메뉴 건너뛰기




Volumn 7, Issue 3, 2015, Pages 131-143

The role of microRNAs in bone remodeling

Author keywords

Bone remodeling; MicroRNAs; Osteoclastogenesis; Osteogenesis

Indexed keywords

MICRORNA;

EID: 84948992991     PISSN: 16742818     EISSN: 20493169     Source Type: Journal    
DOI: 10.1038/ijos.2015.22     Document Type: Review
Times cited : (91)

References (236)
  • 1
    • 79957652421 scopus 로고    scopus 로고
    • Bone regeneration: Current concepts and future directions
    • Dimitriou R, Jones E, McGonagle D et al. Bone regeneration: current concepts and future directions. BMC Med 2011; 31(9): 66.
    • (2011) BMC Med , vol.31 , Issue.9 , pp. 66
    • Dimitriou, R.1    Jones, E.2    McGonagle, D.3
  • 2
    • 84876696865 scopus 로고    scopus 로고
    • Clinical advances in bone regeneration
    • Siddiqui NA, Owen JM. Clinical advances in bone regeneration. Curr Stem Cell Res Ther 2013; 8(3): 192-200.
    • (2013) Curr Stem Cell Res Ther , vol.8 , Issue.3 , pp. 192-200
    • Siddiqui, N.A.1    Owen, J.M.2
  • 3
    • 0036155343 scopus 로고    scopus 로고
    • Stimulation of osteoblastic cell differentiation by notch
    • Tezuka K, Yasuda M, Watanabe N et al. Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res 2002; 17(2): 231-239.
    • (2002) J Bone Miner Res , vol.17 , Issue.2 , pp. 231-239
    • Tezuka, K.1    Yasuda, M.2    Watanabe, N.3
  • 4
    • 12344291865 scopus 로고    scopus 로고
    • Bone morphogenetic proteins
    • Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004; 22(4): 233-241.
    • (2004) Growth Factors , vol.22 , Issue.4 , pp. 233-241
    • Chen, D.1    Zhao, M.2    Mundy, G.R.3
  • 5
    • 13444302715 scopus 로고    scopus 로고
    • Sequential roles of hedgehog and wnt signaling in osteoblast development
    • Hu H, Hilton MJ, Tu X et al. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 2005; 132(1): 49-60.
    • (2005) Development , vol.132 , Issue.1 , pp. 49-60
    • Hu, H.1    Hilton, M.J.2    Tu, X.3
  • 6
    • 84860331458 scopus 로고    scopus 로고
    • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture
    • Estrada K, Styrkarsdottir U, Evangelou E et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 2012; 44(5): 491-501.
    • (2012) Nat Genet , vol.44 , Issue.5 , pp. 491-501
    • Estrada, K.1    Styrkarsdottir, U.2    Evangelou, E.3
  • 7
    • 79956293082 scopus 로고    scopus 로고
    • Bookmarking the genome: Maintenance of epigenetic information
    • Zaidi SK, Young DW, Montecino M et al. Bookmarking the genome: maintenance of epigenetic information. J Biol Chem 2011; 286(21): 18355-18361.
    • (2011) J Biol Chem , vol.286 , Issue.21 , pp. 18355-18361
    • Zaidi, S.K.1    Young, D.W.2    Montecino, M.3
  • 8
    • 58449134534 scopus 로고    scopus 로고
    • Small silencing RNAs: An expanding universe
    • Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet 2009; 10(2): 94-108.
    • (2009) Nat Rev Genet , vol.10 , Issue.2 , pp. 94-108
    • Ghildiyal, M.1    Zamore, P.D.2
  • 9
    • 78649812261 scopus 로고    scopus 로고
    • Interplay between microRNAs and the epigenetic machinery: An intricate network
    • 11
    • Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 2010; 1799(10/11/12): 694-701.
    • (2010) Biochim Biophys Acta , vol.1799 , Issue.10-12 , pp. 694-701
    • Iorio, M.V.1    Piovan, C.2    Croce, C.M.3
  • 10
    • 53849106456 scopus 로고    scopus 로고
    • Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption
    • Sims NA, Gooi JH. Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol 2008; 19(5): 444-451.
    • (2008) Semin Cell Dev Biol , vol.19 , Issue.5 , pp. 444-451
    • Sims, N.A.1    Gooi, J.H.2
  • 12
    • 0029124093 scopus 로고
    • Extracellular matrix synthesized by clonal osteogenic cells is osteoinductive in vivo and in vitro: Role of transforming growth factor-beta 1 in osteoblast cell-matrix interaction
    • Kirk MD, Kahn AJ. Extracellular matrix synthesized by clonal osteogenic cells is osteoinductive in vivo and in vitro: role of transforming growth factor-beta 1 in osteoblast cell-matrix interaction. J Bone Miner Res 1995; 10(8): 1203-1208.
    • (1995) J Bone Miner Res , vol.10 , Issue.8 , pp. 1203-1208
    • Kirk, M.D.1    Kahn, A.J.2
  • 13
    • 34547131038 scopus 로고    scopus 로고
    • Cbfb enhances the osteogenic differentiation of both human and mouse mesenchymal stem cells induced by cbfa-1 via reducing its ubiquitination mediated degradation
    • Lien CY, Lee OK, Su Y. Cbfb enhances the osteogenic differentiation of both human and mouse mesenchymal stem cells induced by Cbfa-1 via reducing its ubiquitination mediated degradation. Stem Cells 2007; 25(6): 1462-1468.
    • (2007) Stem Cells , vol.25 , Issue.6 , pp. 1462-1468
    • Lien, C.Y.1    Lee, O.K.2    Su, Y.3
  • 14
    • 33846031926 scopus 로고    scopus 로고
    • The molecular understanding of osteoclast differentiation
    • Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone 2007; 40(2): 251-264.
    • (2007) Bone , vol.40 , Issue.2 , pp. 251-264
    • Asagiri, M.1    Takayanagi, H.2
  • 15
    • 84895922168 scopus 로고    scopus 로고
    • Coupling the activities of bone formation and resorption: A multitude of signals within the basic multicellular unit
    • Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep 2014; 3: 481.
    • (2014) Bonekey Rep , vol.3 , pp. 481
    • Sims, N.A.1    Martin, T.J.2
  • 16
    • 41349096445 scopus 로고    scopus 로고
    • Gene regulation by transcription factors and microRNAs
    • Hobert O. Gene regulation by transcription factors and microRNAs. Science 2008; 319(5871): 1785-1786.
    • (2008) Science , vol.319 , Issue.5871 , pp. 1785-1786
    • Hobert, O.1
  • 17
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: Genomics, biogenesis, mechanism, and function
    • Bartel DP MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-297.
    • (2004) Cell , vol.116 , Issue.2 , pp. 281-297
    • Bartel, D.P.1
  • 18
    • 33845370280 scopus 로고    scopus 로고
    • RNA polymerase III transcribes human microRNAs
    • Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006; 13(12): 1097-1101.
    • (2006) Nat Struct Mol Biol , vol.13 , Issue.12 , pp. 1097-1101
    • Borchert, G.M.1    Lanier, W.2    Davidson, B.L.3
  • 19
    • 69249143283 scopus 로고    scopus 로고
    • miR-29 suppression of osteonectin in osteoblasts: Regulation during differentiation and by canonical wnt signaling
    • Kapinas K, Kessler CB, Delany AM. miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Cell Biochem 2009; 108(1): 216-224.
    • (2009) J Cell Biochem , vol.108 , Issue.1 , pp. 216-224
    • Kapinas, K.1    Kessler, C.B.2    Delany, A.M.3
  • 20
    • 77955644289 scopus 로고    scopus 로고
    • Mammalian microRNAs predominantly act to decrease target mRNA levels
    • Guo H, Ingolia NT, Weissman JS et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466(7308): 835-840.
    • (2010) Nature , vol.466 , Issue.7308 , pp. 835-840
    • Guo, H.1    Ingolia, N.T.2    Weissman, J.S.3
  • 21
    • 34249076321 scopus 로고    scopus 로고
    • The regulation of genes and genomes by small RNAs
    • Ambros V, Chen X. The regulation of genes and genomes by small RNAs. Development 2007; 134(9): 1635-1641.
    • (2007) Development , vol.134 , Issue.9 , pp. 1635-1641
    • Ambros, V.1    Chen, X.2
  • 22
    • 10944254152 scopus 로고    scopus 로고
    • Transcription and processing of human microRNA precursors
    • Cullen BR Transcription and processing of human microRNA precursors. Mol Cell 2004; 16(6): 861-865.
    • (2004) Mol Cell , vol.16 , Issue.6 , pp. 861-865
    • Cullen, B.R.1
  • 23
    • 22844440427 scopus 로고    scopus 로고
    • Identification of hundreds of conserved and nonconserved human microRNAs
    • Bentwich I, Avniel A, Karov Y et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005; 37(7): 766-770.
    • (2005) Nat Genet , vol.37 , Issue.7 , pp. 766-770
    • Bentwich, I.1    Avniel, A.2    Karov, Y.3
  • 25
    • 84879181979 scopus 로고    scopus 로고
    • Mechanism of miRNA-mediated repression of mRNA translation
    • Dalmay T. Mechanism of miRNA-mediated repression of mRNA translation. Essays Biochem 2013; 54(1): 29-38.
    • (2013) Essays Biochem , vol.54 , Issue.1 , pp. 29-38
    • Dalmay, T.1
  • 26
    • 84893146687 scopus 로고    scopus 로고
    • Osteoblast ontogeny and implications for bone pathology: An overview
    • Titorencu I, Pruna V, Jinga VV et al. Osteoblast ontogeny and implications for bone pathology: an overview. Cell Tissue Res 2014; 355(1): 23-33.
    • (2014) Cell Tissue Res , vol.355 , Issue.1 , pp. 23-33
    • Titorencu, I.1    Pruna, V.2    Jinga, V.V.3
  • 27
    • 84865539985 scopus 로고    scopus 로고
    • Transcription factor runx2 and its application to bone tissue engineering
    • Dalle Carbonare L, Innamorati G, Valenti MT. Transcription factor Runx2 and its application to bone tissue engineering. Stem Cell Rev 2012; 8(3): 891-897.
    • (2012) Stem Cell Rev , vol.8 , Issue.3 , pp. 891-897
    • Dalle Carbonare, L.1    Innamorati, G.2    Valenti, M.T.3
  • 28
    • 0030678549 scopus 로고    scopus 로고
    • Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation
    • Ducy P, Zhang R, Geoffroy V et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997; 89(5): 747-754.
    • (1997) Cell , vol.89 , Issue.5 , pp. 747-754
    • Ducy, P.1    Zhang, R.2    Geoffroy, V.3
  • 29
    • 71949088306 scopus 로고    scopus 로고
    • Perspectives on RUNX genes: An update
    • Cohen MM Jr. Perspectives on RUNX genes: an update. Am J Med Genet A 2009; 149A(12): 2629-2646.
    • (2009) Am J Med Genet A , vol.149 A , Issue.12 , pp. 2629-2646
    • Cohen, M.M.1
  • 30
    • 79251631940 scopus 로고    scopus 로고
    • Inducible expression of runx2 results in multiorgan abnormalities in mice
    • He N, Xiao Z, Yin T et al. Inducible expression of Runx2 results in multiorgan abnormalities in mice. J Cell Biochem 2011; 112(2): 653-665.
    • (2011) J Cell Biochem , vol.112 , Issue.2 , pp. 653-665
    • He, N.1    Xiao, Z.2    Yin, T.3
  • 31
    • 22744449169 scopus 로고    scopus 로고
    • Type XIII collagen strongly affects bone formation in transgenic mice
    • Ylönen R, Kyrönlahti T, Sund M et al. Type XIII collagen strongly affects bone formation in transgenic mice. J Bone Miner Res 2005; 20(8): 1381-1393.
    • (2005) J Bone Miner Res , vol.20 , Issue.8 , pp. 1381-1393
    • Ylönen, R.1    Kyrönlahti, T.2    Sund, M.3
  • 32
    • 84899658053 scopus 로고    scopus 로고
    • MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells
    • Huszar JM, Payne CJ. MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells. FEBS Lett 2014; 588(9): 1850-1856.
    • (2014) FEBS Lett , vol.588 , Issue.9 , pp. 1850-1856
    • Huszar, J.M.1    Payne, C.J.2
  • 33
    • 79960015376 scopus 로고    scopus 로고
    • A program of microRNAs controls osteogenic lineage progression by targeting transcription factor runx2
    • Zhang Y, Xie RL, Croce CM et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A 2011; 108(24): 9863-9868.
