메뉴 건너뛰기




Volumn 36, Issue 11, 2015, Pages 756-768

Emerging Role of Sirtuin 2 in the Regulation of Mammalian Metabolism

Author keywords

[No Author keywords available]

Indexed keywords

GLUCOSE; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; INSULIN; MITOGEN ACTIVATED PROTEIN KINASE; PROTEIN KINASE B; REACTIVE OXYGEN METABOLITE; TRANSCRIPTION FACTOR FKHR; SIRTUIN 2;

EID: 84946227815     PISSN: 01656147     EISSN: 18733735     Source Type: Journal    
DOI: 10.1016/j.tips.2015.08.001     Document Type: Review
Times cited : (206)

References (102)
  • 1
    • 0018564390 scopus 로고
    • A suppressor of mating-type locus mutations in Saccharomyces cerevisiae: Evidence for and identification of cryptic mating-type loci
    • J. Rine, and et al. A suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci Genetics 93 1979 877 901
    • (1979) Genetics , vol.93 , pp. 877-901
    • Rine, J.1
  • 2
    • 0033214237 scopus 로고    scopus 로고
    • The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
    • M. Kaeberlein, and et al. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms Genes Dev. 13 1999 2570 2580
    • (1999) Genes Dev. , vol.13 , pp. 2570-2580
    • Kaeberlein, M.1
  • 3
    • 0035826271 scopus 로고    scopus 로고
    • Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
    • H.A. Tissenbaum, and L. Guarente Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans Nature 410 2001 227 230
    • (2001) Nature , vol.410 , pp. 227-230
    • Tissenbaum, H.A.1    Guarente, L.2
  • 4
    • 8644224064 scopus 로고    scopus 로고
    • Sir2 mediates longevity in the fly through a pathway related to calorie restriction
    • B. Rogina, and S.L. Helfand Sir2 mediates longevity in the fly through a pathway related to calorie restriction Proc. Natl. Acad. Sci. U.S.A. 101 2004 15998 16003
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 15998-16003
    • Rogina, B.1    Helfand, S.L.2
  • 5
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • S. Imai, and et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase Nature 403 2000 795 800
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1
  • 6
    • 0033598942 scopus 로고    scopus 로고
    • An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing
    • J.C. Tanny, and et al. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing Cell 99 1999 735 745
    • (1999) Cell , vol.99 , pp. 735-745
    • Tanny, J.C.1
  • 7
    • 0034703217 scopus 로고    scopus 로고
    • Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
    • S.J. Lin, and et al. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae Science 289 2000 2126 2128
    • (2000) Science , vol.289 , pp. 2126-2128
    • Lin, S.J.1
  • 8
    • 80053168829 scopus 로고    scopus 로고
    • Absence of effects of Sir2 overexpression on lifespan in C. Elegans and Drosophila
    • C. Burnett, and et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila Nature 477 2011 482 485
    • (2011) Nature , vol.477 , pp. 482-485
    • Burnett, C.1
  • 9
    • 84858797950 scopus 로고    scopus 로고
    • Sirtuins as regulators of metabolism and healthspan
    • R.H. Houtkooper, and et al. Sirtuins as regulators of metabolism and healthspan Nat. Rev. Mol. Cell Biol. 13 2012 225 238
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 225-238
    • Houtkooper, R.H.1
  • 10
    • 0033887456 scopus 로고    scopus 로고
    • Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
    • R.A. Frye Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins Biochem. Biophys. Res. Commun. 273 2000 793 798
    • (2000) Biochem. Biophys. Res. Commun. , vol.273 , pp. 793-798
    • Frye, R.A.1
  • 11
    • 34250365395 scopus 로고    scopus 로고
