메뉴 건너뛰기




Volumn 444, Issue 7121, 2006, Pages 868-874

Sirtuins as potential targets for metabolic syndrome

Author keywords

[No Author keywords available]

Indexed keywords

HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1BETA; PROTEIN; PROTEIN SIRT3; PROTEIN SIRT4; PROTEIN SIRT6; PROTEIN SIRT7; SIRTUIN; UNCLASSIFIED DRUG;

EID: 33845868198     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature05486     Document Type: Review
Times cited : (394)

References (76)
  • 1
    • 33746576970 scopus 로고    scopus 로고
    • A work in progress: The metabolic syndrome
    • pe19 2006
    • Luchsinger, J. A. A work in progress: the metabolic syndrome . Sci. Aging Knowl. Environ. 10, pe19 (2006).
    • Sci. Aging Knowl. Environ , vol.10
    • Luchsinger, J.A.1
  • 2
    • 27444443876 scopus 로고    scopus 로고
    • Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement
    • Grundy, S. M. et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 112, 2735-2752 (2005).
    • (2005) Circulation , vol.112 , pp. 2735-2752
    • Grundy, S.M.1
  • 3
    • 30944451953 scopus 로고    scopus 로고
    • Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus
    • Wilson, P. W. F., D'Agostino, R. B., Parise, H., Sullivan, L. & Meigs, J. B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 112, 3066-3072 (2005).
    • (2005) Circulation , vol.112 , pp. 3066-3072
    • Wilson, P.W.F.1    D'Agostino, R.B.2    Parise, H.3    Sullivan, L.4    Meigs, J.B.5
  • 5
    • 0024655426 scopus 로고
    • Food, reproduction, and longevity: Is the extended life span of calorie-restricted animals and evolutionary adaptation?
    • Holliday, R. Food, reproduction, and longevity: is the extended life span of calorie-restricted animals and evolutionary adaptation? BioEssays 10, 125-127 (1989).
    • (1989) BioEssays , vol.10 , pp. 125-127
    • Holliday, R.1
  • 6
    • 0033214237 scopus 로고    scopus 로고
    • The SIR2/3/4 complex and SIR2 alone promote longevity in saccharomyces cerevisiae by two different machanisms
    • Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in saccharomyces cerevisiae by two different machanisms. Genes Dev. 13, 2570-2580 (1999).
    • (1999) Genes Dev , vol.13 , pp. 2570-2580
    • Kaeberlein, M.1    McVey, M.2    Guarente, L.3
  • 7
    • 0035826271 scopus 로고    scopus 로고
    • Increased dosage of a sir-2 gene extends lifespan in caenorhabditis elegans
    • Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in caenorhabditis elegans. Nature 410, 227-230 (2001).
    • (2001) Nature , vol.410 , pp. 227-230
    • Tissenbaum, H.A.1    Guarente, L.2
  • 8
    • 3943071801 scopus 로고    scopus 로고
    • Sirtuin activators mimic caloric restriction and delay ageing in metazoans
    • Wood, J. G. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686-689 (2004).
    • (2004) Nature , vol.430 , pp. 686-689
    • Wood, J.G.1
  • 9
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795-800 (2000).
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 10
    • 0034705129 scopus 로고    scopus 로고
    • The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases
    • Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA 97, 5807-5811 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 5807-5811
    • Landry, J.1
  • 11
    • 0017088566 scopus 로고
    • Suppression of adenocarcinoma by the immunological consequences of calorie restriction
    • Fernandes, G., Yunis, E.J. & Good, R. A. Suppression of adenocarcinoma by the immunological consequences of calorie restriction. Nature 263, 504-507 (1976).
    • (1976) Nature , vol.263 , pp. 504-507
    • Fernandes, G.1    Yunis, E.J.2    Good, R.A.3
  • 12
    • 0033581321 scopus 로고    scopus 로고
    • Dietary restriction protects hippocampal neurons against the death-promoting action of presenilin-1 mutation
    • Zhu, H., Gou, Q. & Mattson, M. P. Dietary restriction protects hippocampal neurons against the death-promoting action of presenilin-1 mutation. Brain Res. 842, 224-229 (1999).
