-
1
-
-
80051666038
-
Reactive oxygen species in cardiovascular disease
-
K. Sugamura, and J.F. Keaney Jr. Reactive oxygen species in cardiovascular disease Free Radic. Biol. Med. 51 2011 978 992
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 978-992
-
-
Sugamura, K.1
Keaney, Jr.J.F.2
-
3
-
-
76149131004
-
The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance
-
I. Pagel-Langenickel, J. Bao, L. Pang, and M.N. Sack The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance Endocr. Rev. 31 2010 25 51
-
(2010)
Endocr. Rev.
, vol.31
, pp. 25-51
-
-
Pagel-Langenickel, I.1
Bao, J.2
Pang, L.3
Sack, M.N.4
-
4
-
-
79952712223
-
Mitochondrial reactive oxygen species drive proinflammatory cytokine production
-
E. Naik, and V.M. Dixit Mitochondrial reactive oxygen species drive proinflammatory cytokine production J. Exp. Med. 208 2011 417 420
-
(2011)
J. Exp. Med.
, vol.208
, pp. 417-420
-
-
Naik, E.1
Dixit, V.M.2
-
5
-
-
78649328799
-
Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling
-
E. Verdin, M.D. Hirschey, L.W. Finley, and M.C. Haigis Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling Trends Biochem. Sci. 35 2010 669 675
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 669-675
-
-
Verdin, E.1
Hirschey, M.D.2
Finley, L.W.3
Haigis, M.C.4
-
6
-
-
79957965071
-
Caloric excess or restriction mediated modulation of metabolic enzyme acetylation-proposed effects on cardiac growth and function
-
M.N. Sack Caloric excess or restriction mediated modulation of metabolic enzyme acetylation-proposed effects on cardiac growth and function Biochim. Biophys. Acta 1813 2011 1279 1285
-
(2011)
Biochim. Biophys. Acta
, vol.1813
, pp. 1279-1285
-
-
Sack, M.N.1
-
7
-
-
33751113602
-
Mammalian sirtuins - Emerging roles in physiology, aging, and calorie restriction
-
DOI 10.1101/gad.1467506
-
M.C. Haigis, and L.P. Guarente Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction Genes Dev. 20 2006 2913 2921 (Pubitemid 44771725)
-
(2006)
Genes and Development
, vol.20
, Issue.21
, pp. 2913-2921
-
-
Haigis, M.C.1
Guarente, L.P.2
-
8
-
-
0033887456
-
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
-
DOI 10.1006/bbrc.2000.3000
-
R.A. Frye Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins Biochem. Biophys. Res. Commun. 273 2000 793 798 (Pubitemid 30599063)
-
(2000)
Biochemical and Biophysical Research Communications
, vol.273
, Issue.2
, pp. 793-798
-
-
Frye, R.A.1
-
10
-
-
83055173304
-
The first identification of lysine malonylation substrates and its regulatory enzyme
-
in press, doi
-
C. Peng, Z. Lu, Z. Xie, Z. Cheng, Y. Chen, M. Tan, H. Luo, Y. Zhang, W. He, K. Yang, B.M. Zwaans, D. Tishkoff, L. Ho, D. Lombard, T.C. He, J. Dai, E. Verdin, Y. Ye, Y. Zhao, The first identification of lysine malonylation substrates and its regulatory enzyme, Mol. Cell. Proteomics; in press, doi: 10.1074/mcp.M111.012658.
-
Mol. Cell. Proteomics
-
-
Peng, C.1
Lu, Z.2
Xie, Z.3
Cheng, Z.4
Chen, Y.5
Tan, M.6
Luo, H.7
Zhang, Y.8
He, W.9
Yang, K.10
Zwaans, B.M.11
Tishkoff, D.12
Ho, L.13
Lombard, D.14
He, T.C.15
Dai, J.16
Verdin, E.17
Ye, Y.18
Zhao, Y.19
-
11
-
-
38649123072
-
Conserved Metabolic Regulatory Functions of Sirtuins
-
DOI 10.1016/j.cmet.2007.11.006, PII S1550413107003415
-
B. Schwer, and E. Verdin Conserved metabolic regulatory functions of sirtuins Cell Metab. 7 2008 104 112 (Pubitemid 351168554)
-
(2008)
Cell Metabolism
, vol.7
, Issue.2
, pp. 104-112
-
-
Schwer, B.1
Verdin, E.2
-
12
-
-
77956624414
-
Protein deacetylation by sirtuins: Delineating a post-translational regulatory program responsive to nutrient and redox stressors
-
J. Bao, and M.N. Sack Protein deacetylation by sirtuins: delineating a post-translational regulatory program responsive to nutrient and redox stressors Cell. Mol. Life Sci. 67 2010 3073 3087
-
(2010)
Cell. Mol. Life Sci.
