-
1
-
-
84892170718
-
What's fueling the biotech engine – 2012 to 2013
-
1 Aggarwal, S., What's fueling the biotech engine – 2012 to 2013. Nat. Biotechnol. 32 (2014), 32–39.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 32-39
-
-
Aggarwal, S.1
-
2
-
-
84861876412
-
Can next-generation antibodies offset biosimilar competition?
-
2 Mullard, A., Can next-generation antibodies offset biosimilar competition?. Nat. Rev. Drug Discov. 11 (2012), 426–428.
-
(2012)
Nat. Rev. Drug Discov.
, vol.11
, pp. 426-428
-
-
Mullard, A.1
-
3
-
-
77951979046
-
Recent advances in large-scale production of monoclonal antibodies and related proteins
-
3 Shukla, A.A., Thommes, J., Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol. 28 (2010), 253–261.
-
(2010)
Trends Biotechnol.
, vol.28
, pp. 253-261
-
-
Shukla, A.A.1
Thommes, J.2
-
4
-
-
84897065464
-
Glycosylation analysis of an aggregated antibody produced by Chinese hamster ovary cells in bioreactor culture
-
4 Onitsuka, M., et al. Glycosylation analysis of an aggregated antibody produced by Chinese hamster ovary cells in bioreactor culture. J. Biosci. Bioeng. 117 (2014), 639–644.
-
(2014)
J. Biosci. Bioeng.
, vol.117
, pp. 639-644
-
-
Onitsuka, M.1
-
5
-
-
80052348042
-
Glycosylation of therapeutic proteins – current understanding of structure–function relationships
-
5 Siemiatkoski, J., et al. Glycosylation of therapeutic proteins – current understanding of structure–function relationships. BioProcess Int. 9 (2011), 48–53.
-
(2011)
BioProcess Int.
, vol.9
, pp. 48-53
-
-
Siemiatkoski, J.1
-
6
-
-
77951586447
-
Strategies and challenges for the next generation of therapeutic antibodies
-
6 Beck, A., et al. Strategies and challenges for the next generation of therapeutic antibodies. Nat. Rev. Immunol. 10 (2010), 345–352.
-
(2010)
Nat. Rev. Immunol.
, vol.10
, pp. 345-352
-
-
Beck, A.1
-
7
-
-
34047142084
-
Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1
-
7 Matsumiya, S., et al. Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J. Mol. Biol. 368 (2007), 767–779.
-
(2007)
J. Mol. Biol.
, vol.368
, pp. 767-779
-
-
Matsumiya, S.1
-
8
-
-
28844463354
-
Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodelling in vitro
-
8 Hodoniczky, J., et al. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodelling in vitro. Biotechnol. Prog. 21 (2005), 1644–1652.
-
(2005)
Biotechnol. Prog.
, vol.21
, pp. 1644-1652
-
-
Hodoniczky, J.1
-
9
-
-
79958837668
-
High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans
-
9 Goetze, A.M., et al. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 21 (2011), 949–959.
-
(2011)
Glycobiology
, vol.21
, pp. 949-959
-
-
Goetze, A.M.1
-
10
-
-
84911946438
-
Antibody glycosylation and inflammation
-
10 Shade, K., Anthony, R.M., Antibody glycosylation and inflammation. Antibodies 2 (2013), 392–414.
-
(2013)
Antibodies
, vol.2
, pp. 392-414
-
-
Shade, K.1
Anthony, R.M.2
-
11
-
-
0004338667
-
FDA Guidance Concerning Demonstration of Comparability of Human Biological Products, including Therapeutic Biotechnology-derived Products
-
FDA
-
11 FDA. FDA Guidance Concerning Demonstration of Comparability of Human Biological Products, including Therapeutic Biotechnology-derived Products. 1996, FDA.
-
(1996)
-
-
-
12
-
-
84877015785
-
Protein glycosylation control in mammalian cell culture: past precedents and contemporary prospects
-
12 Hossler, P., Protein glycosylation control in mammalian cell culture: past precedents and contemporary prospects. Adv. Biochem. Eng. Biotechnol. 127 (2012), 187–219.
-
(2012)
Adv. Biochem. Eng. Biotechnol.