    • (2011) Proc Natl Acad Sci USA , vol.108 , Issue.24 , pp. 9863-9868
    • Zhang, Y.1    Xie, R.L.2    Croce, C.M.3
  • 34
    • 84862699407 scopus 로고    scopus 로고
    • Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators trps1 and runx2
    • Zhang Y, Xie RL, Gordon J et al. Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators Trps1 and Runx2. J Biol Chem 2012; 287(26): 21926-21935.
    • (2012) J Biol Chem , vol.287 , Issue.26 , pp. 21926-21935
    • Zhang, Y.1    Xie, R.L.2    Gordon, J.3
  • 35
    • 84863263055 scopus 로고    scopus 로고
    • miR-30 family members negatively regulate osteoblast differentiation
    • Wu T, Zhou H, Hong Y et al. miR-30 family members negatively regulate osteoblast differentiation. J Biol Chem 2012; 287(10): 7503-7511.
    • (2012) J Biol Chem , vol.287 , Issue.10 , pp. 7503-7511
    • Wu, T.1    Zhou, H.2    Hong, Y.3
  • 36
    • 79960565215 scopus 로고    scopus 로고
    • Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis
    • Zaragosi LE, Wdziekonski B, Brigand KL et al. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol 2011; 12(7): R64.
    • (2011) Genome Biol , vol.12 , Issue.7 , pp. R64
    • Zaragosi, L.E.1    Wdziekonski, B.2    Brigand, K.L.3
  • 37
    • 77149136767 scopus 로고    scopus 로고
    • MicroRNA-204 regulates runx2 protein expression and mesenchymal progenitor cell differentiation
    • Huang J, Zhao L, Xing L et al. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 2010; 28(2): 357-364.
    • (2010) Stem Cells , vol.28 , Issue.2 , pp. 357-364
    • Huang, J.1    Zhao, L.2    Xing, L.3
  • 38
    • 84867739025 scopus 로고    scopus 로고
    • MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo
    • Cui RR, Li SJ, Liu LJ et al. MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo. Cardiovasc Res 2012; 96(2): 320-329.
    • (2012) Cardiovasc Res , vol.96 , Issue.2 , pp. 320-329
    • Cui, R.R.1    Li, S.J.2    Liu, L.J.3
  • 39
    • 39549105164 scopus 로고    scopus 로고
    • miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation
    • Mizuno Y, Yagi K, Tokuzawa Y et al. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun 2008; 368(2): 267-272.
    • (2008) Biochem Biophys Res Commun , vol.368 , Issue.2 , pp. 267-272
    • Mizuno, Y.1    Yagi, K.2    Tokuzawa, Y.3
  • 40
    • 84901804072 scopus 로고    scopus 로고
    • MicroRNA-125b regulates osteogenic differentiation of mesenchymal stem cells by targeting Cbfß in vitro
    • Huang K, Fu J, Zhou W et al. MicroRNA-125b regulates osteogenic differentiation of mesenchymal stem cells by targeting Cbfß in vitro. Biochimie 2014; 102: 47-55.
    • (2014) Biochimie , vol.102 , pp. 47-55
    • Huang, K.1    Fu, J.2    Zhou, W.3
  • 41
    • 84899504939 scopus 로고    scopus 로고
    • MicroRNA-125b suppresses the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells
    • Chen S, Yang L, Jie Q et al. MicroRNA-125b suppresses the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Mol Med Rep 2014; 9(5): 1820-1826.
    • (2014) Mol Med Rep , vol.9 , Issue.5 , pp. 1820-1826
    • Chen, S.1    Yang, L.2    Jie, Q.3
  • 42
    • 84883531905 scopus 로고    scopus 로고
    • Overexpression of hsa-miR-125b during osteoblastic differentiation does not influence levels of runx2, osteopontin, and ALPL gene expression
    • Pinto MT, Nicolete LD, Rodrigues ES et al. Overexpression of hsa-miR-125b during osteoblastic differentiation does not influence levels of Runx2, osteopontin, and ALPL gene expression. Braz J Med Biol Res 2013; 46(8): 676-680.
    • (2013) Braz J Med Biol Res , vol.46 , Issue.8 , pp. 676-680
    • Pinto, M.T.1    Nicolete, L.D.2    Rodrigues, E.S.3
  • 43
    • 84928611434 scopus 로고    scopus 로고
    • Mechanical force-induced specific MicroRNA expression in human periodontal ligament stem cells
    • Wei FL, Wang JH, Ding G et al. Mechanical force-induced specific MicroRNA expression in human periodontal ligament stem cells. Cells Tissues Organs 2014; 199(5/6): 353-363.
    • (2014) Cells Tissues Organs , vol.199 , Issue.5-6 , pp. 353-363
    • Wei, F.L.1    Wang, J.H.2    Ding, G.3
  • 44
    • 84929994274 scopus 로고    scopus 로고
    • Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells
    • Chen Y, Mohammed A, Oubaidin M et al. Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells. Gene 2015; 566(1): 13-17.
    • (2015) Gene , vol.566 , Issue.1 , pp. 13-17
    • Chen, Y.1    Mohammed, A.2    Oubaidin, M.3
  • 45
    • 84921793648 scopus 로고    scopus 로고
    • microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting runx2
    • Zuo B, Zhu J, Li J et al. microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2. J Bone Miner Res 2015; 30(2): 330-345.
    • (2015) J Bone Miner Res , vol.30 , Issue.2 , pp. 330-345
    • Zuo, B.1    Zhu, J.2    Li, J.3
  • 46
    • 33744536200 scopus 로고    scopus 로고
    • SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation
    • Dobreva G, Chahrour M, Dautzenberg M et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 2006; 125(5): 971-986.
    • (2006) Cell , vol.125 , Issue.5 , pp. 971-986
    • Dobreva, G.1    Chahrour, M.2    Dautzenberg, M.3
  • 47
    • 79959548693 scopus 로고    scopus 로고
    • Roles of SATB2 in osteogenic differentiation and bone regeneration
    • Zhang J, Tu Q, Grosschedl R et al. Roles of SATB2 in osteogenic differentiation and bone regeneration. Tissue Eng Part A 2011; 17(13/14): 1767-1776.
    • (2011) Tissue Eng Part A , vol.17 , Issue.13-14 , pp. 1767-1776
    • Zhang, J.1    Tu, Q.2    Grosschedl, R.3
  • 48
    • 80053020468 scopus 로고    scopus 로고
    • Osteoblast-specific transcription factor osterix (Osx)isan upstream regulator of satb2 during bone formation
    • Tang W, Li Y, Osimiri L et al. Osteoblast-specific transcription factor Osterix (Osx)isan upstream regulator of Satb2 during bone formation. J Biol Chem 2011; 286(38): 32995-33002.
    • (2011) J Biol Chem , vol.286 , Issue.38 , pp. 32995-33002
    • Tang, W.1    Li, Y.2    Osimiri, L.3
  • 49
    • 84879463172 scopus 로고    scopus 로고
    • SATB2 is a novel marker of osteoblastic differentiation in bone and soft tissue tumours
    • Conner JR, Hornick JL. SATB2 is a novel marker of osteoblastic differentiation in bone and soft tissue tumours. Histopathology 2013; 63(1): 36-49.
    • (2013) Histopathology , vol.63 , Issue.1 , pp. 36-49
    • Conner, J.R.1    Hornick, J.L.2
  • 50
    • 78650548873 scopus 로고    scopus 로고
    • A network connecting runx2, SATB2, and the miR-23a,27a,24-2 cluster regulates the osteoblast differentiation program
    • Hassan MQ, Gordon JA, Beloti MM et al. A network connecting Runx2, SATB2, and the miR-23a,27a,24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci U S A 2010; 107(46): 19879-19884.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.46 , pp. 19879-19884
    • Hassan, M.Q.1    Gordon, J.A.2    Beloti, M.M.3
  • 51
    • 84983187916 scopus 로고    scopus 로고
    • The microRNA-23a has limited roles in bone formation and homeostasis in vivo
    • [Epub ahead of print]
    • Park J, Wada S, Ushida T et al. The microRNA-23a has limited roles in bone formation and homeostasis in vivo. Physiol Res 2015. [Epub ahead of print].
    • (2015) Physiol Res
    • Park, J.1    Wada, S.2    Ushida, T.3
  • 52
    • 84862624955 scopus 로고    scopus 로고
    • miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2
    • Wei J, Shi Y, Zheng L et al. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol 2012; 197(4): 509-521.
    • (2012) J Cell Biol , vol.197 , Issue.4 , pp. 509-521
    • Wei, J.1    Shi, Y.2    Zheng, L.3
  • 53
    • 84863531464 scopus 로고    scopus 로고
    • miRNA-34c regulates notch signaling during bone development
    • Bae Y, Yang T, Zeng HC et al. miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet 2012; 21(13): 2991-3000.
    • (2012) Hum Mol Genet , vol.21 , Issue.13 , pp. 2991-3000
    • Bae, Y.1    Yang, T.2    Zeng, H.C.3
  • 54
    • 84892602457 scopus 로고    scopus 로고
    • Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds
    • discussion 24-25
    • Deng Y, Bi X, Zhou H et al. Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds. Eur Cell Mater 2014; 27: 13-24; discussion 24-25
    • (2014) Eur Cell Mater , vol.27 , pp. 13-24
    • Deng, Y.1    Bi, X.2    Zhou, H.3
  • 55
    • 84898000580 scopus 로고    scopus 로고
    • Effects of miR-31 on the osteogenesis of human mesenchymal stem cells
    • Xie Q, Wang Z, Bi X et al. Effects of miR-31 on the osteogenesis of human mesenchymal stem cells. Biochem Biophys Res Commun 2014; 446(1): 98-104.
    • (2014) Biochem Biophys Res Commun , vol.446 , Issue.1 , pp. 98-104
    • Xie, Q.1    Wang, Z.2    Bi, X.3
  • 56
    • 84881157835 scopus 로고    scopus 로고
    • Effects of a miR-31, runx2, and satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells
    • Deng Y, Wu S, Zhou H et al. Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells Dev 2013; 22(16): 2278-2286.
    • (2013) Stem Cells Dev , vol.22 , Issue.16 , pp. 2278-2286
    • Deng, Y.1    Wu, S.2    Zhou, H.3
  • 57
    • 84897037372 scopus 로고    scopus 로고
    • Key role for the transcriptional factor, osterix, in spine development
    • Chen S, Feng J, Zhang H et al. Key role for the transcriptional factor, Osterix, in spine development. Spine J 2014; 14(4): 683-694.
    • (2014) Spine J , vol.14 , Issue.4 , pp. 683-694
    • Chen, S.1    Feng, J.2    Zhang, H.3
  • 58
    • 0037059614 scopus 로고    scopus 로고
    • The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation
    • Nakashima K, Zhou X, Kunkel G et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002; 108(1): 17-29.
    • (2002) Cell , vol.108 , Issue.1 , pp. 17-29
    • Nakashima, K.1    Zhou, X.2    Kunkel, G.3
  • 59
    • 33646050013 scopus 로고    scopus 로고
    • Runx2-mediated regulation of the zinc finger osterix/ sp7 gene
    • Nishio Y, Dong Y, Paris M et al. Runx2-mediated regulation of the zinc finger Osterix/ Sp7 gene. Gene 2006; 372: 62-70.
    • (2006) Gene , vol.372 , pp. 62-70
    • Nishio, Y.1    Dong, Y.2    Paris, M.3
  • 60
    • 24744462930 scopus 로고    scopus 로고
    • BMP-2 and insulin-like growth factor-I mediate osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways
    • Celil AB, Campbell PG. BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 2005; 280(36): 31353-31359.
    • (2005) J Biol Chem , vol.280 , Issue.36 , pp. 31353-31359
    • Celil, A.B.1    Campbell, P.G.2
  • 61
    • 57649231166 scopus 로고    scopus 로고
    • BMP2 regulates osterix through msx2 and runx2 during osteoblast differentiation
    • Matsubara T, Kida K, Yamaguchi A et al. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem 2008; 283(43): 29119-29125.
    • (2008) J Biol Chem , vol.283 , Issue.43 , pp. 29119-29125
    • Matsubara, T.1    Kida, K.2    Yamaguchi, A.3
  • 62
    • 85027948268 scopus 로고    scopus 로고
    • MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals osterix regulation by miR-31
    • Baglìo SR, Devescovi V, Granchi D et al. MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene 2013; 527(1): 321-331.
    • (2013) Gene , vol.527 , Issue.1 , pp. 321-331
    • Baglìo, S.R.1    Devescovi, V.2    Granchi, D.3
  • 63
    • 84862487811 scopus 로고    scopus 로고
    • miR-93/Sp7 function loop mediates osteoblast mineralization
    • Yang L, Cheng P, Chen C et al. miR-93/Sp7 function loop mediates osteoblast mineralization. J Bone Miner Res 2012; 27(7): 1598-1606.