    • +-dependent histone deacetylase SIRT1
    • +-dependent histone deacetylase SIRT1 J. Biol. Chem. 282 2007 6823 6832
    • (2007) J. Biol. Chem. , vol.282 , pp. 6823-6832
    • Tanno, M.1
  • 12
    • 31044445366 scopus 로고    scopus 로고
    • Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
    • R. Mostoslavsky, and et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6 Cell 124 2006 315 329
    • (2006) Cell , vol.124 , pp. 315-329
    • Mostoslavsky, R.1
  • 13
    • 33744466971 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription
    • E. Ford, and et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription Genes Dev. 20 2006 1075 1080
    • (2006) Genes Dev. , vol.20 , pp. 1075-1080
    • Ford, E.1
  • 14
    • 77953287165 scopus 로고    scopus 로고
    • Mitochondrial sirtuins
    • J.Y. Huang, and et al. Mitochondrial sirtuins Biochim. Biophys. Acta 1804 2010 1645 1651
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 1645-1651
    • Huang, J.Y.1
  • 15
    • 33646550204 scopus 로고    scopus 로고
    • SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
    • A. Vaquero, and et al. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis Genes Dev. 20 2006 1256 1261
    • (2006) Genes Dev. , vol.20 , pp. 1256-1261
    • Vaquero, A.1
  • 16
    • 84884163378 scopus 로고    scopus 로고
    • An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms
    • D. Rauh, and et al. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms Nat. Commun. 4 2013 2327
    • (2013) Nat. Commun. , vol.4 , pp. 2327
    • Rauh, D.1
  • 17
    • 84923337675 scopus 로고    scopus 로고
    • Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies
    • Y.B. Teng, and et al. Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies Sci. Rep. 5 2015 8529
    • (2015) Sci. Rep. , vol.5 , pp. 8529
    • Teng, Y.B.1
  • 18
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
    • M.C. Haigis, and et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells Cell 126 2006 941 954
    • (2006) Cell , vol.126 , pp. 941-954
    • Haigis, M.C.1
  • 19
    • 20444409132 scopus 로고    scopus 로고
    • Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
    • G. Liszt, and et al. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase J. Biol. Chem. 280 2005 21313 21320
    • (2005) J. Biol. Chem. , vol.280 , pp. 21313-21320
    • Liszt, G.1
  • 20
    • 81055122671 scopus 로고    scopus 로고
    • Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
    • J. Du, and et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase Science 334 2011 806 809
    • (2011) Science , vol.334 , pp. 806-809
    • Du, J.1
  • 21
    • 51449123628 scopus 로고    scopus 로고
    • Acetylation of Sirt2 by p300 attenuates its deacetylase activity
    • Y. Han, and et al. Acetylation of Sirt2 by p300 attenuates its deacetylase activity Biochem. Biophys. Res. Commun. 375 2008 576 580
    • (2008) Biochem. Biophys. Res. Commun. , vol.375 , pp. 576-580
    • Han, Y.1
  • 22
    • 76649085804 scopus 로고    scopus 로고
    • Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice
    • C. Escande, and et al. Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice J. Clin. Invest. 120 2010 545 558
    • (2010) J. Clin. Invest. , vol.120 , pp. 545-558
    • Escande, C.1
  • 24
    • 40849113090 scopus 로고    scopus 로고
    • The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility
    • R. Pandithage, and et al. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility J. Cell Biol. 180 2008 915 929
    • (2008) J. Cell Biol. , vol.180 , pp. 915-929
    • Pandithage, R.1
  • 25
    • 84861852370 scopus 로고    scopus 로고
    • Are sirtuins viable targets for improving healthspan and lifespan?