    • (1999) Brain Res , vol.842 , pp. 224-229
    • Zhu, H.1    Gou, Q.2    Mattson, M.P.3
  • 14
    • 0031459980 scopus 로고    scopus 로고
    • Extrachromosomal rDNA circles - a cause of aging in yeast
    • Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles - a cause of aging in yeast. Cell 91, 1033-1042 (1997).
    • (1997) Cell , vol.91 , pp. 1033-1042
    • Sinclair, D.A.1    Guarente, L.2
  • 15
    • 0242585476 scopus 로고    scopus 로고
    • Asymmetric inheritance of oxidatively damaged proteins during cytokinesis
    • Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nystrom, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751-1753 (2003).
    • (2003) Science , vol.299 , pp. 1751-1753
    • Aguilaniu, H.1    Gustafsson, L.2    Rigoulet, M.3    Nystrom, T.4
  • 16
    • 0034703217 scopus 로고    scopus 로고
    • Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
    • Lin, S. J., Defessez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126-2128 (2000).
    • (2000) Science , vol.289 , pp. 2126-2128
    • Lin, S.J.1    Defessez, P.A.2    Guarente, L.3
  • 17
    • 0037130175 scopus 로고    scopus 로고
    • Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration
    • Lin, S. J. et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344-348 (2002).
    • (2002) Nature , vol.418 , pp. 344-348
    • Lin, S.J.1
  • 18
    • 24944559665 scopus 로고    scopus 로고
    • HST2 mediates SIR2-independent life-span extension by calorie restriction
    • Lamming, D. W. et al. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309, 1861-1864 (2005).
    • (2005) Science , vol.309 , pp. 1861-1864
    • Lamming, D.W.1
  • 19
    • 0347128279 scopus 로고    scopus 로고
    • Calorie restriction extends yeast life span by lowering the level of NADH
    • Lin, S.-J., Ford, E., Haigis, M., Liszt, G. & Guarente, L. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 18, 12-16 (2004).
    • (2004) Genes Dev , vol.18 , pp. 12-16
    • Lin, S.-J.1    Ford, E.2    Haigis, M.3    Liszt, G.4    Guarente, L.5
  • 20
    • 0038329323 scopus 로고    scopus 로고
    • Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharamyces cerevisiae
    • Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O. & Sinclair, D. A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharamyces cerevisiae. Nature 423, 181-185 (2003).
    • (2003) Nature , vol.423 , pp. 181-185
    • Anderson, R.M.1    Bitterman, K.J.2    Wood, J.G.3    Medvedik, O.4    Sinclair, D.A.5
  • 21
    • 19344374925 scopus 로고    scopus 로고
    • Sir2-independent life span extension by calorie restriction in yeast
    • Kaeberlein, M., Kirkland, K. T., Fields, S. & Kennedy, B. K. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2, e296 (2004).
    • (2004) PLoS Biol , vol.2
    • Kaeberlein, M.1    Kirkland, K.T.2    Fields, S.3    Kennedy, B.K.4
  • 22
    • 27744511769 scopus 로고    scopus 로고
    • Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients
    • Kaeberlein, M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193-1197 (2005).
    • (2005) Science , vol.310 , pp. 1193-1197
    • Kaeberlein, M.1
  • 23
    • 18744416824 scopus 로고    scopus 로고
    • Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction
    • Rogina, B., Helfand, S. L. & Frankel, S. Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 298, 1745 (2002).
    • (2002) Science , vol.298 , pp. 1745
    • Rogina, B.1    Helfand, S.L.2    Frankel, S.3
  • 24
    • 8644224064 scopus 로고    scopus 로고
    • Sir2 mediates longevity in the fly through a pathway related to calorie restriction
    • Rogina, B. & Helfand, S. L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl Acad. Sci. USA 101, 15998-16003 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 15998-16003
    • Rogina, B.1    Helfand, S.L.2
  • 25
    • 28244475950 scopus 로고    scopus 로고
    • Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO
    • Wang, Y. & Tissenbaum, H. A. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev. 127, 48-56 (2006).