    • (2012) J Bone Miner Res , vol.27 , Issue.7 , pp. 1598-1606
    • Yang, L.1    Cheng, P.2    Chen, C.3
  • 64
    • 84898923321 scopus 로고    scopus 로고
    • MiR-143 suppresses osteogenic differentiation by targeting osterix
    • Li E, Zhang J, Yuan T et al. MiR-143 suppresses osteogenic differentiation by targeting Osterix. Mol Cell Biochem 2014; 390(1/2): 69-74.
    • (2014) Mol Cell Biochem , vol.390 , Issue.1-2 , pp. 69-74
    • Li, E.1    Zhang, J.2    Yuan, T.3
  • 65
    • 84883487422 scopus 로고    scopus 로고
    • miR-145 suppresses osteogenic differentiation by targeting sp7
    • Jia J, Tian Q, Ling S et al. miR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett 2013; 587(18): 3027-3031.
    • (2013) FEBS Lett , vol.587 , Issue.18 , pp. 3027-3031
    • Jia, J.1    Tian, Q.2    Ling, S.3
  • 66
    • 84875988471 scopus 로고    scopus 로고
    • miR-145 and miR-143 regulate odontoblast differentiation through targeting Klf4 and Osx genes in a feedback loop
    • Liu H, Lin H, Zhang L et al. miR-145 and miR-143 regulate odontoblast differentiation through targeting Klf4 and Osx genes in a feedback loop. J Biol Chem 2013; 288(13): 9261-9271.
    • (2013) J Biol Chem , vol.288 , Issue.13 , pp. 9261-9271
    • Liu, H.1    Lin, H.2    Zhang, L.3
  • 67
    • 80655125005 scopus 로고    scopus 로고
    • MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting osterix
    • Zhang JF, Fu WM, He ML et al. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol Biol Cell 2011; 22(21): 3955-3961.
    • (2011) Mol Biol Cell , vol.22 , Issue.21 , pp. 3955-3961
    • Zhang, J.F.1    Fu, W.M.2    He, M.L.3
  • 68
    • 84878931348 scopus 로고    scopus 로고
    • MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting osterix
    • Shi K, Lu J, Zhao Y et al. MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. Bone 2013; 55(2): 487-494.
    • (2013) Bone , vol.55 , Issue.2 , pp. 487-494
    • Shi, K.1    Lu, J.2    Zhao, Y.3
  • 69
    • 84877892009 scopus 로고    scopus 로고
    • MicroRNA-322 (miR-322) and its target protein tob2 modulate osterix (Osx) mRNA stability
    • Gámez B, Rodríguez-Carballo E, Bartrons R et al. MicroRNA-322 (miR-322) and its target protein Tob2 modulate Osterix (Osx) mRNA stability. J Biol Chem 2013; 288(20): 14264-14275.
    • (2013) J Biol Chem , vol.288 , Issue.20 , pp. 14264-14275
    • Gámez, B.1    Rodríguez-Carballo, E.2    Bartrons, R.3
  • 70
    • 84874623866 scopus 로고    scopus 로고
    • Identification and characterization of microRNAs controlled by the osteoblast-specific transcription factor osterix
    • Chen Q, Liu W, Sinha KM et al. Identification and characterization of microRNAs controlled by the osteoblast-specific transcription factor Osterix. PLoS One 2013; 8(3): e58104.
    • (2013) PLoS One , vol.8 , Issue.3
    • Chen, Q.1    Liu, W.2    Sinha, K.M.3
  • 71
    • 84863040008 scopus 로고    scopus 로고
    • TGF-ß and BMP signaling in osteoblast differentiation and bone formation
    • Chen G, Deng C, Li YP. TGF-ß and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 2012; 8(2): 272-288.
    • (2012) Int J Biol Sci , vol.8 , Issue.2 , pp. 272-288
    • Chen, G.1    Deng, C.2    Li, Y.P.3
  • 72
    • 70649113726 scopus 로고    scopus 로고
    • Smad signaling in skeletal development and regeneration
    • Song B, Estrada KD, Lyons KM. Smad signaling in skeletal development and regeneration. Cytokine Growth Factor Rev 2009; 20(5/6): 379-388.
    • (2009) Cytokine Growth Factor Rev , vol.20 , Issue.5-6 , pp. 379-388
    • Song, B.1    Estrada, K.D.2    Lyons, K.M.3
  • 73
    • 20144365699 scopus 로고    scopus 로고
    • Smad function and intranuclear targeting share a runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription
    • Afzal F, Pratap J, Ito K et al. Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. J Cell Physiol 2005; 204(1): 63-72.
    • (2005) J Cell Physiol , vol.204 , Issue.1 , pp. 63-72
    • Afzal, F.1    Pratap, J.2    Ito, K.3
  • 74
    • 84896763527 scopus 로고    scopus 로고
    • miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation
    • Kureel J, Dixit M, Tyagi AM et al. miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation. Cell Death Dis 2014; 5: e1050.
    • (2014) Cell Death Dis , vol.5
    • Kureel, J.1    Dixit, M.2    Tyagi, A.M.3
  • 75
    • 38549101581 scopus 로고    scopus 로고
    • Osteogenic differentiation of human adipose tissue derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor
    • Luzi E, Marini F, Sala SC et al. Osteogenic differentiation of human adipose tissue derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res 2008; 23(2): 287-295.
    • (2008) J Bone Miner Res , vol.23 , Issue.2 , pp. 287-295
    • Luzi, E.1    Marini, F.2    Sala, S.C.3
  • 76
    • 84892416479 scopus 로고    scopus 로고
    • Upregulation of miR-135b is involved in the impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients
    • Xu S, Cecilia Santini G, De Veirman K et al. Upregulation of miR-135b is involved in the impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients. PLoS One 2013; 8(11): e79752.
    • (2013) PLoS One , vol.8 , Issue.11
    • Xu, S.1    Cecilia Santini, G.2    De Veirman, K.3
  • 77
    • 52949114558 scopus 로고    scopus 로고
    • A microRNA signature for a BMP2-induced osteoblast lineage commitment program
    • Li Z, Hassan MQ, Volinia S et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A 2008; 105(37): 13906-13911.
    • (2008) Proc Natl Acad Sci USA , vol.105 , Issue.37 , pp. 13906-13911
    • Li, Z.1    Hassan, M.Q.2    Volinia, S.3
  • 78
    • 77954209607 scopus 로고    scopus 로고
    • MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells
    • Schaap-Oziemlak AM, Raymakers RA, Bergevoet SM et al. MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev 2010; 19(6): 877-885.
    • (2010) Stem Cells Dev , vol.19 , Issue.6 , pp. 877-885
    • Schaap-Oziemlak, A.M.1    Raymakers, R.A.2    Bergevoet, S.M.3
  • 79
    • 84873659056 scopus 로고    scopus 로고
    • miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells
    • Li H, Li T, Wang S et al. miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res 2013; 10(3): 313-324.
    • (2013) Stem Cell Res , vol.10 , Issue.3 , pp. 313-324
    • Li, H.1    Li, T.2    Wang, S.3
  • 80
    • 84864286762 scopus 로고    scopus 로고
    • MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2
    • Zeng Y, Qu X, Li H et al. MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett 2012; 586(16): 2375-2381.
    • (2012) FEBS Lett , vol.586 , Issue.16 , pp. 2375-2381
    • Zeng, Y.1    Qu, X.2    Li, H.3
  • 81
    • 84906265350 scopus 로고    scopus 로고
    • miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells
    • Hwang S, Park SK, Lee HY et al. miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells. FEBS Lett 2014; 588(17): 2957-2963.
    • (2014) FEBS Lett , vol.588 , Issue.17 , pp. 2957-2963
    • Hwang, S.1    Park, S.K.2    Lee, H.Y.3
  • 82
    • 84905240498 scopus 로고    scopus 로고
    • MiR-17-5p modulates osteoblastic differentiation and cell proliferation by targeting SMAD7 in non-traumatic osteonecrosis
    • Jia J, Feng X, Xu W et al. MiR-17-5p modulates osteoblastic differentiation and cell proliferation by targeting SMAD7 in non-traumatic osteonecrosis. Exp Mol Med 2014; 46: e107.
    • (2014) Exp Mol Med , vol.46 , pp. e107
    • Jia, J.1    Feng, X.2    Xu, W.3
  • 83
    • 84898543802 scopus 로고    scopus 로고
    • Suppression of MicroRNA-203 improves survival of rat bone marrow mesenchymal stem cells through enhancing PI3K-induced cellular activation
    • [Epub ahead of print]
    • Liu T, Fu NN, Song HL et al. Suppression of MicroRNA-203 improves survival of rat bone marrow mesenchymal stem cells through enhancing PI3K-induced cellular activation. IUBMB Life 2014; doi: 10.1002/iub.1259. [Epub ahead of print].
    • (2014) IUBMB Life
    • Liu, T.1    Fu, N.N.2    Song, H.L.3
  • 84
    • 17844372752 scopus 로고    scopus 로고
    • Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis
    • Day TF, Guo X, Garrett-Beal L et al. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005; 8(5): 739-750.
    • (2005) Dev Cell , vol.8 , Issue.5 , pp. 739-750
    • Day, T.F.1    Guo, X.2    Garrett-Beal, L.3
  • 85
    • 84880922830 scopus 로고    scopus 로고
    • Involvement of WNT/b-catenin signaling in the treatment of osteoporosis
    • Rossini M, Gatti D, Adami S. Involvement of WNT/b-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int 2013; 93(2): 121-132.
    • (2013) Calcif Tissue Int , vol.93 , Issue.2 , pp. 121-132
    • Rossini, M.1    Gatti, D.2    Adami, S.3
  • 86
    • 65249133047 scopus 로고    scopus 로고
    • Canonical wnts function as potent regulators of osteogenesis by human mesenchymal stem cells
    • Liu G, Vijayakumar S, Grumolato L et al. Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells. J Cell Biol 2009; 185(1): 67-75.
    • (2009) J Cell Biol , vol.185 , Issue.1 , pp. 67-75
    • Liu, G.1    Vijayakumar, S.2    Grumolato, L.3
  • 87
    • 84875879658 scopus 로고    scopus 로고
    • TCF3, a novel positive regulator of osteogenesis, plays a crucial role in miR-17 modulating the diverse effect of canonical wnt signaling in different microenvironments
    • Liu W, Liu Y, Guo T et al. TCF3, a novel positive regulator of osteogenesis, plays a crucial role in miR-17 modulating the diverse effect of canonical Wnt signaling in different microenvironments. Cell Death Dis 2013; 4: e539.
    • (2013) Cell Death Dis , vol.4 , pp. e539
    • Liu, W.1    Liu, Y.2    Guo, T.3
  • 88
    • 84908322815 scopus 로고    scopus 로고
    • MiR-29a is an enhancer of mineral deposition in bone-derived systems
    • Roberto VP, Tiago DM, Silva IA et al. MiR-29a is an enhancer of mineral deposition in bone-derived systems. Arch Biochem Biophys 2014; 564: 173-183.
    • (2014) Arch Biochem Biophys , vol.564 , pp. 173-183
    • Roberto, V.P.1    Tiago, D.M.2    Silva, I.A.3
  • 89
    • 25844509347 scopus 로고    scopus 로고
    • Canonical WNT signaling promotes osteogenesis by directly stimulating runx2 gene expression
    • Gaur T, Lengner CJ, Hovhannisyan H et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 2005; 280(39): 33132-33140.
    • (2005) J Biol Chem , vol.280 , Issue.39 , pp. 33132-33140
    • Gaur, T.1    Lengner, C.J.2    Hovhannisyan, H.3
  • 90
    • 84887426861 scopus 로고    scopus 로고
    • miR-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor related protein 6
    • Wang J, Guan X, Guo F et al. miR-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor related protein 6. Cell Death Dis 2013; 4: e845.
    • (2013) Cell Death Dis , vol.4 , pp. e845
    • Wang, J.1    Guan, X.2    Guo, F.3
  • 91
    • 84903192700 scopus 로고    scopus 로고
    • miR-141-3p inhibits human stromal (mesenchymal) stem cell proliferation and differentiation
    • Qiu W, Kassem M. miR-141-3p inhibits human stromal (mesenchymal) stem cell proliferation and differentiation. Biochim Biophys Acta 2014; 1843(9): 2114-2121.
    • (2014) Biochim Biophys Acta , vol.1843 , Issue.9 , pp. 2114-2121
    • Qiu, W.1    Kassem, M.2
  • 92
    • 11144357428 scopus 로고    scopus 로고
    • ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for coffin-lowry syndrome
    • Yang X, Matsuda K, Bialek P et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell 2004; 117(3): 387-398.
    • (2004) Cell , vol.117 , Issue.3 , pp. 387-398
    • Yang, X.1    Matsuda, K.2    Bialek, P.3
  • 93
    • 84896736962 scopus 로고    scopus 로고
    • The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness
    • Makowski AJ, Uppuganti S, Wadeer SA et al. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness. Bone 2014; 62: 1-9.