, vol.127
, pp. 187-219
-
-
Hossler, P.1
-
13
-
-
84889094657
-
Integration of models and experimentation to optimise the production of potential biotherapeutics
-
13 Royle, K.E., et al. Integration of models and experimentation to optimise the production of potential biotherapeutics. Drug Discov. Today 18 (2013), 1250–1255.
-
(2013)
Drug Discov. Today
, vol.18
, pp. 1250-1255
-
-
Royle, K.E.1
-
14
-
-
84903852374
-
The choice of mammalian cell host and possibilities for glycosylation engineering
-
14 Butler, M., Spearman, M., The choice of mammalian cell host and possibilities for glycosylation engineering. Curr. Opin. Biotechnol. 30C (2014), 107–112.
-
(2014)
Curr. Opin. Biotechnol.
, vol.30C
, pp. 107-112
-
-
Butler, M.1
Spearman, M.2
-
15
-
-
34247854443
-
Nonfucosylated anti-HER2 antibody augments antibody-dependent cellular cytotoxicity in breast cancer patients
-
15 Suzuki, E., et al. Nonfucosylated anti-HER2 antibody augments antibody-dependent cellular cytotoxicity in breast cancer patients. Clin. Cancer Res. 13 (2007), 1875–1882.
-
(2007)
Clin. Cancer Res.
, vol.13
, pp. 1875-1882
-
-
Suzuki, E.1
-
16
-
-
38649143213
-
Double knockdown of α1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC
-
16 Imai-Nishiya, H., et al. Double knockdown of α1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol., 7, 2007, 84.
-
(2007)
BMC Biotechnol.
, vol.7
, pp. 84
-
-
Imai-Nishiya, H.1
-
17
-
-
77955390706
-
Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies
-
17 Malphettes, L., et al. Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol. Bioeng. 106 (2010), 774–783.
-
(2010)
Biotechnol. Bioeng.
, vol.106
, pp. 774-783
-
-
Malphettes, L.1
-
18
-
-
84941187809
-
Functional knockout of FUT8 in Chinese hamster ovary cells using CRISPR/Cas9 to produce a defucosylated antibody
-
18 Sun, T., et al. Functional knockout of FUT8 in Chinese hamster ovary cells using CRISPR/Cas9 to produce a defucosylated antibody. Eng. Life Sci., 15, 2015, 660.
-
(2015)
Eng. Life Sci.
, vol.15
, pp. 660
-
-
Sun, T.1
-
19
-
-
33646070900
-
Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous β1,4-N-acetylglucosaminyltransferase III and Golgi α-mannosidase II
-
19 Ferrara, C., et al. Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous β1,4-N-acetylglucosaminyltransferase III and Golgi α-mannosidase II. Biotechnol. Bioeng. 93 (2006), 851–861.
-
(2006)
Biotechnol. Bioeng.
, vol.93
, pp. 851-861
-
-
Ferrara, C.1
-
20
-
-
79961191745
-
The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line
-
20 Xu, X., et al. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 29 (2011), 735–741.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 735-741
-
-
Xu, X.1
-
21
-
-
33751253486
-
Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality
-
21 Scallon, B.J., et al. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol. Immunol. 44 (2007), 1524–1534.
-
(2007)
Mol. Immunol.
, vol.44
, pp. 1524-1534
-
-
Scallon, B.J.1
-
22
-
-
42349085035
-
Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc
-
22 Anthony, R.M., et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320 (2008), 373–376.
-
(2008)
Science
, vol.320
, pp. 373-376
-
-
Anthony, R.M.1
-
23
-
-
84940551820
-
A common glycan structure on immunoglobulin G for enhancement of effector functions
-
23 Lin, C.W., et al. A common glycan structure on immunoglobulin G for enhancement of effector functions. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 10611–10616.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 10611-10616
-
-
Lin, C.W.1
-
24
-
-
79960209555
-
Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes
-
24 Son, Y.D., et al. Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. Glycobiology 21 (2011), 1019–1028.
-
(2011)
Glycobiology
, vol.21
, pp. 1019-1028
-
-
Son, Y.D.1
-
25
-
-
66149104098
-
Enhanced sialylation of recombinant erythropoietin in genetically engineered Chinese-hamster ovary cells
-
25 Jeong, Y.T., et al. Enhanced sialylation of recombinant erythropoietin in genetically engineered Chinese-hamster ovary cells. Biotechnol. Appl. Biochem. 52 (2009), 283–291.