    • J.A. Baur, and et al. Are sirtuins viable targets for improving healthspan and lifespan? Nat. Rev. Drug Discov. 11 2012 443 461
    • (2012) Nat. Rev. Drug Discov. , vol.11 , pp. 443-461
    • Baur, J.A.1
  • 26
    • 34447626095 scopus 로고    scopus 로고
    • SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
    • F. Wang, and et al. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction Aging Cell 6 2007 505 514
    • (2007) Aging Cell , vol.6 , pp. 505-514
    • Wang, F.1
  • 27
    • 80054769188 scopus 로고    scopus 로고
    • SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity
    • H.S. Kim, and et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity Cancer Cell 20 2011 487 499
    • (2011) Cancer Cell , vol.20 , pp. 487-499
    • Kim, H.S.1
  • 28
    • 80053137033 scopus 로고    scopus 로고
    • The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS
    • M.M. Maxwell, and et al. The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS Hum. Mol. Genet. 20 2011 3986 3996
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 3986-3996
    • Maxwell, M.M.1
  • 29
    • 34547397081 scopus 로고    scopus 로고
    • SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation
    • E. Jing, and et al. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation Cell Metab. 6 2007 105 114
    • (2007) Cell Metab. , vol.6 , pp. 105-114
    • Jing, E.1
  • 30
    • 64049089450 scopus 로고    scopus 로고
    • SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARγ
    • F. Wang, and Q. Tong SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARγ Mol. Biol. Cell 20 2009 801 808
    • (2009) Mol. Biol. Cell , vol.20 , pp. 801-808
    • Wang, F.1    Tong, Q.2
  • 31
    • 49749088697 scopus 로고    scopus 로고
    • Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction
    • A.B. Crujeiras, and et al. Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction Eur. J. Clin. Invest. 38 2008 672 678
    • (2008) Eur. J. Clin. Invest. , vol.38 , pp. 672-678
    • Crujeiras, A.B.1
  • 33
    • 0037291214 scopus 로고    scopus 로고
    • +-dependent tubulin deacetylase
    • +-dependent tubulin deacetylase Mol. Cell 11 2003 437 444
    • (2003) Mol. Cell , vol.11 , pp. 437-444
    • North, B.J.1
  • 34
    • 84866013044 scopus 로고    scopus 로고
    • SIRT2 as a therapeutic target for age-related disorders
    • R.M. de Oliveira, and et al. SIRT2 as a therapeutic target for age-related disorders Front. Pharmacol. 3 2012 82
    • (2012) Front. Pharmacol. , vol.3 , pp. 82
    • De Oliveira, R.M.1
  • 35
    • 33847053144 scopus 로고    scopus 로고
    • SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress
    • T. Inoue, and et al. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress Oncogene 26 2007 945 957
    • (2007) Oncogene , vol.26 , pp. 945-957
    • Inoue, T.1
  • 36
    • 4944245398 scopus 로고    scopus 로고
    • Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin
    • A. Vaquero, and et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin Mol. Cell 16 2004 93 105
    • (2004) Mol. Cell , vol.16 , pp. 93-105
    • Vaquero, A.1
  • 37
    • 39149122568 scopus 로고    scopus 로고
    • Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis
    • B.J. North, and E. Verdin Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis PLoS ONE 2 2007 e784
    • (2007) PLoS ONE , vol.2 , pp. e784
    • North, B.J.1    Verdin, E.2
  • 38
    • 84903744004 scopus 로고    scopus 로고
    • SIRT2 induces the checkpoint kinase BubR1 to increase lifespan
    • B.J. North, and et al. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan EMBO J. 33 2014 1438 1453
    • (2014) EMBO J. , vol.33 , pp. 1438-1453
    • North, B.J.1
  • 39
    • 0037405043 scopus 로고    scopus 로고
    • Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle
    • S.C. Dryden, and et al. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle Mol. Cell. Biol. 23 2003 3173 3185