    • (2014) Bone , vol.62 , pp. 1-9
    • Makowski, A.J.1    Uppuganti, S.2    Wadeer, S.A.3
  • 94
    • 24744458827 scopus 로고    scopus 로고
    • Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression
    • Xiao G, Jiang D, Ge C et al. Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem 2005; 280(35): 30689-30696.
    • (2005) J Biol Chem , vol.280 , Issue.35 , pp. 30689-30696
    • Xiao, G.1    Jiang, D.2    Ge, C.3
  • 95
    • 84876213011 scopus 로고    scopus 로고
    • Transcriptional regulatory cascades in runx2-dependent bone development
    • Liu TM, Lee EH. Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng Part B Rev 2013; 19(3): 254-263.
    • (2013) Tissue Eng Part B Rev , vol.19 , Issue.3 , pp. 254-263
    • Liu, T.M.1    Lee, E.H.2
  • 96
    • 74949120615 scopus 로고    scopus 로고
    • FIAT control of osteoblast activity
    • St-Arnaud R, Mandic V. FIAT control of osteoblast activity. J Cell Biochem 2010; 109(3): 453-459.
    • (2010) J Cell Biochem , vol.109 , Issue.3 , pp. 453-459
    • St-Arnaud, R.1    Mandic, V.2
  • 97
    • 81255211176 scopus 로고    scopus 로고
    • Combinatorial control of ATF4-dependent gene transcription in osteoblasts
    • St-Arnaud R, Hekmatnejad B. Combinatorial control of ATF4-dependent gene transcription in osteoblasts. Ann N Y Acad Sci 2011; 1237: 11-18.
    • (2011) Ann N y Acad Sci , vol.1237 , pp. 11-18
    • St-Arnaud, R.1    Hekmatnejad, B.2
  • 98
    • 84879154733 scopus 로고    scopus 로고
    • Control of fiat (factor inhibiting ATF4 mediated transcription) expression by Sp family transcription factors in osteoblasts
    • Hekmatnejad B, Gauthier C, St-Arnaud R. Control of Fiat (factor inhibiting ATF4 mediated transcription) expression by Sp family transcription factors in osteoblasts. J Cell Biochem 2013; 114(8): 1863-1870.
    • (2013) J Cell Biochem , vol.114 , Issue.8 , pp. 1863-1870
    • Hekmatnejad, B.1    Gauthier, C.2    St-Arnaud, R.3
  • 99
    • 61849095684 scopus 로고    scopus 로고
    • JNK activity is essential for atf4 expression and late-stage osteoblast differentiation
    • Matsuguchi T, Chiba N, Bandow K et al. JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation. J Bone Miner Res 2009; 24(3): 398-410.
    • (2009) J Bone Miner Res , vol.24 , Issue.3 , pp. 398-410
    • Matsuguchi, T.1    Chiba, N.2    Bandow, K.3
  • 100
    • 52949136599 scopus 로고    scopus 로고
    • Transcriptional control of skeletogenesis
    • Karsenty G. Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet 2008; 9: 183-196.
    • (2008) Annu Rev Genomics Hum Genet , vol.9 , pp. 183-196
    • Karsenty, G.1
  • 101
    • 84872094361 scopus 로고    scopus 로고
    • miR-214 targets ATF4 to inhibit bone formation
    • Wang X, Guo B, Li Q et al. miR-214 targets ATF4 to inhibit bone formation. Nat Med 2013; 19(1): 93-100.
    • (2013) Nat Med , vol.19 , Issue.1 , pp. 93-100
    • Wang, X.1    Guo, B.2    Li, Q.3
  • 102
    • 84886843429 scopus 로고    scopus 로고
    • FGF2 stimulates osteogenic differentiation through ERK induced TAZ expression
    • Byun MR, Kim AR, Hwang JH et al. FGF2 stimulates osteogenic differentiation through ERK induced TAZ expression. Bone 2014; 58: 72-80.
    • (2014) Bone , vol.58 , pp. 72-80
    • Byun, M.R.1    Kim, A.R.2    Hwang, J.H.3
  • 103
    • 84899951327 scopus 로고    scopus 로고
    • Canonical wnt signalling activates TAZ through PP1A during osteogenic differentiation
    • Byun MR, Hwang JH, Kim AR et al. Canonical Wnt signalling activates TAZ through PP1A during osteogenic differentiation. Cell Death Differ 2014; 21(6): 854-863.
    • (2014) Cell Death Differ , vol.21 , Issue.6 , pp. 854-863
    • Byun, M.R.1    Hwang, J.H.2    Kim, A.R.3
  • 104
    • 84862811661 scopus 로고    scopus 로고
    • Phorbaketal A stimulates osteoblast differentiation through TAZ mediated runx2 activation
    • Byun MR, Kim AR, Hwang JH et al. Phorbaketal A stimulates osteoblast differentiation through TAZ mediated Runx2 activation. FEBS Lett 2012; 586(8): 1086-1092.
    • (2012) FEBS Lett , vol.586 , Issue.8 , pp. 1086-1092
    • Byun, M.R.1    Kim, A.R.2    Hwang, J.H.3
  • 105
    • 84863134812 scopus 로고    scopus 로고
    • TM-25659 enhances osteogenic differentiation and suppresses adipogenic differentiation by modulating the transcriptional co-activator TAZ
    • Jang EJ, Jeong H, Kang JO et al. TM-25659 enhances osteogenic differentiation and suppresses adipogenic differentiation by modulating the transcriptional co-activator TAZ. Br J Pharmacol 2012; 165(5): 1584-1594.
    • (2012) Br J Pharmacol , vol.165 , Issue.5 , pp. 1584-1594
    • Jang, E.J.1    Jeong, H.2    Kang, J.O.3
  • 106
    • 23644431709 scopus 로고    scopus 로고
    • TAZ, a transcriptional modulator of mesenchymal stem cell differentiation
    • Hong JH, Hwang ES, McManus MT et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 2005; 309(5737): 1074-1078.
    • (2005) Science , vol.309 , Issue.5737 , pp. 1074-1078
    • Hong, J.H.1    Hwang, E.S.2    McManus, M.T.3
  • 107
    • 31144452918 scopus 로고    scopus 로고
    • TAZ: A beta-catenin-like molecule that regulates mesenchymal stem cell differentiation
    • Hong JH, Yaffe MB. TAZ: a beta-catenin-like molecule that regulates mesenchymal stem cell differentiation. Cell Cycle 2006; 5(2): 176-179.
    • (2006) Cell Cycle , vol.5 , Issue.2 , pp. 176-179
    • Hong, J.H.1    Yaffe, M.B.2
  • 108
    • 75749089240 scopus 로고    scopus 로고
    • NF-kB activation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZ expression
    • Cho HH, Shin KK, Kim YJ et al. NF-kB activation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZ expression. J Cell Physiol 2010; 223(1): 168-177.
    • (2010) J Cell Physiol , vol.223 , Issue.1 , pp. 168-177
    • Cho, H.H.1    Shin, K.K.2    Kim, Y.J.3
  • 109
    • 84893097200 scopus 로고    scopus 로고
    • The hippo pathway effectors TAZ/YAP regulate dicer expression and microRNA biogenesis through let-7
    • Chaulk SG, Lattanzi VJ, Hiemer SE et al. The Hippo pathway effectors TAZ/YAP regulate dicer expression and microRNA biogenesis through Let-7. J Biol Chem 2014; 289(4): 1886-1891.
    • (2014) J Biol Chem , vol.289 , Issue.4 , pp. 1886-1891
    • Chaulk, S.G.1    Lattanzi, V.J.2    Hiemer, S.E.3
  • 110
    • 84888041396 scopus 로고    scopus 로고
    • Role of hippo signaling in cancer stem cells
    • Hao J, Zhang Y, Jing D et al. Role of Hippo signaling in cancer stem cells. J Cell Physiol 2014; 229(3): 266-270.
    • (2014) J Cell Physiol , vol.229 , Issue.3 , pp. 266-270
    • Hao, J.1    Zhang, Y.2    Jing, D.3
  • 111
    • 79958284636 scopus 로고    scopus 로고
    • Role of YAP/TAZ in mechanotransduction
    • Dupont S, Morsut L, Aragona M et al. Role of YAP/TAZ in mechanotransduction. Nature 2011; 474(7350): 179-183.
    • (2011) Nature , vol.474 , Issue.7350 , pp. 179-183
    • Dupont, S.1    Morsut, L.2    Aragona, M.3
  • 112
    • 84888403215 scopus 로고    scopus 로고
    • Role of extracellular matrix and YAP/TAZ in cell fate determination
    • Hao J, Zhang Y, Wang Y et al. Role of extracellular matrix and YAP/TAZ in cell fate determination. Cell Signal 2014; 26(2): 186-191.
    • (2014) Cell Signal , vol.26 , Issue.2 , pp. 186-191
    • Hao, J.1    Zhang, Y.2    Wang, Y.3
  • 113
    • 79955016827 scopus 로고    scopus 로고
    • MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo
    • Eskildsen T, Taipaleenmäki H, Stenvang J et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci U S A 2011; 108(15): 6139-6144.
    • (2011) Proc Natl Acad Sci USA , vol.108 , Issue.15 , pp. 6139-6144
    • Eskildsen, T.1    Taipaleenmäki, H.2    Stenvang, J.3
  • 114
    • 84901461405 scopus 로고    scopus 로고
    • PDGF-regulated miRNA-138 inhibits the osteogenic differentiation of mesenchymal stem cells
    • Qu B, Xia X, Wu HH et al. PDGF-regulated miRNA-138 inhibits the osteogenic differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2014; 448(3): 241-247.
    • (2014) Biochem Biophys Res Commun , vol.448 , Issue.3 , pp. 241-247
    • Qu, B.1    Xia, X.2    Wu, H.H.3
  • 115
    • 84928568039 scopus 로고    scopus 로고
    • miR-223 regulates adipogenic and osteogenic differentiation of mesenchymal stem cells through a C/EBPs/miR-223/FGFR2 regulatory feedback loop
    • Guan X, Gao Y, Zhou J et al. miR-223 regulates adipogenic and osteogenic differentiation of mesenchymal stem cells through a C/EBPs/miR-223/FGFR2 regulatory feedback loop. Stem Cells 2015; 33(5): 1589-1600.
    • (2015) Stem Cells , vol.33 , Issue.5 , pp. 1589-1600
    • Guan, X.1    Gao, Y.2    Zhou, J.3
  • 116
    • 84903470443 scopus 로고    scopus 로고
    • MicroRNA-338-3p regulates osteogenic differentiation of mouse bone marrow stromal stem cells by targeting runx2 and fgfr2
    • Liu H, Sun Q, Wan C et al. MicroRNA-338-3p regulates osteogenic differentiation of mouse bone marrow stromal stem cells by targeting Runx2 and Fgfr2. J Cell Physiol 2014; 229(10): 1494-1502.
    • (2014) J Cell Physiol , vol.229 , Issue.10 , pp. 1494-1502
    • Liu, H.1    Sun, Q.2    Wan, C.3
  • 117
    • 0034645070 scopus 로고    scopus 로고
    • Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction
    • Lecanda F, Warlow PM, Sheikh S et al. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol 2000; 151(4): 931-944.
    • (2000) J Cell Biol , vol.151 , Issue.4 , pp. 931-944
    • Lecanda, F.1    Warlow, P.M.2    Sheikh, S.3
  • 118
    • 33748102321 scopus 로고    scopus 로고
    • Muscle-specific microRNA miR-206 promotes muscle differentiation
    • Kim HK, Lee YS, Sivaprasad U et al. Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 2006; 174(5): 677-687.
    • (2006) J Cell Biol , vol.174 , Issue.5 , pp. 677-687
    • Kim, H.K.1    Lee, Y.S.2    Sivaprasad, U.3
  • 119
    • 73949133943 scopus 로고    scopus 로고
    • A microRNA regulatory mechanism of osteoblast differentiation
    • Inose H, Ochi H, Kimura A et al. A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci U S A 2009; 106(49): 20794-20799.
    • (2009) Proc Natl Acad Sci USA , vol.106 , Issue.49 , pp. 20794-20799
    • Inose, H.1    Ochi, H.2    Kimura, A.3
  • 120
    • 67749145694 scopus 로고    scopus 로고
    • MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5
    • Itoh T, Nozawa Y, Akao Y. MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J Biol Chem 2009; 284(29): 19272-19279.