-
(2009)
Biotechnol. Appl. Biochem.
, vol.52
, pp. 283-291
-
-
Jeong, Y.T.1
-
26
-
-
33646029110
-
Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells
-
26 Wong, N.S., et al. Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnol. Bioeng. 93 (2006), 1005–1016.
-
(2006)
Biotechnol. Bioeng.
, vol.93
, pp. 1005-1016
-
-
Wong, N.S.1
-
27
-
-
33748438957
-
RNA interference of sialidase improves glycoprotein sialic acid content consistency
-
27 Ngantung, F.A., et al. RNA interference of sialidase improves glycoprotein sialic acid content consistency. Biotechnol. Bioeng. 95 (2006), 106–119.
-
(2006)
Biotechnol. Bioeng.
, vol.95
, pp. 106-119
-
-
Ngantung, F.A.1
-
28
-
-
84931562808
-
Tailoring recombinant protein quality by rational media design
-
28 Brühlmann, D., et al. Tailoring recombinant protein quality by rational media design. Biotechnol. Prog. 31 (2015), 615–629.
-
(2015)
Biotechnol. Prog.
, vol.31
, pp. 615-629
-
-
Brühlmann, D.1
-
29
-
-
78149250500
-
An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding
-
29 Wong, N.S., et al. An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding. Biotechnol. Bioeng. 107 (2010), 321–336.
-
(2010)
Biotechnol. Bioeng.
, vol.107
, pp. 321-336
-
-
Wong, N.S.1
-
30
-
-
84890158776
-
The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody
-
30 Liu, B., et al. The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody. J. Biotechnol. 170 (2014), 17–27.
-
(2014)
J. Biotechnol.
, vol.170
, pp. 17-27
-
-
Liu, B.1
-
31
-
-
79956155356
-
Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose
-
31 Gramer, M.J., et al. Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol. Bioeng. 108 (2011), 1591–1602.
-
(2011)
Biotechnol. Bioeng.
, vol.108
, pp. 1591-1602
-
-
Gramer, M.J.1
-
32
-
-
84928429962
-
A robust method for increasing Fc glycan high mannose level of recombinant antibodies
-
32 Huang, C.J., et al. A robust method for increasing Fc glycan high mannose level of recombinant antibodies. Biotechnol. Bioeng. 112 (2015), 1200–1209.
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 1200-1209
-
-
Huang, C.J.1
-
33
-
-
84958280421
-
Mannose metabolism in recombinant CHO cells and its effect on IgG glycosylation
-
Published online January 1, 2016
-
33 Slade, P.G., et al. Mannose metabolism in recombinant CHO cells and its effect on IgG glycosylation. Biotechnol. Bioeng., 2016, 10.1002/bit.25924 Published online January 1, 2016.
-
(2016)
Biotechnol. Bioeng.
-
-
Slade, P.G.1
-
34
-
-
80054092824
-
Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells
-
34 Burleigh, S.C., et al. Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells. BMC Biotechnol., 11, 2011, 95.
-
(2011)
BMC Biotechnol.
, vol.11
, pp. 95
-
-
Burleigh, S.C.1
-
35
-
-
84904346024
-
Role of Chinese hamster ovary central carbon metabolism
-
35 McAtee, A.G., et al. Role of Chinese hamster ovary central carbon metabolism. Pharm. Bioprocess 2 (2014), 63–74.
-
(2014)
Pharm. Bioprocess
, vol.2
, pp. 63-74
-
-
McAtee, A.G.1
-
36
-
-
33846927813
-
Amino acid and manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture system
-
36 Crowell, C.K., et al. Amino acid and manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture system. Biotechnol. Bioeng. 96 (2007), 538–549.
-
(2007)
Biotechnol. Bioeng.