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 3173-3185
    • Dryden, S.C.1
  • 40
    • 42949114938 scopus 로고    scopus 로고
    • Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator
    • S. Lain, and et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator Cancer Cell 13 2008 454 463
    • (2008) Cancer Cell , vol.13 , pp. 454-463
    • Lain, S.1
  • 41
    • 84879081348 scopus 로고    scopus 로고
    • SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-3β/β-catenin signaling
    • J. Chen, and et al. SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-3β/β-catenin signaling Hepatology 57 2013 2287 2298
    • (2013) Hepatology , vol.57 , pp. 2287-2298
    • Chen, J.1
  • 42
    • 34547599329 scopus 로고    scopus 로고
    • Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson's disease
    • T.F. Outeiro, and et al. Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson's disease Science 317 2007 516 519
    • (2007) Science , vol.317 , pp. 516-519
    • Outeiro, T.F.1
  • 43
    • 77952413052 scopus 로고    scopus 로고
    • SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis
    • R. Luthi-Carter, and et al. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis Proc. Natl. Acad. Sci. U.S.A. 107 2010 7927 7932
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 7927-7932
    • Luthi-Carter, R.1
  • 44
    • 84874709843 scopus 로고    scopus 로고
    • SIRT1 and SIRT2: Emerging targets in neurodegeneration
    • G. Donmez, and T.F. Outeiro SIRT1 and SIRT2: emerging targets in neurodegeneration EMBO Mol. Med. 5 2013 344 352
    • (2013) EMBO Mol. Med. , vol.5 , pp. 344-352
    • Donmez, G.1    Outeiro, T.F.2
  • 45
    • 84921747158 scopus 로고    scopus 로고
    • The sirtuin-2 inhibitor AK7 is neuroprotective in models of Parkinson's disease but not amyotrophic lateral sclerosis and cerebral ischemia
    • X. Chen, and et al. The sirtuin-2 inhibitor AK7 is neuroprotective in models of Parkinson's disease but not amyotrophic lateral sclerosis and cerebral ischemia PLoS ONE 10 2015 e0116919
    • (2015) PLoS ONE , vol.10 , pp. e0116919
    • Chen, X.1
  • 46
    • 84871706585 scopus 로고    scopus 로고
    • The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington's disease mouse models
    • V. Chopra, and et al. The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington's disease mouse models Cell Rep. 2 2012 1492 1497
    • (2012) Cell Rep. , vol.2 , pp. 1492-1497
    • Chopra, V.1
  • 47
    • 84866529842 scopus 로고    scopus 로고
    • SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo
    • A. Bobrowska, and et al. SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo PLoS ONE 7 2012 e34805
    • (2012) PLoS ONE , vol.7 , pp. e34805
    • Bobrowska, A.1
  • 49
    • 76049091112 scopus 로고    scopus 로고
    • Lipid homeostasis, lipotoxicity and the metabolic syndrome
    • R.H. Unger, and et al. Lipid homeostasis, lipotoxicity and the metabolic syndrome Biochim. Biophys. Acta 1801 2010 209 214
    • (2010) Biochim. Biophys. Acta , vol.1801 , pp. 209-214
    • Unger, R.H.1
  • 50
    • 0037237279 scopus 로고    scopus 로고
    • The forkhead transcription factor Foxo1 regulates adipocyte differentiation
    • J. Nakae, and et al. The forkhead transcription factor Foxo1 regulates adipocyte differentiation Dev. Cell 4 2003 119 129
    • (2003) Dev. Cell , vol.4 , pp. 119-129
    • Nakae, J.1
  • 51
    • 3042681042 scopus 로고    scopus 로고
    • Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ
    • F. Picard, and et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ Nature 429 2004 771 776
    • (2004) Nature , vol.429 , pp. 771-776
    • Picard, F.1
  • 52
    • 84933678205 scopus 로고    scopus 로고
    • Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity
    • R. Mayoral, and et al. Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity Mol. Metab. 4 2015 378 391
    • (2015) Mol. Metab. , vol.4 , pp. 378-391