    • (2009) J Biol Chem , vol.284 , Issue.29 , pp. 19272-19279
    • Itoh, T.1    Nozawa, Y.2    Akao, Y.3
  • 121
    • 84930089792 scopus 로고    scopus 로고
    • MicroRNAs-141 and 200a regulate the SVCT2 transporter in bone marrow stromal cells
    • Sangani R, Periyasamy-Thandavan S, Kolhe R et al. MicroRNAs-141 and 200a regulate the SVCT2 transporter in bone marrow stromal cells. Mol Cell Endocrinol 2015; 410: 19-26.
    • (2015) Mol Cell Endocrinol , vol.410 , pp. 19-26
    • Sangani, R.1    Periyasamy-Thandavan, S.2    Kolhe, R.3
  • 122
    • 84865308101 scopus 로고    scopus 로고
    • Involvement of microRNAs in regulation of osteoblastic differentiation in mouse induced pluripotent stem cells
    • Okamoto H, Matsumi Y, Hoshikawa Y et al. Involvement of microRNAs in regulation of osteoblastic differentiation in mouse induced pluripotent stem cells. PLoS One 2012; 7(8): e43800.
    • (2012) PLoS One , vol.7 , Issue.8
    • Okamoto, H.1    Matsumi, Y.2    Hoshikawa, Y.3
  • 123
    • 84924328173 scopus 로고    scopus 로고
    • miR-124 negatively regulates osteogenic differentiation and in vivo bone formation of mesenchymal stem cells
    • Qadir AS, Um S, Lee H et al. miR-124 negatively regulates osteogenic differentiation and in vivo bone formation of mesenchymal stem cells. J Cell Biochem 2015; 116(5): 730-742.
    • (2015) J Cell Biochem , vol.116 , Issue.5 , pp. 730-742
    • Qadir, A.S.1    Um, S.2    Lee, H.3
  • 124
    • 84855209400 scopus 로고    scopus 로고
    • The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases
    • Tyagi S, Gupta P, Saini AS et al. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2011; 2(4): 236-240.
    • (2011) J Adv Pharm Technol Res , vol.2 , Issue.4 , pp. 236-240
    • Tyagi, S.1    Gupta, P.2    Saini, A.S.3
  • 125
    • 84899150663 scopus 로고    scopus 로고
    • Review of signaling pathways governing MSC osteogenic and adipogenic differentiation
    • James AW Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica: Cairo 2013; 2013: 684736.
    • (2013) Scientifica: Cairo , vol.2013
    • James, A.W.1
  • 126
    • 34250710450 scopus 로고    scopus 로고
    • Thematic review series: Adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation
    • Sethi JK, Vidal-Puig AJ. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res 2007; 48(6): 1253-1262.
    • (2007) J Lipid Res , vol.48 , Issue.6 , pp. 1253-1262
    • Sethi, J.K.1    Vidal-Puig, A.J.2
  • 127
    • 2142652189 scopus 로고    scopus 로고
    • PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors
    • Akune T, Ohba S, Kamekura S et al. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 2004; 113(6): 846-855.
    • (2004) J Clin Invest , vol.113 , Issue.6 , pp. 846-855
    • Akune, T.1    Ohba, S.2    Kamekura, S.3
  • 128
    • 0038607705 scopus 로고    scopus 로고
    • Activation of peroxisome proliferator-activated receptor-c inhibits the runx2-mediated transcription of osteocalcin in osteoblasts
    • Jeon MJ, Kim JA, Kwon SH et al. Activation of peroxisome proliferator-activated receptor-c inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts. J Biol Chem 2003; 278(26): 23270-23277.
    • (2003) J Biol Chem , vol.278 , Issue.26 , pp. 23270-23277
    • Jeon, M.J.1    Kim, J.A.2    Kwon, S.H.3
  • 129
    • 33746483284 scopus 로고    scopus 로고
    • Functional interaction between peroxisome proliferator activated receptor γ and β-catenin
    • Liu J, Wang H, Zuo Y et al. Functional interaction between peroxisome proliferator activated receptor γ and β-catenin. Mol Cell Biol 2006; 26(15): 5827-5837.
    • (2006) Mol Cell Biol , vol.26 , Issue.15 , pp. 5827-5837
    • Liu, J.1    Wang, H.2    Zuo, Y.3
  • 130
    • 84886588706 scopus 로고    scopus 로고
    • PPARc forms a bridge between DNA methylation and histone acetylation at the C/EBPa gene promoter to regulate the balance between osteogenesis and adipogenesis of bone marrow stromal cells
    • Zhao QH, Wang SG, Liu SX et al. PPARc forms a bridge between DNA methylation and histone acetylation at the C/EBPa gene promoter to regulate the balance between osteogenesis and adipogenesis of bone marrow stromal cells. FEBS J 2013; 280(22): 5801-5814.
    • (2013) FEBS J , vol.280 , Issue.22 , pp. 5801-5814
    • Zhao, Q.H.1    Wang, S.G.2    Liu, S.X.3
  • 131
    • 67649271549 scopus 로고    scopus 로고
    • A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells
    • Kang Q, Song WX, Luo Q et al. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev 2009; 18(4): 545-559.
    • (2009) Stem Cells Dev , vol.18 , Issue.4 , pp. 545-559
    • Kang, Q.1    Song, W.X.2    Luo, Q.3
  • 132
    • 84902054120 scopus 로고    scopus 로고
    • Downregulation of PPARc by miR-548d-5p suppresses the adipogenic differentiation of human bone marrow mesenchymal stem cells and enhances their osteogenic potential
    • Sun J, Wang Y, Li Y et al. Downregulation of PPARc by miR-548d-5p suppresses the adipogenic differentiation of human bone marrow mesenchymal stem cells and enhances their osteogenic potential. J Transl Med 2014; 12: 168.
    • (2014) J Transl Med , vol.12 , pp. 168
    • Sun, J.1    Wang, Y.2    Li, Y.3
  • 133
    • 78149418638 scopus 로고    scopus 로고
    • miRNA-mediated functional changes through co-regulating function related genes
    • He J, Zhang JF, Yi C et al. miRNA-mediated functional changes through co-regulating function related genes. PLoS One 2010; 5(10): e13558.
    • (2010) PLoS One , vol.5 , Issue.10
    • He, J.1    Zhang, J.F.2    Yi, C.3
  • 134
    • 84872687459 scopus 로고    scopus 로고
    • MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling
    • Zhang JF, Fu WM, He ML et al. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol 2011; 8(5): 829-838.
    • (2011) RNA Biol , vol.8 , Issue.5 , pp. 829-838
    • Zhang, J.F.1    Fu, W.M.2    He, M.L.3
  • 135
    • 33845359084 scopus 로고    scopus 로고
    • Function and biological roles of the dickkopf family of wnt modulators
    • Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 2006; 25(57): 7469-7481.
    • (2006) Oncogene , vol.25 , Issue.57 , pp. 7469-7481
    • Niehrs, C.1
  • 136
    • 34547107319 scopus 로고    scopus 로고
    • WNT signaling pathway and stem cell signaling network
    • Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res 2007; 13(14): 4042-4045.
    • (2007) Clin Cancer Res , vol.13 , Issue.14 , pp. 4042-4045
    • Katoh, M.1    Katoh, M.2
  • 137
    • 84886774405 scopus 로고    scopus 로고
    • A signal-amplification circuit between miR-218 and wnt/b-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation
    • Zhang WB, Zhong WJ, Wang L. A signal-amplification circuit between miR-218 and Wnt/b-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone 2014; 58: 59-66.
    • (2014) Bone , vol.58 , pp. 59-66
    • Zhang, W.B.1    Zhong, W.J.2    Wang, L.3
  • 138
    • 84871345038 scopus 로고    scopus 로고
    • miR-218 directs a wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells
    • Hassan MQ, Maeda Y, Taipaleenmaki H et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem 2012; 287(50): 42084-42092.
    • (2012) J Biol Chem , vol.287 , Issue.50 , pp. 42084-42092
    • Hassan, M.Q.1    Maeda, Y.2    Taipaleenmaki, H.3
  • 139
    • 79960633240 scopus 로고    scopus 로고
    • Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating wnt antagonist DKK1
    • Zhang J, Tu Q, Bonewald LF et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res 2011; 26(8): 1953-1963.
    • (2011) J Bone Miner Res , vol.26 , Issue.8 , pp. 1953-1963
    • Zhang, J.1    Tu, Q.2    Bonewald, L.F.3
  • 140
    • 51349141401 scopus 로고    scopus 로고
    • Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
    • van Rooij E, Sutherland LB, Thatcher JE et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 2008; 105(35): 13027-13032.
    • (2008) Proc Natl Acad Sci USA , vol.105 , Issue.35 , pp. 13027-13032
    • Van Rooij, E.1    Sutherland, L.B.2    Thatcher, J.E.3
  • 141
    • 67650169908 scopus 로고    scopus 로고
    • Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation
    • Li Z, Hassan MQ, Jafferji M et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 2009; 284(23): 15676-15684.
    • (2009) J Biol Chem , vol.284 , Issue.23 , pp. 15676-15684
    • Li, Z.1    Hassan, M.Q.2    Jafferji, M.3
  • 142
    • 84857126923 scopus 로고    scopus 로고
    • Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and wnt/b-catenin signaling
    • Egea V, Zahler S, Rieth N et al. Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/b-catenin signaling. Proc Natl Acad Sci U S A 2012; 109(6): E309-E316.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.6 , pp. E309-E316
    • Egea, V.1    Zahler, S.2    Rieth, N.3
  • 143
    • 77958086896 scopus 로고    scopus 로고
    • miR-27 promotes osteoblast differentiation by modulating wnt signaling
    • Wang T, Xu Z. miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun 2010; 402(2): 186-189.
    • (2010) Biochem Biophys Res Commun , vol.402 , Issue.2 , pp. 186-189
    • Wang, T.1    Xu, Z.2
  • 144
    • 84898749791 scopus 로고    scopus 로고
    • MiR-27a targets sFRP1 in hFOB cells to regulate proliferation, apoptosis and differentiation
    • Guo D, Li Q, Lv Q et al. MiR-27a targets sFRP1 in hFOB cells to regulate proliferation, apoptosis and differentiation. PLoS One 2014; 9(3): e91354.
    • (2014) PLoS One , vol.9 , Issue.3
    • Guo, D.1    Li, Q.2    Lv, Q.3
  • 145
    • 34249994607 scopus 로고    scopus 로고
    • Histone deacetylase co-repressor complex control of runx2 and bone formation
    • Jensen ED, Nair AK, Westendorf JJ. Histone deacetylase co-repressor complex control of Runx2 and bone formation. Crit Rev Eukaryot Gene Expr 2007; 17(3): 187-196.
    • (2007) Crit Rev Eukaryot Gene Expr , vol.17 , Issue.3 , pp. 187-196
    • Jensen, E.D.1    Nair, A.K.2    Westendorf, J.J.3
  • 146
    • 33745196250 scopus 로고    scopus 로고
    • Bone morphogenetic protein-2 stimulates runx2 acetylation
    • Jeon EJ, Lee KY, Choi NS et al. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem 2006; 281(24): 16502-16511.
    • (2006) J Biol Chem , vol.281 , Issue.24 , pp. 16502-16511
    • Jeon, E.J.1    Lee, K.Y.2    Choi, N.S.3
  • 147
    • 23044448510 scopus 로고    scopus 로고
    • Repression of runx2 function by TGF-beta through recruitment of class II histone deacetylases by smad3
    • Kang JS, Alliston T, Delston R et al. Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J 2005; 24(14): 2543-2555.
    • (2005) EMBO J , vol.24 , Issue.14 , pp. 2543-2555
    • Kang, J.S.1    Alliston, T.2    Delston, R.3
  • 148
    • 84917710897 scopus 로고    scopus 로고
    • Epigenetic silencing of HDAC1 by miR-449a upregulates runx2 and promotes osteoblast differentiation
    • Liu T, Hou L, Zhao Y et al. Epigenetic silencing of HDAC1 by miR-449a upregulates Runx2 and promotes osteoblast differentiation. Int J Mol Med 2015; 35(1): 238-246.
    • (2015) Int J Mol Med , vol.35 , Issue.1 , pp. 238-246
    • Liu, T.1    Hou, L.2    Zhao, Y.3
  • 149
    • 84873946094 scopus 로고    scopus 로고
    • MicroRNAs miR-26a, miR-26b, and miR29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood
    • Trompeter HI, Dreesen J, Hermann E et al. MicroRNAs miR-26a, miR-26b, and miR29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood. BMC Genomics 2013; 14: 111.
    • (2013) BMC Genomics , vol.14 , pp. 111
    • Trompeter, H.I.1    Dreesen, J.2    Hermann, E.3
  • 150
    • 72849121740 scopus 로고    scopus 로고
    • A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans
    • Li H, Xie H, Liu W et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 2009; 119(12): 3666-3677.