, vol.96
, pp. 538-549
-
-
Crowell, C.K.1
-
37
-
-
0036008002
-
Effects of ammonia and glucosamine on EPO glycoforms
-
37 Yang, M., Butler, M., Effects of ammonia and glucosamine on EPO glycoforms. Biotechnol. Prog. 18 (2002), 129–138.
-
(2002)
Biotechnol. Prog.
, vol.18
, pp. 129-138
-
-
Yang, M.1
Butler, M.2
-
38
-
-
84884530112
-
CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation
-
38 Grainger, R.K., James, D.C., CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation. Biotechnol. Bioeng. 110 (2013), 2970–2982.
-
(2013)
Biotechnol. Bioeng.
, vol.110
, pp. 2970-2982
-
-
Grainger, R.K.1
James, D.C.2
-
39
-
-
84922974254
-
Control of galactosylated glycoforms distribution in cell culture system
-
39 McCracken, N.A., et al. Control of galactosylated glycoforms distribution in cell culture system. Biotechnol. Prog. 30 (2014), 547–553.
-
(2014)
Biotechnol. Prog.
, vol.30
, pp. 547-553
-
-
McCracken, N.A.1
-
40
-
-
84904490835
-
Effects of nutrient levels and average culture pH on the glycosylation pattern of camelid-humanized monoclonal antibody
-
40 Aghamohseni, H., et al. Effects of nutrient levels and average culture pH on the glycosylation pattern of camelid-humanized monoclonal antibody. J. Biotechnol. 186 (2014), 98–109.
-
(2014)
J. Biotechnol.
, vol.186
, pp. 98-109
-
-
Aghamohseni, H.1
-
41
-
-
84873323391
-
Fed-batch CHO cell t-PA production and feed glutamine replacement to reduce ammonia production
-
41 Kim, D.Y., et al. Fed-batch CHO cell t-PA production and feed glutamine replacement to reduce ammonia production. Biotechnol. Prog. 29 (2013), 165–175.
-
(2013)
Biotechnol. Prog.
, vol.29
, pp. 165-175
-
-
Kim, D.Y.1
-
42
-
-
78349269949
-
CHO-K1 host cells adapted to growth in glutamine-free medium by FACS-assisted evolution
-
42 Bort, J.A.H., et al. CHO-K1 host cells adapted to growth in glutamine-free medium by FACS-assisted evolution. Biotechnol. J. 5 (2010), 1090–1097.
-
(2010)
Biotechnol. J.
, vol.5
, pp. 1090-1097
-
-
Bort, J.A.H.1
-
43
-
-
84855668252
-
Growth, productivity and protein glycosylation in a CHO EpoFc producer cell line adapted to glutamine-free growth
-
43 Taschwer, M., et al. Growth, productivity and protein glycosylation in a CHO EpoFc producer cell line adapted to glutamine-free growth. J. Biotechnol. 157 (2012), 295–303.
-
(2012)
J. Biotechnol.
, vol.157
, pp. 295-303
-
-
Taschwer, M.1
-
44
-
-
18144373127
-
Effects of amino acid additions on ammonium stressed CHO cells
-
44 Chen, P., Harcum, S.W., Effects of amino acid additions on ammonium stressed CHO cells. J. Biotechnol. 117 (2005), 277–286.
-
(2005)
J. Biotechnol.
, vol.117
, pp. 277-286
-
-
Chen, P.1
Harcum, S.W.2
-
45
-
-
80051798475
-
Effects of cell culture conditions on antibody N-linked glycosylation – what affects high mannose 5 glycoform
-
45 Pacis, E., et al. Effects of cell culture conditions on antibody N-linked glycosylation – what affects high mannose 5 glycoform. Biotechnol. Bioeng. 108 (2011), 2348–2358.
-
(2011)
Biotechnol. Bioeng.
, vol.108
, pp. 2348-2358
-
-
Pacis, E.1
-
46
-
-
84944905703
-
Real-time product attribute control to manufacture antibodies with defined N-linked glycan levels
-
46 Zupke, C., et al. Real-time product attribute control to manufacture antibodies with defined N-linked glycan levels. Biotechnol. Prog. 31 (2015), 1433–1441.
-
(2015)
Biotechnol. Prog.