, vol.67
, pp. 3073-3087
-
-
Bao, J.1
Sack, M.N.2
-
13
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
DOI 10.1038/nature01960
-
K.T. Howitz, K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood, R.E. Zipkin, P. Chung, A. Kisielewski, L.L. Zhang, B. Scherer, and D.A. Sinclair Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan Nature 425 2003 191 196 (Pubitemid 37150899)
-
(2003)
Nature
, vol.425
, Issue.6954
, pp. 191-196
-
-
Howitz, K.T.1
Bitterman, K.J.2
Cohen, H.Y.3
Lamming, D.W.4
Lavu, S.5
Wood, J.G.6
Zipkin, R.E.7
Chung, P.8
Kisielewski, A.9
Zhang, L.-L.10
Scherer, B.11
Sinclair, D.A.12
-
14
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
DOI 10.1038/nature06261, PII NATURE06261
-
J.C. Milne, P.D. Lambert, S. Schenk, D.P. Carney, J.J. Smith, D.J. Gagne, L. Jin, O. Boss, R.B. Perni, C.B. Vu, J.E. Bemis, R. Xie, J.S. Disch, P.Y. Ng, J.J. Nunes, A.V. Lynch, H. Yang, H. Galonek, K. Israelian, W. Choy, A. Iffland, S. Lavu, O. Medvedik, D.A. Sinclair, J.M. Olefsky, M.R. Jirousek, P.J. Elliott, and C.H. Westphal Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes Nature 450 2007 712 716 (Pubitemid 350207685)
-
(2007)
Nature
, vol.450
, Issue.7170
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
Carney, D.P.4
Smith, J.J.5
Gagne, D.J.6
Jin, L.7
Boss, O.8
Perni, R.B.9
Vu, C.B.10
Bemis, J.E.11
Xie, R.12
Disch, J.S.13
Ng, P.Y.14
Nunes, J.J.15
Lynch, A.V.16
Yang, H.17
Galonek, H.18
Israelian, K.19
Choy, W.20
Iffland, A.21
Lavu, S.22
Medvedik, O.23
Sinclair, D.A.24
Olefsky, J.M.25
Jirousek, M.R.26
Elliott, P.J.27
Westphal, C.H.28
more..