    • (2009) J Clin Invest , vol.119 , Issue.12 , pp. 3666-3677
    • Li, H.1    Xie, H.2    Liu, W.3
  • 151
    • 79953327693 scopus 로고    scopus 로고
    • A runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation
    • Hu R, Liu W, Li H et al. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem 2011; 286(14): 12328-12339.
    • (2011) J Biol Chem , vol.286 , Issue.14 , pp. 12328-12339
    • Hu, R.1    Liu, W.2    Li, H.3
  • 152
    • 40749161986 scopus 로고    scopus 로고
    • Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally
    • Zhang Y, Kwon S, Yamaguchi T et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol 2008; 28(5): 1688-1701.
    • (2008) Mol Cell Biol , vol.28 , Issue.5 , pp. 1688-1701
    • Zhang, Y.1    Kwon, S.2    Yamaguchi, T.3
  • 153
    • 84864281323 scopus 로고    scopus 로고
    • Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue derived mesenchymal stem cells by repressing HDAC6 protein expression
    • Huang S, Wang S, Bian C et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev 2012; 21(13): 2531-2540.
    • (2012) Stem Cells Dev , vol.21 , Issue.13 , pp. 2531-2540
    • Huang, S.1    Wang, S.2    Bian, C.3
  • 154
    • 84926323667 scopus 로고    scopus 로고
    • MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation
    • Li CJ, Cheng P, Liang MK et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 2015; 125(4): 1509-1522.
    • (2015) J Clin Invest , vol.125 , Issue.4 , pp. 1509-1522
    • Li, C.J.1    Cheng, P.2    Liang, M.K.3
  • 155
    • 84864386608 scopus 로고    scopus 로고
    • Down-regulation of miRNA-221 triggers osteogenic differentiation in human stem cells
    • Bakhshandeh B, Hafizi M, Ghaemi N et al. Down-regulation of miRNA-221 triggers osteogenic differentiation in human stem cells. Biotechnol Lett 2012; 34(8): 1579-1587.
    • (2012) Biotechnol Lett , vol.34 , Issue.8 , pp. 1579-1587
    • Bakhshandeh, B.1    Hafizi, M.2    Ghaemi, N.3
  • 156
    • 84872575073 scopus 로고    scopus 로고
    • miR-181a promotes osteoblastic differentiation through repression of TGF-b signaling molecules
    • Bhushan R, Grünhagen J, Becker J et al. miR-181a promotes osteoblastic differentiation through repression of TGF-b signaling molecules. Int J Biochem Cell Biol 2013; 45(3): 696-705.
    • (2013) Int J Biochem Cell Biol , vol.45 , Issue.3 , pp. 696-705
    • Bhushan, R.1    Grünhagen, J.2    Becker, J.3
  • 157
    • 67649381623 scopus 로고    scopus 로고
    • miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b
    • Mizuno Y, Tokuzawa Y, Ninomiya Y et al. miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett 2009; 583(13): 2263-2268.
    • (2009) FEBS Lett , vol.583 , Issue.13 , pp. 2263-2268
    • Mizuno, Y.1    Tokuzawa, Y.2    Ninomiya, Y.3
  • 158
    • 84902437542 scopus 로고    scopus 로고
    • MicroRNA-146a regulates human foetal femur derived skeletal stem cell differentiation by down-regulating SMAD2 and SMAD3
    • Cheung KS, Sposito N, Stumpf PS et al. MicroRNA-146a regulates human foetal femur derived skeletal stem cell differentiation by down-regulating SMAD2 and SMAD3. PLoS One 2014; 9(6): e98063.
    • (2014) PLoS One , vol.9 , Issue.6
    • Cheung, K.S.1    Sposito, N.2    Stumpf, P.S.3
  • 159
    • 84901218175 scopus 로고    scopus 로고
    • A positive role of microRNA-15b on regulation of osteoblast differentiation
    • Vimalraj S, Partridge NC, Selvamurugan N. A positive role of microRNA-15b on regulation of osteoblast differentiation. J Cell Physiol 2014; 229(9): 1236-1244.
    • (2014) J Cell Physiol , vol.229 , Issue.9 , pp. 1236-1244
    • Vimalraj, S.1    Partridge, N.C.2    Selvamurugan, N.3
  • 160
    • 84927724919 scopus 로고    scopus 로고
    • MiR-497-195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling
    • Grünhagen J, Bhushan R, Degenkolbe E et al. MiR-497-195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. J Bone Miner Res 2015; 30(5): 796-808.
    • (2015) J Bone Miner Res , vol.30 , Issue.5 , pp. 796-808
    • Grünhagen, J.1    Bhushan, R.2    Degenkolbe, E.3
  • 161
    • 84927918342 scopus 로고    scopus 로고
    • MicroRNA-194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP-TFII expression
    • Jeong BC, Kang IH, Hwang YC et al. MicroRNA-194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP-TFII expression. Cell Death Dis 2014; 5: e1532.
    • (2014) Cell Death Dis , vol.5
    • Jeong, B.C.1    Kang, I.H.2    Hwang, Y.C.3
  • 162
    • 84919740836 scopus 로고    scopus 로고
    • MicroRNA-302a stimulates osteoblastic differentiation by repressing COUP-TFII expression
    • Kang IH, Jeong BC, Hur SW et al. MicroRNA-302a stimulates osteoblastic differentiation by repressing COUP-TFII expression. J Cell Physiol 2015; 230(4): 911-921.
    • (2015) J Cell Physiol , vol.230 , Issue.4 , pp. 911-921
    • Kang, I.H.1    Jeong, B.C.2    Hur, S.W.3
  • 163
    • 84915811140 scopus 로고    scopus 로고
    • miR-96 promotes osteogenic differentiation by suppressing HBEGF-EGFR signaling in osteoblastic cells
    • Yang M, Pan Y, Zhou Y. miR-96 promotes osteogenic differentiation by suppressing HBEGF-EGFR signaling in osteoblastic cells. FEBS Lett 2014; 588(24): 4761-4768.
    • (2014) FEBS Lett , vol.588 , Issue.24 , pp. 4761-4768
    • Yang, M.1    Pan, Y.2    Zhou, Y.3
  • 164
    • 84887470714 scopus 로고    scopus 로고
    • Heparin-binding EGF-like growth factor and miR-1192 exert opposite effect on runx2-induced osteogenic differentiation
    • Yu S, Geng Q, Ma J et al. Heparin-binding EGF-like growth factor and miR-1192 exert opposite effect on Runx2-induced osteogenic differentiation. Cell Death Dis 2013; 4: e868.
    • (2013) Cell Death Dis , vol.4 , pp. e868
    • Yu, S.1    Geng, Q.2    Ma, J.3
  • 165
    • 84930085644 scopus 로고    scopus 로고
    • microRNA-21 promotes osteogenic differentiation of mesenchymal stem cells by the PI3K/b-catenin pathway
    • Meng YB, Li X, Li ZY et al. microRNA-21 promotes osteogenic differentiation of mesenchymal stem cells by the PI3K/b-catenin pathway. J Orthop Res 2015; 33(7): 957-964.
    • (2015) J Orthop Res , vol.33 , Issue.7 , pp. 957-964
    • Meng, Y.B.1    Li, X.2    Li, Z.Y.3
  • 166
    • 0036225281 scopus 로고    scopus 로고
    • Reaching a genetic and molecular understanding of skeletal development
    • Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002; 2(4): 389-406.
    • (2002) Dev Cell , vol.2 , Issue.4 , pp. 389-406
    • Karsenty, G.1    Wagner, E.F.2
  • 168
    • 77950429619 scopus 로고    scopus 로고
    • Osteoclast-specific dicer gene deficiency suppresses osteoclastic bone resorption
    • Mizoguchi F, Izu Y, Hayata T et al. Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem 2010; 109(5): 866-875.
    • (2010) J Cell Biochem , vol.109 , Issue.5 , pp. 866-875
    • Mizoguchi, F.1    Izu, Y.2    Hayata, T.3
  • 169
    • 84907422952 scopus 로고    scopus 로고
    • Expression of DGCR8-dependent microRNAs is indispensable for osteoclastic development and bone-resorbing activity
    • Sugatani T, Hildreth BE 3rd, Toribio RE et al. Expression of DGCR8-dependent microRNAs is indispensable for osteoclastic development and bone-resorbing activity. J Cell Biochem 2014; 115(6): 1043-1047.
    • (2014) J Cell Biochem , vol.115 , Issue.6 , pp. 1043-1047
    • Sugatani, T.1    Hildreth, B.E.2    Toribio, R.E.3
  • 170
    • 84884254939 scopus 로고    scopus 로고
    • Advances in the regulation of osteoclasts and osteoclast functions
    • Boyce BF Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res 2013; 92(10): 860-867.
    • (2013) J Dent Res , vol.92 , Issue.10 , pp. 860-867
    • Boyce, B.F.1
  • 171
    • 84875306158 scopus 로고    scopus 로고
    • Advances in osteoclast biology reveal potential new drug targets and new roles for osteoclasts
    • Boyce BF Advances in osteoclast biology reveal potential new drug targets and new roles for osteoclasts. J Bone Miner Res 2013; 28(4): 711-722.
    • (2013) J Bone Miner Res , vol.28 , Issue.4 , pp. 711-722
    • Boyce, B.F.1
  • 172
    • 84904901187 scopus 로고    scopus 로고
    • A novel microRNA regulates osteoclast differentiation via targeting protein inhibitor of activated STAT3 (PIAS3)
    • Liu T, Qin AP, Liao B et al. A novel microRNA regulates osteoclast differentiation via targeting protein inhibitor of activated STAT3 (PIAS3). Bone 2014; 67: 156-165.
    • (2014) Bone , vol.67 , pp. 156-165
    • Liu, T.1    Qin, A.P.2    Liao, B.3
  • 173
    • 34548454049 scopus 로고    scopus 로고
    • Biology of RANK, RANKL, and osteoprotegerin
    • Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 2007; 9(Suppl 1): S1.
    • (2007) Arthritis Res Ther , vol.9 , pp. S1
    • Boyce, B.F.1    Xing, L.2
  • 174
    • 84892719952 scopus 로고    scopus 로고
    • MiR-503 regulates osteoclastogenesis via targeting RANK
    • Chen C, Cheng P, Xie H et al. MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res 2014; 29(2): 338-347.
    • (2014) J Bone Miner Res , vol.29 , Issue.2 , pp. 338-347
    • Chen, C.1    Cheng, P.2    Xie, H.3
  • 175
    • 84895060902 scopus 로고    scopus 로고
    • MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis
    • Guo LJ, Liao L, Yang L et al. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis. Exp Cell Res 2014; 321(2): 142-152.
    • (2014) Exp Cell Res , vol.321 , Issue.2 , pp. 142-152
    • Guo, L.J.1    Liao, L.2    Yang, L.3
  • 176
    • 84881116940 scopus 로고    scopus 로고
    • MicroRNA-124 regulates osteoclast differentiation
    • Lee Y, Kim HJ, Park CK et al. MicroRNA-124 regulates osteoclast differentiation. Bone 2013; 56(2): 383-389.
    • (2013) Bone , vol.56 , Issue.2 , pp. 383-389
    • Lee, Y.1    Kim, H.J.2    Park, C.K.3
  • 177
    • 84884599038 scopus 로고    scopus 로고
    • miR-31 controls osteoclast formation and bone resorption by targeting RhoA
    • Mizoguchi F, Murakami Y, Saito T et al. miR-31 controls osteoclast formation and bone resorption by targeting RhoA. Arthritis Res Ther 2013; 15(5): R102.
    • (2013) Arthritis Res Ther , vol.15 , Issue.5 , pp. R102
    • Mizoguchi, F.1    Murakami, Y.2    Saito, T.3
  • 178
    • 0034697358 scopus 로고    scopus 로고
    • Rho-A is critical for osteoclast podosome organization, motility, and bone resorption
    • Chellaiah MA, Soga N, Swanson S et al. Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J Biol Chem 2000; 275(16): 11993-12002.
    • (2000) J Biol Chem , vol.275 , Issue.16 , pp. 11993-12002
    • Chellaiah, M.A.1    Soga, N.2    Swanson, S.3
  • 179
    • 0037129205 scopus 로고    scopus 로고
    • RANKL maintains bone homeostasis through cFos-dependent induction of interferon-beta
    • Takayanagi H, Kim S, Matsuo K et al. RANKL maintains bone homeostasis through cFos-dependent induction of interferon-beta. Nature 2002; 416(6882): 744-749.
    • (2002) Nature , vol.416 , Issue.6882 , pp. 744-749
    • Takayanagi, H.1    Kim, S.2    Matsuo, K.3
  • 180
    • 0028173214 scopus 로고
    • c-Fos: A key regulator of osteoclast macrophage lineage determination and bone remodeling
    • Grigoriadis AE, Wang ZQ, Cecchini MG et al. c-Fos: a key regulator of osteoclast macrophage lineage determination and bone remodeling. Science 1994; 266 (5184): 443-448.