, vol.31
, pp. 1433-1441
-
-
Zupke, C.1
-
47
-
-
84894639207
-
Controllability analysis of protein glycosylation in CHO cells
-
47 St Amand, M.M., et al. Controllability analysis of protein glycosylation in CHO cells. PLoS ONE, 9, 2014, e87973.
-
(2014)
PLoS ONE
, vol.9
, pp. e87973
-
-
St Amand, M.M.1
-
48
-
-
84904365784
-
Identification of manipulated variables for a glycosylation control strategy
-
48 St Amand, M.M., et al. Identification of manipulated variables for a glycosylation control strategy. Biotechnol. Bioeng. 111 (2014), 1957–1970.
-
(2014)
Biotechnol. Bioeng.
, vol.111
, pp. 1957-1970
-
-
St Amand, M.M.1
-
49
-
-
68749110765
-
Optimal and consistent protein glycosylation in mammalian cell culture
-
49 Hossler, P., et al. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19 (2009), 936–949.
-
(2009)
Glycobiology
, vol.19
, pp. 936-949
-
-
Hossler, P.1
-
50
-
-
84863724161
-
Fucose content of monoclonal antibodies can be controlled by culture medium osmolality for high antibody-dependent cellular cytotoxicity
-
50 Konno, Y., et al. Fucose content of monoclonal antibodies can be controlled by culture medium osmolality for high antibody-dependent cellular cytotoxicity. Cytotechnology 64 (2012), 249–265.
-
(2012)
Cytotechnology
, vol.64
, pp. 249-265
-
-
Konno, Y.1
-
51
-
-
0037420754
-
Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells
-
51 Yoon, S.K., et al. Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol. Bioeng. 82 (2003), 289–298.
-
(2003)
Biotechnol. Bioeng.
, vol.82
, pp. 289-298
-
-
Yoon, S.K.1
-
52
-
-
84929160974
-
Bioreactor process parameter screening utilizing a Plackett–Burman design for a model monoclonal antibody
-
52 Agarabi, C.D., et al. Bioreactor process parameter screening utilizing a Plackett–Burman design for a model monoclonal antibody. J. Pharm. Sci. 104 (2015), 1919–1928.
-
(2015)
J. Pharm. Sci.
, vol.104
, pp. 1919-1928
-
-
Agarabi, C.D.1
-
53
-
-
77955949391
-
Guidance for Industry. Q8(R2) Pharmaceutical Development
-
FDA
-
53 U.S. Department of Health Human Services; Food and Drug Administration; Center for Drug Evaluation and Research (CDER); Center for Biologics Evaluation and Research (CBER). Guidance for Industry. Q8(R2) Pharmaceutical Development. 2009, FDA.
-
(2009)
-
-
-
54
-
-
78049428272
-
A functional analysis of N-glycosylation-related genes on sialylation of recombinant erythropoietin in six commonly used mammalian cell lines
-
54 Zhang, P., et al. A functional analysis of N-glycosylation-related genes on sialylation of recombinant erythropoietin in six commonly used mammalian cell lines. Metab. Eng. 12 (2010), 526–536.
-
(2010)
Metab. Eng.
, vol.12
, pp. 526-536
-
-
Zhang, P.1
-
55
-
-
84906070955
-
Glycosylation-related genes in NS0 cells are insensitive to moderately elevated ammonium concentrations
-
55 Brodsky, A.N., et al. Glycosylation-related genes in NS0 cells are insensitive to moderately elevated ammonium concentrations. J. Biotechnol. 187 (2014), 78–86.
-
(2014)
J. Biotechnol.
, vol.187
, pp. 78-86
-
-
Brodsky, A.N.1
-
56
-
-
84860448067
-
Glycosylation and post-translational modification gene expression analysis by DNA microarrays for cultured mammalian cells
-
56 Brodsky, A.N., et al. Glycosylation and post-translational modification gene expression analysis by DNA microarrays for cultured mammalian cells. Methods 56 (2012), 408–417.