    • (2006) Mech. Ageing Dev , vol.127 , pp. 48-56
    • Wang, Y.1    Tissenbaum, H.A.2
  • 26
    • 28844469898 scopus 로고    scopus 로고
    • Increase in activity during calorie restriction requires Sirt1
    • Chen, D., Steele, A. D., Lindquist, S. & Guarente, L. Increase in activity during calorie restriction requires Sirt1. Science 310, 1641 (2005).
    • (2005) Science , vol.310 , pp. 1641
    • Chen, D.1    Steele, A.D.2    Lindquist, S.3    Guarente, L.4
  • 27
    • 0035913911 scopus 로고    scopus 로고
    • Negative control of p53 by Sir2α promotes cell survival under stress
    • Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137-148 (2001).
    • (2001) Cell , vol.107 , pp. 137-148
    • Luo, J.1
  • 28
    • 0035913903 scopus 로고    scopus 로고
    • SIRT1 functions as an NAD-dependent p53 deacetylase
    • SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 107, 149-159 (2001).
    • (2001) Cell , vol.107 , pp. 149-159
    • Vaziri, H.1
  • 29
    • 1342264308 scopus 로고    scopus 로고
    • Mammalian SIRT1 represses forkhead transcription factors
    • Motta, M. C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551-563 (2004).
    • (2004) Cell , vol.116 , pp. 551-563
    • Motta, M.C.1
  • 30
    • 12144290563 scopus 로고    scopus 로고
    • Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
    • Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011-2015 (2004).
    • (2004) Science , vol.303 , pp. 2011-2015
    • Brunet, A.1
  • 31
    • 12144286529 scopus 로고    scopus 로고
    • Acetylation of the C terminus of Ku70 by CBP and PCAF controls baxmediated apoptosis
    • Cohen, H. Y. et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls baxmediated apoptosis. Mol. Cell 13, 627-638 (2004).
    • (2004) Mol. Cell , vol.13 , pp. 627-638
    • Cohen, H.Y.1
  • 32
    • 3142740860 scopus 로고    scopus 로고
    • Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
    • Cohen, H. Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392 (2004).
    • (2004) Science , vol.305 , pp. 390-392
    • Cohen, H.Y.1
  • 33
    • 3042681042 scopus 로고    scopus 로고
    • Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ
    • Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429, 771-776 (2004).
    • (2004) Nature , vol.429 , pp. 771-776
    • Picard, F.1
  • 34
    • 33244486764 scopus 로고    scopus 로고
    • Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells
    • Bordone, L. et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol. 4, e31 (2005).
    • (2005) PLoS Biol , vol.4
    • Bordone, L.1
  • 35
    • 25144454432 scopus 로고    scopus 로고
    • Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice
    • Moynihan, K. A. et al. Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2, 105-117 (2005).
    • (2005) Cell Metab , vol.2 , pp. 105-117
    • Moynihan, K.A.1
  • 36
    • 27744518040 scopus 로고    scopus 로고
    • FoxO1 protects against pancreatic β cell failure through NeuroD and Mafa induction
    • Kitamura, Y. I. et al. FoxO1 protects against pancreatic β cell failure through NeuroD and Mafa induction. Cell Metab. 2, 153-163 (2005).
    • (2005) Cell Metab , vol.2 , pp. 153-163
    • Kitamura, Y.I.1
  • 37
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
    • Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113-118 (2005).
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1
  • 38
    • 18144411313 scopus 로고    scopus 로고
    • SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α
    • Nemoto, S., Fergusson, M. M. & Finkel, T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem. 280, 16456-16460 (2005).
    • (2005) J. Biol. Chem , vol.280 , pp. 16456-16460
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 39
    • 2342496712 scopus 로고    scopus 로고
    • FoxOs at the crossroads of cellular metabolism, differentiation, and transformation
    • Accili, D. & Arden, K. C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421-426 (2004).
