Behav
, vol.6
, pp. 229-239
-
-
Chowdari, K.V.1
Northup, A.2
Pless, L.3
-
142
-
-
77953285831
-
Function and regulation of the mitochondrial sirtuin isoform Sirt5 in Mammalia
-
Gertz M, Steegborn C. Function and regulation of the mitochondrial sirtuin isoform Sirt5 in Mammalia. Biochim Biophys Acta 2010; 1804: 1658-65.
-
(2010)
Biochim Biophys Acta
, vol.1804
, pp. 1658-1665
-
-
Gertz, M.1
Steegborn, C.2
-
143
-
-
0035910031
-
Identification of a small molecule inhibitor of Sir2p
-
Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA. Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci USA 2001; 98: 15113-8.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 15113-15118
-
-
Bedalov, A.1
Gatbonton, T.2
Irvine, W.P.3
Gottschling, D.E.4
Simon, J.A.5
-
144
-
-
0035914304
-
Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening
-
Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 2001; 276: 38837-43.
-
(2001)
J Biol Chem
, vol.276
, pp. 38837-38843
-
-
Grozinger, C.M.1
Chao, E.D.2
Blackwell, H.E.3
Moazed, D.4
Schreiber, S.L.5
-
145
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450: 712-6.
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
-
146
-
-
69949096844
-
Study of 1,4-dihydropyridine structural scaffold: Discovery of novel sirtuin activators and inhibitors
-
Mai A, Valente S, Meade S, et al. Study of 1,4-dihydropyridine structural scaffold: discovery of novel sirtuin activators and inhibitors. J Med Chem 2009; 52: 5496-504.
-
(2009)
J Med Chem
, vol.52
, pp. 5496-5504
-
-
Mai, A.1
Valente, S.2
Meade, S.3
-
148
-
-
84860477354
-
SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
-
Price NL, Gomes AP, Ling AJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 2012; 15: 675-90.
-
(2012)
Cell Metab
, vol.15
, pp. 675-690
-
-
Price, N.L.1
Gomes, A.P.2
Ling, A.J.3
-
149
-
-
84872008953
-
Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy
-
Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci (Lond) 2013; 124: 153-64
-
(2013)
Clin Sci (Lond)
, vol.124
, pp. 153-164
-
-
Kitada, M.1
Kume, S.2
Takeda-Watanabe, A.3
Kanasaki, K.4
Koya, D.5
-
151
-
-
81155155536
-
The QKI-PLP pathway controls SIRT2 abundance in CNS myelin
-
Zhu H, Zhao L, Wang E, et al. The QKI-PLP pathway controls SIRT2 abundance in CNS myelin. Glia 2012; 60: 69-82.
-
(2012)
Glia
, vol.60
, pp. 69-82
-
-
Zhu, H.1
Zhao, L.2
Wang, E.3
-
152
-
-
80055085172
-
Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling
-
Beirowski B, Gustin J, Armour SM, et al. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci USA 2011; 108: E952- E961.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
-
-
Beirowski, B.1
Gustin, J.2
Armour, S.M.3
-
153
-
-
79959906869
-
Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase
-
Jiang W, Wang S, Xiao M, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell 2011; 43: 33-44.
-
(2011)
Mol Cell
, vol.43
, pp. 33-44
-
-
Jiang, W.1
Wang, S.2
Xiao, M.3
-
155
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Hirschey MD, Shimazu T, Goetzman E, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010; 464: 121-5.
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
Shimazu, T.2
Goetzman, E.3
-
156
-
-
17144424946
-
SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes
-
Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 2005; 280: 13560-7.
-
(2005)
J Biol Chem
, vol.280
, pp. 13560-13567
-
-
Shi, T.1
Wang, F.2
Stieren, E.3
Tong, Q.4
-
157
-
-
78751513117
-
Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
-
Kendrick AA, Choudhury M, Rahman SM, et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J 2011; 433: 505-14.
-
(2011)
Biochem J
, vol.433
, pp. 505-514
-
-
Kendrick, A.A.1
Choudhury, M.2
Rahman, S.M.3
-
158
-
-
84872618753
-
Glutamate dehydrogenase 1 and SIRT4 regulate glial development
-
Komlos D, Mann KD, Zhuo Y, Ricupero CL, Hart RP, Liu AY, Firestein BL.Glutamate dehydrogenase 1 and SIRT4 regulate glial development. Glia 2013; 61: 394-408.
-
(2013)
Glia
, vol.61
, pp. 394-408
-
-
Komlos, D.1
Mann, K.D.2
Zhuo, Y.3
Ricupero, C.L.4
Hart, R.P.5
Liu, A.Y.6
Firestein, B.L.7
-
159
-
-
34249083199
-
Sirtuins in mammals: Insights into their biological function
-
Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J 2007; 404: 1-13.
-
(2007)
Biochem J
, vol.404
, pp. 1-13
-
-
Michan, S.1
Sinclair, D.2
-
160
-
-
77953933813
-
Urea cycle regulation by mitochondrial sirtuin, SIRT5
-
Nakagawa T, Guarente L. Urea cycle regulation by mitochondrial sirtuin, SIRT5. Aging (Albany NY) 2009; 1: 578-81.
-
(2009)
Aging (Albany NY)
, vol.1
, pp. 578-581
-
-
Nakagawa, T.1
Guarente, L.2
-
161
-
-
65249087389
-
SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
-
Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009; 137: 560-70.
-
(2009)
Cell
, vol.137
, pp. 560-570
-
-
Nakagawa, T.1
Lomb, D.J.2
Haigis, M.C.3
Guarente, L.4
-
162
-
-
84878680994
-
Sirtuin 6: A review of biological effects and potential therapeutic properties
-
[Epub ahead of print]
-
Beauharnois JM, Bolívar BE, Welch JT. Sirtuin 6: a review of biological effects and potential therapeutic properties. Mol Biosyst 2013.[Epub ahead of print].
-
(2013)
Mol Biosyst
-
-
Beauharnois, J.M.1
Bolívar, B.E.2
Welch, J.T.3
-
163
-
-
84875881601
-
SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine
-
Sebastian C, Du J, Kim R, et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013; 496: 110-3.
-
(2013)
Nature
, vol.496
, pp. 110-113
-
-
Sebastian, C.1
Du, J.2
Kim, R.3
-
164
-
-
84861852370
-
Are sirtuins viable targets for improving healthspan and lifespan?
-
Baur JA, Ungvari Z, Minor RK, Le Couteur DG, de Cabo R. Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov 2012: 11; 443-61.
-
(2012)
Nat Rev Drug Discov
, vol.11
, pp. 443-461
-
-
Baur, J.A.1
Ungvari, Z.2
Minor, R.K.3
Le Couteur, D.G.4
de Cabo, R.5
-
165
-
-
84861140340
-
Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription
-
M111.015156
-
Tsai YC, Greco TM, Boonmee A, Miteva Y, Cristea IM. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol Cell Proteomics 2012; 11: M111.015156.
-
Mol Cell Proteomics
, vol.11
, Issue.2012
-
-
Tsai, Y.C.1
Greco, T.M.2
Boonmee, A.3
Miteva, Y.4
Cristea, I.M.5
-
166
-
-
84863453769
-
SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
-
Barber MF, Michishita-Kioi E, Xi Y, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 2012; 487: 114-8.
-
(2012)
Nature
, vol.487
, pp. 114-118
-
-
Barber, M.F.1
Michishita-Kioi, E.2
Xi, Y.3
|