    • Mayoral, R.1
  • 53
    • 77952863834 scopus 로고    scopus 로고
    • Genetic control of de novo lipogenesis: Role in diet-induced obesity
    • M.S. Strable, and J.M. Ntambi Genetic control of de novo lipogenesis: role in diet-induced obesity Crit. Rev. Biochem. Mol. Biol. 45 2010 199 214
    • (2010) Crit. Rev. Biochem. Mol. Biol. , vol.45 , pp. 199-214
    • Strable, M.S.1    Ntambi, J.M.2
  • 54
    • 0000203136 scopus 로고
    • The citrate cleavage enzyme. I. Distribution and purification
    • P.A. Srere The citrate cleavage enzyme. I. Distribution and purification J. Biol. Chem. 234 1959 2544 2547
    • (1959) J. Biol. Chem. , vol.234 , pp. 2544-2547
    • Srere, P.A.1
  • 55
    • 66249105703 scopus 로고    scopus 로고
    • ATP-citrate lyase links cellular metabolism to histone acetylation
    • K.E. Wellen, and et al. ATP-citrate lyase links cellular metabolism to histone acetylation Science 324 2009 1076 1080
    • (2009) Science , vol.324 , pp. 1076-1080
    • Wellen, K.E.1
  • 56
    • 84882605310 scopus 로고    scopus 로고
    • Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth
    • R. Lin, and et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth Mol. Cell 51 2013 506 518
    • (2013) Mol. Cell , vol.51 , pp. 506-518
    • Lin, R.1
  • 57
    • 65449159320 scopus 로고    scopus 로고
    • Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice
    • Q. Wang, and et al. Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice Hepatology 49 2009 1166 1175
    • (2009) Hepatology , vol.49 , pp. 1166-1175
    • Wang, Q.1
  • 58
    • 79961053798 scopus 로고    scopus 로고
    • A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase
    • D.M. Taylor, and et al. A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase ACS Chem. Biol. 6 2011 540 546
    • (2011) ACS Chem. Biol. , vol.6 , pp. 540-546
    • Taylor, D.M.1
  • 59
    • 0033977890 scopus 로고    scopus 로고
    • The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
    • R.B. Vega, and et al. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes Mol. Cell. Biol. 20 2000 1868 1876
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 1868-1876
    • Vega, R.B.1
  • 60
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
    • Z. Wu, and et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1 Cell 98 1999 115 124
    • (1999) Cell , vol.98 , pp. 115-124
    • Wu, Z.1
  • 61
    • 5444269110 scopus 로고    scopus 로고
    • The cellular fate of glucose and its relevance in type 2 diabetes
    • C. Bouche, and et al. The cellular fate of glucose and its relevance in type 2 diabetes Endocr. Rev. 25 2004 807 830
    • (2004) Endocr. Rev. , vol.25 , pp. 807-830
    • Bouche, C.1
  • 62
    • 27144506185 scopus 로고    scopus 로고
    • The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
    • S.H. Koo, and et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism Nature 437 2005 1109 1111
    • (2005) Nature , vol.437 , pp. 1109-1111
    • Koo, S.H.1
  • 63
    • 0038187621 scopus 로고    scopus 로고
    • Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction
    • P. Puigserver, and et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction Nature 423 2003 550 555
    • (2003) Nature , vol.423 , pp. 550-555
    • Puigserver, P.1
  • 64
    • 77149148756 scopus 로고    scopus 로고
    • Regulation of cellular metabolism by protein lysine acetylation
    • S. Zhao, and et al. Regulation of cellular metabolism by protein lysine acetylation Science 327 2010 1000 1004
    • (2010) Science , vol.327 , pp. 1000-1004
    • Zhao, S.1
  • 65
    • 79959906869 scopus 로고    scopus 로고
    • Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase
    • W. Jiang, and et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase Mol. Cell 43 2011 33 44
    • (2011) Mol. Cell , vol.43 , pp. 33-44
    • Jiang, W.1
  • 66
    • 0035856949 scopus 로고    scopus 로고