    • (1994) Science , vol.266 , Issue.5184 , pp. 443-448
    • Grigoriadis, A.E.1    Wang, Z.Q.2    Cecchini, M.G.3
  • 181
    • 79953686494 scopus 로고    scopus 로고
    • A microRNA expression signature of osteoclasto genesis
    • Sugatani T, Vacher J, Hruska KA. A microRNA expression signature of osteoclasto genesis. Blood 2011; 117(13): 3648-3657.
    • (2011) Blood , vol.117 , Issue.13 , pp. 3648-3657
    • Sugatani, T.1    Vacher, J.2    Hruska, K.A.3
  • 182
    • 84867233477 scopus 로고    scopus 로고
    • miR-21 expression is related to particle-induced osteolysis pathogenesis
    • Zhou Y, Liu Y, Cheng L. miR-21 expression is related to particle-induced osteolysis pathogenesis. J Orthop Res 2012; 30(11): 1837-1842.
    • (2012) J Orthop Res , vol.30 , Issue.11 , pp. 1837-1842
    • Zhou, Y.1    Liu, Y.2    Cheng, L.3
  • 183
    • 84876261835 scopus 로고    scopus 로고
    • Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis
    • Sugatani T, Hruska KA. Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis. J Cell Biochem 2013; 114(6): 1217-1222.
    • (2013) J Cell Biochem , vol.114 , Issue.6 , pp. 1217-1222
    • Sugatani, T.1    Hruska, K.A.2
  • 184
    • 34147132897 scopus 로고    scopus 로고
    • MafB negatively regulates RANKL-mediated osteoclast differentiation
    • Kim K, Kim JH, Lee J et al. MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 2007; 109(8): 3253-3259.
    • (2007) Blood , vol.109 , Issue.8 , pp. 3253-3259
    • Kim, K.1    Kim, J.H.2    Lee, J.3
  • 185
    • 84880334077 scopus 로고    scopus 로고
    • CCN2: A master regulator of the genesis of bone and cartilage
    • Takigawa M. CCN2: a master regulator of the genesis of bone and cartilage. J Cell Commun Signal 2013; 7(3): 191-201.
    • (2013) J Cell Commun Signal , vol.7 , Issue.3 , pp. 191-201
    • Takigawa, M.1
  • 186
    • 84950297998 scopus 로고    scopus 로고
    • MicroRNA-26a regulates RANKL-induced osteoclast formation
    • Kim K, Kim JH, Kim I et al. MicroRNA-26a regulates RANKL-induced osteoclast formation. Mol Cells 2015; 38(1): 75-80.
    • (2015) Mol Cells , vol.38 , Issue.1 , pp. 75-80
    • Kim, K.1    Kim, J.H.2    Kim, I.3
  • 187
    • 33748032383 scopus 로고    scopus 로고
    • Osteoclasts, rheumatoid arthritis, and osteoimmunology
    • Sato K, Takayanagi H. Osteoclasts, rheumatoid arthritis, and osteoimmunology. Curr Opin Rheumatol 2006; 18(4): 419-426.
    • (2006) Curr Opin Rheumatol , vol.18 , Issue.4 , pp. 419-426
    • Sato, K.1    Takayanagi, H.2
  • 188
    • 79955561084 scopus 로고    scopus 로고
    • Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice
    • Blüml S, Bonelli M, Niederreiter B et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum 2011; 63(5): 1281-1288.
    • (2011) Arthritis Rheum , vol.63 , Issue.5 , pp. 1281-1288
    • Blüml, S.1    Bonelli, M.2    Niederreiter, B.3
  • 189
    • 84869063724 scopus 로고    scopus 로고
    • Brief report: Amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223
    • Li YT, Chen SY, Wang CR et al. Brief report: amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum 2012; 64(10): 3240-3245.
    • (2012) Arthritis Rheum , vol.64 , Issue.10 , pp. 3240-3245
    • Li, Y.T.1    Chen, S.Y.2    Wang, C.R.3
  • 190
    • 34447262870 scopus 로고    scopus 로고
    • MicroRNA-223 is a key factor in osteoclast differentiation
    • Sugatani T, Hruska KA. MicroRNA-223 is a key factor in osteoclast differentiation. J Cell Biochem 2007; 101(4): 996-999.
    • (2007) J Cell Biochem , vol.101 , Issue.4 , pp. 996-999
    • Sugatani, T.1    Hruska, K.A.2
  • 191
    • 84880787313 scopus 로고    scopus 로고
    • Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation
    • Shibuya H, Nakasa T, Adachi N et al. Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Mod Rheumatol 2013; 23(4): 674-685.
    • (2013) Mod Rheumatol , vol.23 , Issue.4 , pp. 674-685
    • Shibuya, H.1    Nakasa, T.2    Adachi, N.3
  • 192
    • 79960480764 scopus 로고    scopus 로고
    • miRNA-146a in rheumatoid arthritis: A new therapeutic strategy
    • Pauley KM, Cha S. miRNA-146a in rheumatoid arthritis: a new therapeutic strategy. Immunotherapy 2011; 3(7): 829-831.
    • (2011) Immunotherapy , vol.3 , Issue.7 , pp. 829-831
    • Pauley, K.M.1    Cha, S.2
  • 193
    • 52249094653 scopus 로고    scopus 로고
    • Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients
    • Pauley KM, Satoh M, Chan AL et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 2008; 10(4): R101.
    • (2008) Arthritis Res Ther , vol.10 , Issue.4 , pp. R101
    • Pauley, K.M.1    Satoh, M.2    Chan, A.L.3
  • 194
    • 43949136123 scopus 로고    scopus 로고
    • Expression of microRNA-146 in rheumatoid arthritis synovial tissue
    • Nakasa T, Miyaki S, Okubo A et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 2008; 58(5): 1284-1292.
    • (2008) Arthritis Rheum , vol.58 , Issue.5 , pp. 1284-1292
    • Nakasa, T.1    Miyaki, S.2    Okubo, A.3
  • 195
    • 34447538519 scopus 로고    scopus 로고
    • Osteoclast differentiation and gene regulation
    • Zhao Q, Shao J, Chen W et al. Osteoclast differentiation and gene regulation. Front Biosci 2007; 12: 2519-2529.
    • (2007) Front Biosci , vol.12 , pp. 2519-2529
    • Zhao, Q.1    Shao, J.2    Chen, W.3
  • 196
    • 7444254061 scopus 로고    scopus 로고
    • CSF-1 regulation of the wandering macrophage: Complexity in action
    • Pixley FJ, Stanley ER. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 2004; 14(11): 628-638.
    • (2004) Trends Cell Biol , vol.14 , Issue.11 , pp. 628-638
    • Pixley, F.J.1    Stanley, E.R.2
  • 197
    • 83455225056 scopus 로고    scopus 로고
    • The skeleton: A multi-functional complex organ: The role of key signalling pathways in osteoclast differentiation and in bone resorption
    • Mellis DJ, Itzstein C, Helfrich MH et al. The skeleton: a multi-functional complex organ: the role of key signalling pathways in osteoclast differentiation and in bone resorption. J Endocrinol 2011; 211(2): 131-143.
    • (2011) J Endocrinol , vol.211 , Issue.2 , pp. 131-143
    • Mellis, D.J.1    Itzstein, C.2    Helfrich, M.H.3
  • 198
    • 28544443670 scopus 로고    scopus 로고
    • vβ and macrophage colony-stimulating factor: Partners in osteoclast biology
    • vβ and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev 2005; 208: 88-105.
    • (2005) Immunol Rev , vol.208 , pp. 88-105
    • Ross, F.P.1    Teitelbaum, S.L.2
  • 199
    • 84893861216 scopus 로고    scopus 로고
    • Effect of cytokines on osteoclast formation and bone resorption during mechanical force loading of the periodontal membrane
    • Kitaura H, Kimura K, Ishida M et al. Effect of cytokines on osteoclast formation and bone resorption during mechanical force loading of the periodontal membrane. Sci World J 2014; 2014: 617032.
    • (2014) Sci World J , vol.2014
    • Kitaura, H.1    Kimura, K.2    Ishida, M.3
  • 200
    • 84928230801 scopus 로고    scopus 로고
    • miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway
    • Zhao C, Sun W, Zhang P et al. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol 2015; 12(3): 343-353.
    • (2015) RNA Biol , vol.12 , Issue.3 , pp. 343-353
    • Zhao, C.1    Sun, W.2    Zhang, P.3
  • 201
    • 84895524983 scopus 로고    scopus 로고
    • Classical and paradoxical effects of TNF-α on bone homeostasis
    • Osta B, Benedetti G, Miossec P. Classical and paradoxical effects of TNF-α on bone homeostasis. Front Immunol 2014; 5: 48.
    • (2014) Front Immunol , vol.5 , pp. 48
    • Osta, B.1    Benedetti, G.2    Miossec, P.3
  • 202
    • 0037169482 scopus 로고    scopus 로고
    • 3/Pebp2αA) is inhibited by tumor necrosis factor-α
    • 3/Pebp2αA) is inhibited by tumor necrosis factor-α. J Biol Chem 2002; 277(4): 2695-2701.
    • (2002) J Biol Chem , vol.277 , Issue.4 , pp. 2695-2701
    • Gilbert, L.1    He, X.2    Farmer, P.3
  • 203
    • 80053141199 scopus 로고    scopus 로고
    • Dose-specific effects of tumor necrosis factor alpha on osteogenic differentiation of mesenchymal stem cells
    • Huang H, Zhao N, Xu X et al. Dose-specific effects of tumor necrosis factor alpha on osteogenic differentiation of mesenchymal stem cells. Cell Prolif 2011; 44(5): 420-427.
    • (2011) Cell Prolif , vol.44 , Issue.5 , pp. 420-427
    • Huang, H.1    Zhao, N.2    Xu, X.3
  • 204
    • 84879537296 scopus 로고    scopus 로고
    • Chronic low dose tumor necrosis factor-α (TNF) suppresses early bone accrual in young mice by inhibiting osteoblasts without affecting osteoclasts
    • Gilbert LC, Chen H, Lu X et al. Chronic low dose tumor necrosis factor-α (TNF) suppresses early bone accrual in young mice by inhibiting osteoblasts without affecting osteoclasts. Bone 2013; 56(1): 174-183.
    • (2013) Bone , vol.56 , Issue.1 , pp. 174-183
    • Gilbert, L.C.1    Chen, H.2    Lu, X.3
  • 205
    • 84881153583 scopus 로고    scopus 로고
    • JNK signaling plays an important role in the effects of TNF-α and IL-1β on in vitro osteoblastic differentiation of cultured human periosteal derived cells
    • Hah YS, Kang HG, Cho HY et al. JNK signaling plays an important role in the effects of TNF-α and IL-1β on in vitro osteoblastic differentiation of cultured human periosteal derived cells. Mol Biol Rep 2013; 40(8): 4869-4881.
    • (2013) Mol Biol Rep , vol.40 , Issue.8 , pp. 4869-4881
    • Hah, Y.S.1    Kang, H.G.2    Cho, H.Y.3
  • 206
    • 34047152284 scopus 로고    scopus 로고
    • TNF-α inhibits BMP-induced osteoblast differentiation through activating SAPK/JNK signaling
    • Mukai T, Otsuka F, Otani H et al. TNF-α inhibits BMP-induced osteoblast differentiation through activating SAPK/JNK signaling. Biochem Biophys Res Commun 2007; 356(4): 1004-1010.
    • (2007) Biochem Biophys Res Commun , vol.356 , Issue.4 , pp. 1004-1010
    • Mukai, T.1    Otsuka, F.2    Otani, H.3
  • 207
    • 0023095815 scopus 로고
    • Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption
    • Thomson BM, Mundy GR, Chambers TJ. Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol 1987; 138(3): 775-779.
    • (1987) J Immunol , vol.138 , Issue.3 , pp. 775-779
    • Thomson, B.M.1    Mundy, G.R.2    Chambers, T.J.3
  • 208
    • 84878636899 scopus 로고    scopus 로고
    • Immunological reaction in TNF-α-mediated osteoclast formation and bone resorption in vitro and in vivo
    • Kitaura H, Kimura K, Ishida M et al. Immunological reaction in TNF-α-mediated osteoclast formation and bone resorption in vitro and in vivo. Clin Dev Immunol 2013; 2013: 181-849.
    • (2013) Clin Dev Immunol , vol.2013 , pp. 181-849
    • Kitaura, H.1    Kimura, K.2    Ishida, M.3
  • 209
    • 79954423688 scopus 로고    scopus 로고
    • IFN-γ directly inhibits TNF-α-induced osteoclastogenesis in vitro and in vivo and induces apoptosis mediated by Fas/Fas ligand interactions
    • Kohara H, Kitaura H, Fujimura Y et al. IFN-γ directly inhibits TNF-α-induced osteoclastogenesis in vitro and in vivo and induces apoptosis mediated by Fas/Fas ligand interactions. Immunol Lett 2011; 137(1/2): 53-61.