-
(2012)
Methods
, vol.56
, pp. 408-417
-
-
Brodsky, A.N.1
-
57
-
-
84932199513
-
Understanding of altered N-glycosylation-related gene expression in recombinant Chinese hamster ovary cells subjected to elevated ammonium concentration by digital mRNA counting
-
57 Ha, T.K., et al. Understanding of altered N-glycosylation-related gene expression in recombinant Chinese hamster ovary cells subjected to elevated ammonium concentration by digital mRNA counting. Biotechnol. Bioeng. 112 (2015), 1583–1593.
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 1583-1593
-
-
Ha, T.K.1
-
58
-
-
78651471034
-
Profiling of N-glycosylation gene expression in CHO cell fed-batch cultures
-
58 Wong, D.C.F., et al. Profiling of N-glycosylation gene expression in CHO cell fed-batch cultures. Biotechnol. Bioeng. 107 (2010), 516–528.
-
(2010)
Biotechnol. Bioeng.
, vol.107
, pp. 516-528
-
-
Wong, D.C.F.1
-
59
-
-
84894342482
-
Dynamics of growth and metabolism controlled by glutamine availability in Chinese hamster ovary cells
-
59 Wahrheit, J., et al. Dynamics of growth and metabolism controlled by glutamine availability in Chinese hamster ovary cells. Appl. Microbiol. Biotechnol. 98 (2014), 1771–1783.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 1771-1783
-
-
Wahrheit, J.1
-
60
-
-
84871722305
-
Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption
-
60 Martínez, V.S., et al. Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption. Biotechnol. Bioeng. 110 (2012), 660–666.
-
(2012)
Biotechnol. Bioeng.
, vol.110
, pp. 660-666
-
-
Martínez, V.S.1
-
61
-
-
84906352291
-
13C metabolic flux analysis
-
13C metabolic flux analysis. J. Biotechnol. 187 (2014), 124–134.
-
(2014)
J. Biotechnol.
, vol.187
, pp. 124-134
-
-
Nie, Y.1
-
62
-
-
84868010172
-
LC-MS-Based metabolic characterization of high monoclonal antibody-producing Chinese hamster ovary cells
-
62 Chong, W.P.K., et al. LC-MS-Based metabolic characterization of high monoclonal antibody-producing Chinese hamster ovary cells. Biotechnol. Bioeng. 109 (2012), 3103–3111.
-
(2012)
Biotechnol. Bioeng.
, vol.109
, pp. 3103-3111
-
-
Chong, W.P.K.1
-
63
-
-
84940467009
-
A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture
-
63 Fan, Y., et al. A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture. Biotechnol. Bioeng. 112 (2015), 2172–2184.
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 2172-2184
-
-
Fan, Y.1
-
64
-
-
84868324251
-
Proteomic analysis of Chinese hamster ovary cells
-
64 Baycin-Hizal, D., et al. Proteomic analysis of Chinese hamster ovary cells. J. Proteome Res. 11 (2012), 5265–5276.
-
(2012)
J. Proteome Res.
, vol.11
, pp. 5265-5276
-
-
Baycin-Hizal, D.1
-
65
-
-
84898861924
-
Effect of glucose feeding on the glycosylation quality of antibody produced by a human cell line, F2N78, in fed-batch culture
-
65 Seo, J.S., et al. Effect of glucose feeding on the glycosylation quality of antibody produced by a human cell line, F2N78, in fed-batch culture. Appl. Microbiol. Biotechnol. 98 (2014), 3509–3515.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 3509-3515
-
-
Seo, J.S.1
-
66
-
-
84928428105
-
How does mild hypothermia affect monoclonal antibody glycosylation
-
66 Sou, S.N., et al. How does mild hypothermia affect monoclonal antibody glycosylation. Biotechnol. Bioeng. 112 (2015), 1165–1176.
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 1165-1176
-
-
Sou, S.N.1
-
67
-
-
84862784156
-
Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture
-
67 Selvarasu, S., et al. Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture. Biotechnol. Bioeng. 109 (2012), 1415–1429.
-
(2012)
Biotechnol. Bioeng.