    • Insulin signalling and the regulation of glucose and lipid metabolism
    • A.R. Saltiel, and C.R. Kahn Insulin signalling and the regulation of glucose and lipid metabolism Nature 414 2001 799 806
    • (2001) Nature , vol.414 , pp. 799-806
    • Saltiel, A.R.1    Kahn, C.R.2
  • 67
    • 0037026739 scopus 로고    scopus 로고
    • Insulin resistance as the core defect in type 2 diabetes mellitus
    • B.J. Goldstein Insulin resistance as the core defect in type 2 diabetes mellitus Am. J. Cardiol. 90 2002 3G 10G
    • (2002) Am. J. Cardiol. , vol.90 , pp. 3G-10G
    • Goldstein, B.J.1
  • 68
    • 33244464562 scopus 로고    scopus 로고
    • Critical nodes in signalling pathways: Insights into insulin action
    • C.M. Taniguchi, and et al. Critical nodes in signalling pathways: insights into insulin action Nat. Rev. Mol. Cell Biol. 7 2006 85 96
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 85-96
    • Taniguchi, C.M.1
  • 69
    • 34250788809 scopus 로고    scopus 로고
    • AKT/PKB signaling: Navigating downstream
    • B.D. Manning, and L.C. Cantley AKT/PKB signaling: navigating downstream Cell 129 2007 1261 1274
    • (2007) Cell , vol.129 , pp. 1261-1274
    • Manning, B.D.1    Cantley, L.C.2
  • 70
    • 1342264308 scopus 로고    scopus 로고
    • Mammalian SIRT1 represses forkhead transcription factors
    • M.C. Motta, and et al. Mammalian SIRT1 represses forkhead transcription factors Cell 116 2004 551 563
    • (2004) Cell , vol.116 , pp. 551-563
    • Motta, M.C.1
  • 71
    • 84896901019 scopus 로고    scopus 로고
    • Sirt2 deacetylase is a novel AKT binding partner critical for AKT activation by insulin
    • G. Ramakrishnan, and et al. Sirt2 deacetylase is a novel AKT binding partner critical for AKT activation by insulin J. Biol. Chem. 289 2014 6054 6066
    • (2014) J. Biol. Chem. , vol.289 , pp. 6054-6066
    • Ramakrishnan, G.1
  • 72
    • 84903463140 scopus 로고    scopus 로고
    • SIRT2 negatively regulates insulin resistance in C2C12 skeletal muscle cells
    • A. Arora, and C.S. Dey SIRT2 negatively regulates insulin resistance in C2C12 skeletal muscle cells Biochim. Biophys. Acta 1842 2014 1372 1378
    • (2014) Biochim. Biophys. Acta , vol.1842 , pp. 1372-1378
    • Arora, A.1    Dey, C.S.2
  • 73
    • 0142184334 scopus 로고    scopus 로고
    • Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking
    • J.S. Bogan, and et al. Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking Nature 425 2003 727 733
    • (2003) Nature , vol.425 , pp. 727-733
    • Bogan, J.S.1
  • 74
    • 84922804565 scopus 로고    scopus 로고
    • Acetylation of TUG protein promotes the accumulation of GLUT4 glucose transporters in an insulin-responsive intracellular compartment
    • J.P. Belman, and et al. Acetylation of TUG protein promotes the accumulation of GLUT4 glucose transporters in an insulin-responsive intracellular compartment J. Biol. Chem. 290 2015 4447 4463
    • (2015) J. Biol. Chem. , vol.290 , pp. 4447-4463
    • Belman, J.P.1
  • 75
    • 79958236857 scopus 로고    scopus 로고
    • Dual-mode of insulin action controls GLUT4 vesicle exocytosis
    • Y. Xu, and et al. Dual-mode of insulin action controls GLUT4 vesicle exocytosis J. Cell Biol. 193 2011 643 653
    • (2011) J. Cell Biol. , vol.193 , pp. 643-653
    • Xu, Y.1
  • 76
    • 84857985148 scopus 로고    scopus 로고
    • The cellular and signaling networks linking the immune system and metabolism in disease
    • O. Osborn, and J.M. Olefsky The cellular and signaling networks linking the immune system and metabolism in disease Nat. Med. 18 2012 363 374
    • (2012) Nat. Med. , vol.18 , pp. 363-374
    • Osborn, O.1    Olefsky, J.M.2
  • 77
  • 78
    • 79957920754 scopus 로고    scopus 로고
    • Inflammatory links between obesity and metabolic disease
    • C.N. Lumeng, and A.R. Saltiel Inflammatory links between obesity and metabolic disease J. Clin. Invest. 121 2011 2111 2117