    • (2004) Cell , vol.117 , pp. 421-426
    • Accili, D.1    Arden, K.C.2
  • 40
    • 33244464562 scopus 로고    scopus 로고
    • Critical nodes in signaling pathways: Insights into insulin action
    • Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. Critical nodes in signaling pathways: insights into insulin action. Nature Rev. Mol. Cell Biol. 7, 85-96 (2006).
    • (2006) Nature Rev. Mol. Cell Biol , vol.7 , pp. 85-96
    • Taniguchi, C.M.1    Emanuelli, B.2    Kahn, C.R.3
  • 41
    • 26844558334 scopus 로고    scopus 로고
    • Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
    • Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314-317 (2005).
    • (2005) Science , vol.310 , pp. 314-317
    • Nisoli, E.1
  • 42
    • 12244302878 scopus 로고    scopus 로고
    • Influence of age and calorie restriction on liver glycolytic enxyme activities and metabolite concentrations in mice
    • Hagopian, K., Ramsey, J. J. & Weindruch, R. Influence of age and calorie restriction on liver glycolytic enxyme activities and metabolite concentrations in mice. Exp. Gerontol. 38, 253-266 (2003).
    • (2003) Exp. Gerontol , vol.38 , pp. 253-266
    • Hagopian, K.1    Ramsey, J.J.2    Weindruch, R.3
  • 43
    • 23844558266 scopus 로고    scopus 로고
    • A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine
    • Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359-407 (2005).
    • (2005) Annu. Rev. Genet , vol.39 , pp. 359-407
    • Wallace, D.C.1
  • 44
    • 0037108799 scopus 로고    scopus 로고
    • SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria
    • Onyango, P., Celic, I., McCaffery, J. M., Boeke, J. D. & Feinberg, A. P. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc. Natl Acad. Sci. USA 99, 13653-13658 (2002).
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 13653-13658
    • Onyango, P.1    Celic, I.2    McCaffery, J.M.3    Boeke, J.D.4    Feinberg, A.P.5
  • 45
    • 0037135972 scopus 로고    scopus 로고
    • The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase
    • Schwer, B., North, B. J., Frye, R. A., Ott, M. & Verdin, E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J. Cell Biol. 158, 647-657 (2002).
    • (2002) J. Cell Biol , vol.158 , pp. 647-657
    • Schwer, B.1    North, B.J.2    Frye, R.A.3    Ott, M.4    Verdin, E.5
  • 46
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β-cells
    • Haigis, M. C. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β-cells. Cell 126, 941-956 (2006).
    • (2006) Cell , vol.126 , pp. 941-956
    • Haigis, M.C.1
  • 47
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synsthetase2
    • Schwer, B., Bunkenborg, J., Verdin, R. O., Andersen, J. S. & Verdin, E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synsthetase2. Proc. Natl Acad. Sci. USA 103, 10224-10229 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 10224-10229
    • Schwer, B.1    Bunkenborg, J.2    Verdin, R.O.3    Andersen, J.S.4    Verdin, E.5
  • 48
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • Hallows, W. C., Lee, S. & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA 103, 10230-10235 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 10230-10235
    • Hallows, W.C.1    Lee, S.2    Denu, J.M.3
  • 49
    • 0347457075 scopus 로고    scopus 로고
    • Sir2-dependent activationof acetyl-CoA synthetase by deacetylation of active lysine
    • Starai, V. J., Celic, I., Cole, R. N., Boeke, J. D. & Escalante-Semerena, J. C. Sir2-dependent activationof acetyl-CoA synthetase by deacetylation of active lysine. Science 298, 2390 (2002).
    • (2002) Science , vol.298 , pp. 2390
    • Starai, V.J.1    Celic, I.2    Cole, R.N.3    Boeke, J.D.4    Escalante-Semerena, J.C.5
  • 50
    • 0017699890 scopus 로고
    • Origins of blood acetate in the rat
    • Buckley, B. M. & Williamson, D. H. Origins of blood acetate in the rat. Biochem. J. 166, 539-545 (1977).