    • (2011) Immunol Lett , vol.137 , Issue.1-2 , pp. 53-61
    • Kohara, H.1    Kitaura, H.2    Fujimura, Y.3
  • 210
    • 84864780886 scopus 로고    scopus 로고
    • miR-155 modulates TNF-a-inhibited osteogenic differentiation by targeting SOCS1 expression
    • Wu T, Xie M, Wang X et al. miR-155 modulates TNF-a-inhibited osteogenic differentiation by targeting SOCS1 expression. Bone 2012; 51(3): 498-505.
    • (2012) Bone , vol.51 , Issue.3 , pp. 498-505
    • Wu, T.1    Xie, M.2    Wang, X.3
  • 211
    • 84866596352 scopus 로고    scopus 로고
    • Interferon-b-induced miR-155 inhibits osteoclast differentiation by targeting SOCS1 and MITF
    • Zhang J, Zhao H, Chen J et al. Interferon-b-induced miR-155 inhibits osteoclast differentiation by targeting SOCS1 and MITF. FEBS Lett 2012; 586(19): 3255-3262.
    • (2012) FEBS Lett , vol.586 , Issue.19 , pp. 3255-3262
    • Zhang, J.1    Zhao, H.2    Chen, J.3
  • 212
    • 84876812525 scopus 로고    scopus 로고
    • Expression profiling of microRNAs in RAW264.7 cells treated with a combination of tumor necrosis factor alpha and RANKL during osteoclast differentiation
    • Kagiya T, Nakamura S. Expression profiling of microRNAs in RAW264.7 cells treated with a combination of tumor necrosis factor alpha and RANKL during osteoclast differentiation. J Periodont Res 2013; 48(3): 373-385.
    • (2013) J Periodont Res , vol.48 , Issue.3 , pp. 373-385
    • Kagiya, T.1    Nakamura, S.2
  • 213
    • 84873944895 scopus 로고    scopus 로고
    • Tumor necrosis factor a suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis
    • Yang N, Wang G, Hu C et al. Tumor necrosis factor a suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res 2013; 28(3): 559-573.
    • (2013) J Bone Miner Res , vol.28 , Issue.3 , pp. 559-573
    • Yang, N.1    Wang, G.2    Hu, C.3
  • 214
    • 84885624235 scopus 로고    scopus 로고
    • MicroRNA-23a modulates tumor necrosis factor-alpha induced osteoblasts apoptosis by directly targeting fas
    • Dong J, Cui X, Jiang Z et al. MicroRNA-23a modulates tumor necrosis factor-alpha induced osteoblasts apoptosis by directly targeting Fas. J Cell Biochem 2013; 114(12): 2738-2745.
    • (2013) J Cell Biochem , vol.114 , Issue.12 , pp. 2738-2745
    • Dong, J.1    Cui, X.2    Jiang, Z.3
  • 215
    • 84859509754 scopus 로고    scopus 로고
    • Notch signaling and the developing skeleton
    • Mead TJ, Yutzey KE. Notch signaling and the developing skeleton. Adv Exp Med Biol 2012; 727: 114-130.
    • (2012) Adv Exp Med Biol , vol.727 , pp. 114-130
    • Mead, T.J.1    Yutzey, K.E.2
  • 216
    • 40449084522 scopus 로고    scopus 로고
    • Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation
    • Hilton MJ, Tu X, Wu X et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 2008; 14(3): 306-314.
    • (2008) Nat Med , vol.14 , Issue.3 , pp. 306-314
    • Hilton, M.J.1    Tu, X.2    Wu, X.3
  • 217
    • 40449139405 scopus 로고    scopus 로고
    • Dimorphic effects of notch signaling in bone homeostasis
    • Engin F, Yao Z, Yang T et al. Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 2008; 14(3): 299-305.
    • (2008) Nat Med , vol.14 , Issue.3 , pp. 299-305
    • Engin, F.1    Yao, Z.2    Yang, T.3
  • 218
    • 0037443389 scopus 로고    scopus 로고
    • Regulation of osteoclast development by notch signaling directed to osteoclast precursors and through stromal cells
    • Yamada T, Yamazaki H, Yamane T et al. Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood 2003; 101(6): 2227-2234.
    • (2003) Blood , vol.101 , Issue.6 , pp. 2227-2234
    • Yamada, T.1    Yamazaki, H.2    Yamane, T.3
  • 219
    • 84896373668 scopus 로고    scopus 로고
    • MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells
    • Chen L, Holmstrøm K, Qiu W et al. MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells 2014; 32(4): 902-912.
    • (2014) Stem Cells , vol.32 , Issue.4 , pp. 902-912
    • Chen, L.1    Holmstrøm, K.2    Qiu, W.3
  • 220
    • 84907406375 scopus 로고    scopus 로고
    • miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and tgif2
    • Krzeszinski JY, Wei W, Huynh H et al. miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature 2014; 512(7515): 431-435.
    • (2014) Nature , vol.512 , Issue.7515 , pp. 431-435
    • Krzeszinski, J.Y.1    Wei, W.2    Huynh, H.3
  • 221
    • 35348888303 scopus 로고    scopus 로고
    • Differences in osteoblast miRNA induced by cell binding domain of collagen and silicate-based synthetic bone
    • Palmieri A, Pezzetti F, Brunelli G et al. Differences in osteoblast miRNA induced by cell binding domain of collagen and silicate-based synthetic bone. J Biomed Sci 2007; 14(6): 777-782.
    • (2007) J Biomed Sci , vol.14 , Issue.6 , pp. 777-782
    • Palmieri, A.1    Pezzetti, F.2    Brunelli, G.3
  • 222
    • 58749084347 scopus 로고    scopus 로고
    • Anorganic bovine bone and a silicate-based synthetic bone activate different microRNAs
    • Annalisa P, Furio P, Ilaria Z et al. Anorganic bovine bone and a silicate-based synthetic bone activate different microRNAs. J Oral Sci 2008; 50(3): 301-307.
    • (2008) J Oral Sci , vol.50 , Issue.3 , pp. 301-307
    • Annalisa, P.1    Furio, P.2    Ilaria, Z.3
  • 223
    • 84908116644 scopus 로고    scopus 로고
    • Repair of canine medial orbital bone defects with miR-31-modified bone marrow mesenchymal stem cells
    • Deng Y, Zhou H, Gu P et al. Repair of canine medial orbital bone defects with miR-31-modified bone marrow mesenchymal stem cells. Invest Ophthalmol Vis Sci 2014; 55(9): 6016-6023.
    • (2014) Invest Ophthalmol Vis Sci , vol.55 , Issue.9 , pp. 6016-6023
    • Deng, Y.1    Zhou, H.2    Gu, P.3
  • 224
    • 80053585963 scopus 로고    scopus 로고
    • MicroRNAs in the regulation of interfacial behaviors of MSCs cultured on microgrooved surface pattern
    • Wang Y, Jiang XL, Yang SC et al. MicroRNAs in the regulation of interfacial behaviors of MSCs cultured on microgrooved surface pattern. Biomaterials 2011; 32(35): 9207-9217.
    • (2011) Biomaterials , vol.32 , Issue.35 , pp. 9207-9217
    • Wang, Y.1    Jiang, X.L.2    Yang, S.C.3
  • 225
    • 84876142897 scopus 로고    scopus 로고
    • MicroRNA functionalized microporous titanium oxide surface by lyophilization with enhanced osteogenic activity
    • Wu K, Song W, Zhao L et al. MicroRNA functionalized microporous titanium oxide surface by lyophilization with enhanced osteogenic activity. ACS Appl Mater Interfaces 2013; 5(7): 2733-2744.
    • (2013) ACS Appl Mater Interfaces , vol.5 , Issue.7 , pp. 2733-2744
    • Wu, K.1    Song, W.2    Zhao, L.3
  • 226
    • 84877091149 scopus 로고    scopus 로고
    • Induction of osteogenic differentiation of stem cells via a lyophilized microRNA reverse transfection formulation on a tissue culture plate
    • Wu K, Xu J, Liu M et al. Induction of osteogenic differentiation of stem cells via a lyophilized microRNA reverse transfection formulation on a tissue culture plate. Int J Nanomedicine 2013; 8: 1595-1607.
    • (2013) Int J Nanomedicine , vol.8 , pp. 1595-1607
    • Wu, K.1    Xu, J.2    Liu, M.3
  • 227
    • 84875524934 scopus 로고    scopus 로고
    • Peptide-mediated intracellular delivery of miRNA-29b for osteogenic stem cell differentiation
    • Suh JS, Lee JY, Choi YS et al. Peptide-mediated intracellular delivery of miRNA-29b for osteogenic stem cell differentiation. Biomaterials 2013; 34(17): 4347-4359.
    • (2013) Biomaterials , vol.34 , Issue.17 , pp. 4347-4359
    • Suh, J.S.1    Lee, J.Y.2    Choi, Y.S.3
  • 228
    • 84880961475 scopus 로고    scopus 로고
    • miR-148b-nanoparticle conjugates for light mediated osteogenesis of human adipose stromal/stem cells
    • Qureshi AT, Monroe WT, Dasa V et al. miR-148b-nanoparticle conjugates for light mediated osteogenesis of human adipose stromal/stem cells. Biomaterials 2013; 34(31): 7799-7810.
    • (2013) Biomaterials , vol.34 , Issue.31 , pp. 7799-7810
    • Qureshi, A.T.1    Monroe, W.T.2    Dasa, V.3
  • 229
    • 84932616935 scopus 로고    scopus 로고
    • A delivery system specifically approaching bone resorption surfaces to facilitate therapeutic modulation of microRNAs in osteoclasts
    • Liu J, Dang L, Li D et al. A delivery system specifically approaching bone resorption surfaces to facilitate therapeutic modulation of microRNAs in osteoclasts. Biomaterials 2015; 52: 148-160.
    • (2015) Biomaterials , vol.52 , pp. 148-160
    • Liu, J.1    Dang, L.2    Li, D.3
  • 231
    • 84903134495 scopus 로고    scopus 로고
    • let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2
    • Wei J, Li H, Wang S et al. let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2. Stem Cells Dev 2014; 23(13): 1452-1463.
    • (2014) Stem Cells Dev , vol.23 , Issue.13 , pp. 1452-1463
    • Wei, J.1    Li, H.2    Wang, S.3
  • 232
    • 84892740666 scopus 로고    scopus 로고
    • Sox2 suppression by miR-21 governs human mesenchymal stem cell properties
    • Trohatou O, Zagoura D, Bitsika V et al. Sox2 suppression by miR-21 governs human mesenchymal stem cell properties. Stem Cells Transl Med 2014; 3(1): 54-68.
    • (2014) Stem Cells Transl Med , vol.3 , Issue.1 , pp. 54-68
    • Trohatou, O.1    Zagoura, D.2    Bitsika, V.3
  • 233
    • 84937763111 scopus 로고    scopus 로고
    • MicroRNA-194 promotes osteoblast differentiation via downregulating STAT1
    • Li J, He X, Wei W et al. MicroRNA-194 promotes osteoblast differentiation via downregulating STAT1. Biochem Biophys Res Commun 2015; 460(2): 482-488.
    • (2015) Biochem Biophys Res Commun , vol.460 , Issue.2 , pp. 482-488
    • Li, J.1    He, X.2    Wei, W.3
  • 234
    • 65949105697 scopus 로고    scopus 로고
    • miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue
    • Kim YJ, Bae SW, Yu SS et al. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res 2009; 24(5): 816-825.
    • (2009) J Bone Miner Res , vol.24 , Issue.5 , pp. 816-825
    • Kim, Y.J.1    Bae, S.W.2    Yu, S.S.3
  • 235
    • 84862505549 scopus 로고    scopus 로고
    • miR-764-5p promotes osteoblast differentiation through inhibition of CHIP/STUB1 expression
    • Guo J, Ren F, Wang Y et al. miR-764-5p promotes osteoblast differentiation through inhibition of CHIP/STUB1 expression. J Bone Miner Res 2012; 27(7): 1607-1618.
    • (2012) J Bone Miner Res , vol.27 , Issue.7 , pp. 1607-1618
    • Guo, J.1    Ren, F.2    Wang, Y.3
  • 236
    • 84907482481 scopus 로고    scopus 로고
    • MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-fos signaling during osteoclast fusion and differentiation
    • Dou C, Zhang C, Kang F et al. MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and differentiation. Biochim Biophys Acta 2014; 1839(11): 1084-1096.
    • (2014) Biochim Biophys Acta , vol.1839 , Issue.11 , pp. 1084-1096
    • Dou, C.1    Zhang, C.2    Kang, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.