    • (2011) J. Clin. Invest. , vol.121 , pp. 2111-2117
    • Lumeng, C.N.1    Saltiel, A.R.2
  • 79
    • 52949096557 scopus 로고    scopus 로고
    • Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity
    • X. Zhang, and et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity Cell 135 2008 61 73
    • (2008) Cell , vol.135 , pp. 61-73
    • Zhang, X.1
  • 80
    • 78649738291 scopus 로고    scopus 로고
    • SIRT2 regulates NF-κB dependent gene expression through deacetylation of p65 Lys310
    • K.M. Rothgiesser, and et al. SIRT2 regulates NF-κB dependent gene expression through deacetylation of p65 Lys310 J. Cell Sci. 123 2010 4251 4258
    • (2010) J. Cell Sci. , vol.123 , pp. 4251-4258
    • Rothgiesser, K.M.1
  • 81
    • 84885173084 scopus 로고    scopus 로고
    • The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation
    • T.F. Pais, and et al. The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation EMBO J. 32 2013 2603 2616
    • (2013) EMBO J. , vol.32 , pp. 2603-2616
    • Pais, T.F.1
  • 82
    • 84905027793 scopus 로고    scopus 로고
    • SIRT2 deficiency modulates macrophage polarization and susceptibility to experimental colitis
    • G. Lo Sasso, and et al. SIRT2 deficiency modulates macrophage polarization and susceptibility to experimental colitis PLoS ONE 9 2014 e103573
    • (2014) PLoS ONE , vol.9 , pp. e103573
    • Lo Sasso, G.1
  • 83
    • 84888826770 scopus 로고    scopus 로고
    • Sirt2 suppresses inflammatory responses in collagen-induced arthritis
    • J. Lin, and et al. Sirt2 suppresses inflammatory responses in collagen-induced arthritis Biochem. Biophys. Res. Commun. 441 2013 897 903
    • (2013) Biochem. Biophys. Res. Commun. , vol.441 , pp. 897-903
    • Lin, J.1
  • 84
    • 84879800770 scopus 로고    scopus 로고
    • PEP-1-SIRT2 inhibits inflammatory response and oxidative stress-induced cell death via expression of antioxidant enzymes in murine macrophages
    • M.J. Kim, and et al. PEP-1-SIRT2 inhibits inflammatory response and oxidative stress-induced cell death via expression of antioxidant enzymes in murine macrophages Free Radic. Biol. Med. 63 2013 432 445
    • (2013) Free Radic. Biol. Med. , vol.63 , pp. 432-445
    • Kim, M.J.1
  • 85
    • 33646885699 scopus 로고    scopus 로고
    • Energy metabolism and oxidative stress: Impact on the metabolic syndrome and the aging process
    • M. Frisard, and E. Ravussin Energy metabolism and oxidative stress: impact on the metabolic syndrome and the aging process Endocrine 29 2006 27 32
    • (2006) Endocrine , vol.29 , pp. 27-32
    • Frisard, M.1    Ravussin, E.2
  • 86
    • 84855433458 scopus 로고    scopus 로고
    • The role of sirtuins in modulating redox stressors
    • B.R. Webster, and et al. The role of sirtuins in modulating redox stressors Free Radic. Biol. Med. 52 2012 281 290
    • (2012) Free Radic. Biol. Med. , vol.52 , pp. 281-290
    • Webster, B.R.1
  • 87
    • 77954225200 scopus 로고    scopus 로고
    • Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity
    • Y. Zhao, and et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity Nat. Cell Biol. 12 2010 665 675
    • (2010) Nat. Cell Biol. , vol.12 , pp. 665-675
    • Zhao, Y.1
  • 88
    • 78650691023 scopus 로고    scopus 로고
    • Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes
    • N. Hariharan, and et al. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes Circ. Res. 107 2010 1470 1482
    • (2010) Circ. Res. , vol.107 , pp. 1470-1482
    • Hariharan, N.1
  • 89
    • 84901822090 scopus 로고    scopus 로고
    • SIRT2 knockdown increases basal autophagy and prevents postslippage death by abnormally prolonging the mitotic arrest that is induced by microtubule inhibitors
    • T. Inoue, and et al. SIRT2 knockdown increases basal autophagy and prevents postslippage death by abnormally prolonging the mitotic arrest that is induced by microtubule inhibitors FEBS J. 281 2014 2623 2637