    • (1977) Biochem. J , vol.166 , pp. 539-545
    • Buckley, B.M.1    Williamson, D.H.2
  • 51
    • 0035815751 scopus 로고    scopus 로고
    • Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate
    • Fujino, T., Kondo, J., Ishikawa, M., Morikawa, K. & Yamamoto, T. Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J. Biol. Chem. 276, 11420-11426 (2001).
    • (2001) J. Biol. Chem , vol.276 , pp. 11420-11426
    • Fujino, T.1    Kondo, J.2    Ishikawa, M.3    Morikawa, K.4    Yamamoto, T.5
  • 52
    • 31044445366 scopus 로고    scopus 로고
    • Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
    • Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315-329 (2006).
    • (2006) Cell , vol.124 , pp. 315-329
    • Mostoslavsky, R.1
  • 53
    • 26244436281 scopus 로고    scopus 로고
    • Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
    • Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C. & Horikawa, I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623-4635 (2005).
    • (2005) Mol. Biol. Cell , vol.16 , pp. 4623-4635
    • Michishita, E.1    Park, J.Y.2    Burneskis, J.M.3    Barrett, J.C.4    Horikawa, I.5
  • 54
    • 33744466971 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription
    • Ford, E., Voit, R., Liszt, G., Grummt, I. & Guarente, L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 20, 1075-1081 (2006).
    • (2006) Genes Dev , vol.20 , pp. 1075-1081
    • Ford, E.1    Voit, R.2    Liszt, G.3    Grummt, I.4    Guarente, L.5
  • 55
    • 0035868764 scopus 로고    scopus 로고
    • Acetylation of TAFI68, a subunit of TIF-IB/SLI, activates RNA polymerase I transcription
    • Muth, V., Nadaud, S., Grummt, I. & Voit, R. Acetylation of TAFI68, a subunit of TIF-IB/SLI, activates RNA polymerase I transcription. EMBO J. 20, 1353-1362 (2001).
    • (2001) EMBO J , vol.20 , pp. 1353-1362
    • Muth, V.1    Nadaud, S.2    Grummt, I.3    Voit, R.4
  • 56
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839 (1998).
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1
  • 57
    • 24144463983 scopus 로고    scopus 로고
    • Metabolic control through the PGC-1 family of transcription coactivators
    • Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361-370 (2005).
    • (2005) Cell Metab , vol.1 , pp. 361-370
    • Lin, J.1    Handschin, C.2    Spiegelman, B.M.3
  • 58
    • 0038054341 scopus 로고    scopus 로고
    • PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
    • Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genet. 34, 267-273 (2003).
    • (2003) Nature Genet , vol.34 , pp. 267-273
    • Mootha, V.K.1
  • 59
    • 0037477855 scopus 로고    scopus 로고
    • Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1
    • Patti, M. E. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl Acad. Sci. USA 100, 8466-8471 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 8466-8471
    • Patti, M.E.1
  • 60
    • 0038187621 scopus 로고    scopus 로고
    • Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction
    • Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423, 550-555 (2003).
    • (2003) Nature , vol.423 , pp. 550-555
    • Puigserver, P.1
  • 61
    • 19944430411 scopus 로고    scopus 로고
    • Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP
    • Lin, J. et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell 120, 261-273 (2005).
    • (2005) Cell , vol.120 , pp. 261-273
    • Lin, J.1
  • 62
    • 32444451567 scopus 로고    scopus 로고
    • Coactivation of Foxa2 through Pgc-1β promotes liver fatty acid oxidation and triglyceride/VLDL secretion
    • Wolfrum, C. & Stoffel, M. Coactivation of Foxa2 through Pgc-1β promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metab. 3, 99-110 (2006).