, vol.109
, pp. 1415-1429
-
-
Selvarasu, S.1
-
68
-
-
46249121065
-
Influence of intracellular nucleotide and nucleotide sugar contents on recombinant interferon-gamma glycosylation during batch and fed-batch cultures of CHO cells
-
68 Kochanowski, N., et al. Influence of intracellular nucleotide and nucleotide sugar contents on recombinant interferon-gamma glycosylation during batch and fed-batch cultures of CHO cells. Biotechnol. Bioeng. 100 (2008), 721–733.
-
(2008)
Biotechnol. Bioeng.
, vol.100
, pp. 721-733
-
-
Kochanowski, N.1
-
69
-
-
0035922885
-
Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NSO cells
-
69 Hills, A.E., et al. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NSO cells. Biotechnol. Bioeng. 75 (2001), 239–251.
-
(2001)
Biotechnol. Bioeng.
, vol.75
, pp. 239-251
-
-
Hills, A.E.1
-
70
-
-
84922787460
-
Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation
-
70 Fan, Y., et al. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Biotechnol. Bioeng. 112 (2015), 521–535.
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 521-535
-
-
Fan, Y.1
-
71
-
-
19544383966
-
Gene-expression profiles for five key glycosylation genes for galactose-fed CHO cells expressing recombinant IL-4/13 cytokine trap
-
71 Clark, K.J., et al. Gene-expression profiles for five key glycosylation genes for galactose-fed CHO cells expressing recombinant IL-4/13 cytokine trap. Biotechnol. Bioeng. 90 (2005), 568–577.
-
(2005)
Biotechnol. Bioeng.
, vol.90
, pp. 568-577
-
-
Clark, K.J.1
-
72
-
-
33644825884
-
Effects of elevated ammonium on glycosylation gene expression in CHO cells
-
72 Chen, P., Harcum, S.W., Effects of elevated ammonium on glycosylation gene expression in CHO cells. Metab. Eng. 8 (2006), 123–132.
-
(2006)
Metab. Eng.
, vol.8
, pp. 123-132
-
-
Chen, P.1
Harcum, S.W.2
-
73
-
-
82955237386
-
A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus
-
73 del Val, I.J., et al. A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus. Biotechnol. Prog. 27 (2011), 1730–1743.
-
(2011)
Biotechnol. Prog.
, vol.27
, pp. 1730-1743
-
-
del Val, I.J.1
-
74
-
-
0343581263
-
A mathematical model of N-linked glycoform biosynthesis
-
74 Umana, P., Bailey, J.E., A mathematical model of N-linked glycoform biosynthesis. Biotechnol. Bioeng. 55 (1997), 891–908.
-
(1997)
Biotechnol. Bioeng.
, vol.55
, pp. 891-908
-
-
Umana, P.1
Bailey, J.E.2
-
75
-
-
28844473175
-
A mathematical model of N-linked glycosylation
-
75 Krambeck, F.J., Betenbaugh, M.J., A mathematical model of N-linked glycosylation. Biotechnol. Bioeng. 92 (2005), 711–728.
-
(2005)
Biotechnol. Bioeng.
, vol.92
, pp. 711-728
-
-
Krambeck, F.J.1
Betenbaugh, M.J.2
-
76
-
-
84914142511
-
Galactosyltransferase 4 is a major control point for glycan branching in N-linked glycosylation
-
76 McDonald, A.G., et al. Galactosyltransferase 4 is a major control point for glycan branching in N-linked glycosylation. J. Cell Sci. 127 (2014), 5014–5026.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 5014-5026
-
-
McDonald, A.G.1
-
77
-
-
84896474989
-
Towards controlling the glycoform: a model framework linking extracellular metabolites to antibody glycosylation
-
77 Jedrzejewski, P.M., et al. Towards controlling the glycoform: a model framework linking extracellular metabolites to antibody glycosylation. Int. J. Mol. Sci. 15 (2014), 4492–4522.
-
(2014)
Int. J. Mol. Sci.
, vol.15
, pp. 4492-4522
-
-
Jedrzejewski, P.M.1
-
78
-
-
84991217690
-
Novel dynamic model to predict the glycosylation pattern of monoclonal antibodies from extracellular cell culture conditions
-
IFAC
-
78 Kaveh, O., et al. Novel dynamic model to predict the glycosylation pattern of monoclonal antibodies from extracellular cell culture conditions. 12th IFAC Symposium on Computer Applications in Biotechnology, The International Federation of Automatic Control, 16–18 December, 2013, Mumbai, India, 2013, IFAC, 36–41.