    • (2014) FEBS J. , vol.281 , pp. 2623-2637
    • Inoue, T.1
  • 90
    • 84870052890 scopus 로고    scopus 로고
    • SIRT2 interferes with autophagy-mediated degradation of protein aggregates in neuronal cells under proteasome inhibition
    • J. Gal, and et al. SIRT2 interferes with autophagy-mediated degradation of protein aggregates in neuronal cells under proteasome inhibition Neurochem. Int. 61 2012 992 1000
    • (2012) Neurochem. Int. , vol.61 , pp. 992-1000
    • Gal, J.1
  • 91
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • J.D. Rabinowitz, and E. White Autophagy and metabolism Science 330 2010 1344 1348
    • (2010) Science , vol.330 , pp. 1344-1348
    • Rabinowitz, J.D.1    White, E.2
  • 92
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • B. Levine, and G. Kroemer Autophagy in the pathogenesis of disease Cell 132 2008 27 42
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 93
    • 84903317314 scopus 로고    scopus 로고
    • Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress
    • Y.P. Wang, and et al. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress EMBO J. 33 2014 1304 1320
    • (2014) EMBO J. , vol.33 , pp. 1304-1320
    • Wang, Y.P.1
  • 94
    • 84904052542 scopus 로고    scopus 로고
    • Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase
    • Y. Xu, and et al. Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase Cancer Res. 74 2014 3630 3642
    • (2014) Cancer Res. , vol.74 , pp. 3630-3642
    • Xu, Y.1
  • 95
    • 78650894319 scopus 로고    scopus 로고
    • Crosstalk of reactive oxygen species and NF-κB signaling
    • M.J. Morgan, and Z.G. Liu Crosstalk of reactive oxygen species and NF-κB signaling Cell Res. 21 2011 103 115
    • (2011) Cell Res. , vol.21 , pp. 103-115
    • Morgan, M.J.1    Liu, Z.G.2
  • 96
    • 33845868198 scopus 로고    scopus 로고
    • Sirtuins as potential targets for metabolic syndrome
    • L. Guarente Sirtuins as potential targets for metabolic syndrome Nature 444 2006 868 874
    • (2006) Nature , vol.444 , pp. 868-874
    • Guarente, L.1
  • 97
    • 84862022077 scopus 로고    scopus 로고
    • + precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
    • + precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity Cell Metab. 15 2012 838 847
    • (2012) Cell Metab. , vol.15 , pp. 838-847
    • Canto, C.1
  • 98
    • 80053920774 scopus 로고    scopus 로고
    • + intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
    • + intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice Cell Metab. 14 2011 528 536
    • (2011) Cell Metab. , vol.14 , pp. 528-536
    • Yoshino, J.1
  • 99
    • 84929600711 scopus 로고    scopus 로고
    • + dependence in sirtuin-catalyzed deacylation
    • + dependence in sirtuin-catalyzed deacylation Biochemistry 54 2015 3037 3050
    • (2015) Biochemistry , vol.54 , pp. 3037-3050
    • Feldman, J.L.1
  • 100
    • 77950246109 scopus 로고    scopus 로고
    • SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
    • M. Pacholec, and et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1 J. Biol. Chem. 285 2010 8340 8351
    • (2010) J. Biol. Chem. , vol.285 , pp. 8340-8351
    • Pacholec, M.1
  • 101
    • 34249669270 scopus 로고    scopus 로고
    • Sirt1 regulates aging and resistance to oxidative stress in the heart
    • R.R. Alcendor, and et al. Sirt1 regulates aging and resistance to oxidative stress in the heart Circ. Res. 100 2007 1512 1521
    • (2007) Circ. Res. , vol.100 , pp. 1512-1521
    • Alcendor, R.R.1
  • 102
    • 47749128879 scopus 로고    scopus 로고
    • Sirt1 protects against high-fat diet-induced metabolic damage
    • P.T. Pfluger, and et al. Sirt1 protects against high-fat diet-induced metabolic damage Proc. Natl. Acad. Sci. U.S.A. 105 2008 9793 9798
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 9793-9798
    • Pfluger, P.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.