    • (2006) Cell Metab , vol.3 , pp. 99-110
    • Wolfrum, C.1    Stoffel, M.2
  • 63
    • 11144244418 scopus 로고    scopus 로고
    • Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes
    • Wolfrum, C., Asilmaz, E., Luca, E., Friedman, J. & Stoffel, M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 432, 1027-1032 (2004).
    • (2004) Nature , vol.432 , pp. 1027-1032
    • Wolfrum, C.1    Asilmaz, E.2    Luca, E.3    Friedman, J.4    Stoffel, M.5
  • 64
    • 20844451123 scopus 로고    scopus 로고
    • AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism
    • Kahn, B. K., Alquier, T., Carling, D. & Hardie, D. G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15-25 (2005).
    • (2005) Cell Metab , vol.1 , pp. 15-25
    • Kahn, B.K.1    Alquier, T.2    Carling, D.3    Hardie, D.G.4
  • 65
    • 0038199737 scopus 로고    scopus 로고
    • Management of cellular energy by the AMP-activated protein kinase system
    • Hardie, D. G., Scott, J. W., Pan, D. A. & Hudson, E. R. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546, 113-120 (2003).
    • (2003) FEBS Lett , vol.546 , pp. 113-120
    • Hardie, D.G.1    Scott, J.W.2    Pan, D.A.3    Hudson, E.R.4
  • 66
    • 0345107247 scopus 로고    scopus 로고
    • Complexes between the LKB1 tumor suppressor, STRADα/β and Mo25α/β are upstream kinases in the AMP-activated protein kinase cascade
    • Hawley, S. A. et al. Complexes between the LKB1 tumor suppressor, STRADα/β and Mo25α/β are upstream kinases in the AMP-activated protein kinase cascade. J.Biol. 2, 1-16 (2003).
    • (2003) J.Biol , vol.2 , pp. 1-16
    • Hawley, S.A.1
  • 67
    • 10744230065 scopus 로고    scopus 로고
    • LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
    • Woods, A. et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004-2008 (2003).
    • (2003) Curr. Biol , vol.13 , pp. 2004-2008
    • Woods, A.1
  • 68
    • 1542618348 scopus 로고    scopus 로고
    • The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
    • Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329-3335 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 3329-3335
    • Shaw, R.J.1
  • 69
    • 23044514282 scopus 로고    scopus 로고
    • Activating AMP-activated protein kinase without AMP
    • Birnbaum, M. J. Activating AMP-activated protein kinase without AMP. Mol. Cell 19, 289-296 (2005).
    • (2005) Mol. Cell , vol.19 , pp. 289-296
    • Birnbaum, M.J.1
  • 70
    • 0034773404 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in mechanism of metformin action
    • Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167-1174 (2001).
    • (2001) J. Clin. Invest , vol.108 , pp. 1167-1174
    • Zhou, G.1
  • 72
    • 27144506185 scopus 로고    scopus 로고
    • The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
    • Koo, S.-H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109-1114 (2005).
    • (2005) Nature , vol.437 , pp. 1109-1114
    • Koo, S.-H.1
  • 73
    • 33645055091 scopus 로고    scopus 로고
    • Dual role of the coactivator TORC2 in modulating hepatic glucose output and insulin signaling
    • Canettieri, G. et al. Dual role of the coactivator TORC2 in modulating hepatic glucose output and insulin signaling. Cell Metab. 2, 331-338 (2005).
    • (2005) Cell Metab , vol.2 , pp. 331-338
    • Canettieri, G.1
  • 74
    • 28844433635 scopus 로고    scopus 로고
    • The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
    • Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646 (2005).
    • (2005) Science , vol.310 , pp. 1642-1646
    • Shaw, R.J.1
  • 75
    • 33751072349 scopus 로고    scopus 로고
    • Resveratrol improves health and survival of mice on a high-calorie diet
    • Bauer, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337-342 (2006).
    • (2006) Nature , vol.444 , pp. 337-342
    • Bauer, J.A.1
  • 76
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
    • Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1-14 (2006).
    • (2006) Cell , vol.127 , pp. 1-14
    • Lagouge, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.