-
(2013)
12th IFAC Symposium on Computer Applications in Biotechnology, The International Federation of Automatic Control, 16–18 December, 2013, Mumbai, India
, pp. 36-41
-
-
Kaveh, O.1
-
79
-
-
85027210803
-
A quantitative and mechanistic model for monoclonal antibody glycosylation as a function of nutrient availability during cell culture
-
79 del Val, J.I., et al. A quantitative and mechanistic model for monoclonal antibody glycosylation as a function of nutrient availability during cell culture. BMC Proc., 7, 2013, O10.
-
(2013)
BMC Proc.
, vol.7
, pp. O10
-
-
del Val, J.I.1
-
80
-
-
84969369434
-
Dynamics of immature mAb glycoform secretion during CHO cell culture: an integrated modelling framework
-
Published online February 12, 2016
-
80 del Val, I.J., et al. Dynamics of immature mAb glycoform secretion during CHO cell culture: an integrated modelling framework. Biotechnol. J., 2016, 10.1002/biot.201400663 Published online February 12, 2016.
-
(2016)
Biotechnol. J.
-
-
del Val, I.J.1
-
81
-
-
40249093192
-
Systems analysis of N-glycan processing in mammalian cells
-
81 Hossler, P., et al. Systems analysis of N-glycan processing in mammalian cells. PLoS ONE, 2, 2007, e713.
-
(2007)
PLoS ONE
, vol.2
, pp. e713
-
-
Hossler, P.1
-
82
-
-
70350114562
-
Centralized modularity of N-linked glycosylation pathways in mammalian cells
-
82 Kim, P.J., et al. Centralized modularity of N-linked glycosylation pathways in mammalian cells. PLoS ONE, 4, 2009, e7317.
-
(2009)
PLoS ONE
, vol.4
, pp. e7317
-
-
Kim, P.J.1
-
83
-
-
84947982943
-
A Markov chain model for N-linked protein glycosylation – towards a low-parameter tool for model-driven glycoengineering
-
83 Spahn, P.N., et al. A Markov chain model for N-linked protein glycosylation – towards a low-parameter tool for model-driven glycoengineering. Metab. Eng. 33 (2016), 52–66.
-
(2016)
Metab. Eng.
, vol.33
, pp. 52-66
-
-
Spahn, P.N.1
-
84
-
-
33845247062
-
GlycoVis: visualizing glycan distribution in the protein N-glycosylation pathway in mammalian cells
-
84 Hossler, P., et al. GlycoVis: visualizing glycan distribution in the protein N-glycosylation pathway in mammalian cells. Biotechnol. Bioeng. 95 (2006), 947–960.
-
(2006)
Biotechnol. Bioeng.
, vol.95
, pp. 947-960
-
-
Hossler, P.1
-
85
-
-
84873283704
-
Glycosylation network analysis toolbox: a MATLAB-based environment for systems glycobiology
-
85 Liu, G., et al. Glycosylation network analysis toolbox: a MATLAB-based environment for systems glycobiology. Bioinformatics 29 (2013), 404–406.
-
(2013)
Bioinformatics
, vol.29
, pp. 404-406
-
-
Liu, G.1
-
86
-
-
41949134459
-
In silico Biochemical Reaction Network Analysis (IBRENA): a package for simulation and analysis of reaction networks
-
86 Liu, G., Neelamegham, S., In silico Biochemical Reaction Network Analysis (IBRENA): a package for simulation and analysis of reaction networks. Bioinformatics 24 (2008), 1109–1111.
-
(2008)
Bioinformatics
, vol.24
, pp. 1109-1111
-
-
Liu, G.1
Neelamegham, S.2
-
87
-
-
84952802704
-
Kinetic modeling of cell metabolism for microbial production
-
87 Costa, R.S., et al. Kinetic modeling of cell metabolism for microbial production. J. Biotechnol. 219 (2016), 126–141.
-
(2016)
J. Biotechnol.
, vol.219
, pp. 126-141
-
-
Costa, R.S.1
|