-
15
-
-
0035826271
-
Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
-
DOI 10.1038/35065638
-
H.A. Tissenbaum, and L. Guarente Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans Nature 410 2001 227 230 (Pubitemid 32216597)
-
(2001)
Nature
, vol.410
, Issue.6825
, pp. 227-230
-
-
Tissenbaum, H.A.1
Guarente, L.2
-
16
-
-
0037130175
-
Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration
-
DOI 10.1038/nature00829
-
S.J. Lin, M. Kaeberlein, A.A. Andalis, L.A. Sturtz, P.A. Defossez, V.C. Culotta, G.R. Fink, and L. Guarente Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration Nature 418 2002 344 348 (Pubitemid 34790687)
-
(2002)
Nature
, vol.418
, Issue.6895
, pp. 344-348
-
-
Lin, S.-J.1
Kaeberlein, M.2
Andalis, A.A.3
Sturtz, L.A.4
Defossez, P.-A.5
Culotta, V.C.6
Fink, G.R.7
Guarente, L.8
-
17
-
-
0034703217
-
Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
-
S.J. Lin, P.A. Defossez, and L. Guarente Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae Science 289 2000 2126 2128
-
(2000)
Science
, vol.289
, pp. 2126-2128
-
-
Lin, S.J.1
Defossez, P.A.2
Guarente, L.3
-
18
-
-
0038329323
-
Nicatinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae
-
DOI 10.1038/nature01578
-
R.M. Anderson, K.J. Bitterman, J.G. Wood, O. Medvedik, and D.A. Sinclair Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae Nature 423 2003 181 185 (Pubitemid 36569542)
-
(2003)
Nature
, vol.423
, Issue.6936
, pp. 181-185
-
-
Anderson, R.M.1
Bitterman, K.J.2
Wood, J.G.3
Medvedik, O.4
Sinclair, D.A.5
-
19
-
-
0347128279
-
Calorie restriction extends yeast life span by lowering the level of NADH
-
DOI 10.1101/gad.1164804
-
S.J. Lin, E. Ford, M. Haigis, G. Liszt, and L. Guarente Calorie restriction extends yeast life span by lowering the level of NADH Genes Dev. 18 2004 12 16 (Pubitemid 38090683)
-
(2004)
Genes and Development
, vol.18
, Issue.1
, pp. 12-16
-
-
Lin, S.-J.1
Ford, E.2
Haigis, M.3
Liszt, G.4
Guarente, L.5
-
20
-
-
78651468707
-
Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
-
W.C. Hallows, W. Yu, B.C. Smith, M.K. Devires, J.J. Ellinger, S. Someya, M.R. Shortreed, T. Prolla, J.L. Markley, L.M. Smith, S. Zhao, K.L. Guan, and J.M. Denu Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction Mol. Cell 41 2011 139 149
-
(2011)
Mol. Cell
, vol.41
, pp. 139-149
-
-
Hallows, W.C.1
Yu, W.2
Smith, B.C.3
Devires, M.K.4
Ellinger, J.J.5
Someya, S.6
Shortreed, M.R.7
Prolla, T.8
Markley, J.L.9
Smith, L.M.10
Zhao, S.11
Guan, K.L.12
Denu, J.M.13
-
21
-
-
3142740860
-
Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
-
DOI 10.1126/science.1099196
-
H.Y. Cohen, C. Miller, K.J. Bitterman, N.R. Wall, B. Hekking, B. Kessler, K.T. Howitz, M. Gorospe, C.R. de, and D.A. Sinclair Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase Science 305 2004 390 392 (Pubitemid 38938153)
-
(2004)
Science
, vol.305
, Issue.5682
, pp. 390-392
-
-
Cohen, H.Y.1
Miller, C.2
Bitterman, K.J.3
Wall, N.R.4
Hekking, B.5
Kessler, B.6
Howitz, K.T.7
Gorospe, M.8
De Cabo, R.9
Sinclair, D.A.10
-
22
-
-
80054968456
-
SIRT1 and SIRT5 activity expression and behavioral responses to calorie restriction
-
Y.Q. Geng, T.T. Li, X.Y. Liu, Z.H. Li, and Y.C. Fu SIRT1 and SIRT5 activity expression and behavioral responses to calorie restriction J. Cell. Biochem. 112 2011 3755 3761
-
(2011)
J. Cell. Biochem.
, vol.112
, pp. 3755-3761
-
-
Geng, Y.Q.1
Li, T.T.2
Liu, X.Y.3
Li, Z.H.4
Fu, Y.C.5
-
23
-
-
3943071801
-
Sirtuin activators mimic caloric restriction and delay ageing in metazoans
-
DOI 10.1038/nature02789
-
J.G. Wood, B. Rogina, S. Lavu, K. Howitz, S.L. Helfand, M. Tatar, and D. Sinclair Sirtuin activators mimic caloric restriction and delay ageing in metazoans Nature 430 2004 686 689 (Pubitemid 39061685)
-
(2004)
Nature
, vol.430
, Issue.7000
, pp. 686-689
-
-
Wood, J.G.1
Regina, B.2
Lavu, S.3
Hewitz, K.4
Helfand, S.L.5
Tatar, M.6
Sinclair, D.7
-
24
-
-
77950246109
-
SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
-
M. Pacholec, J.E. Bleasdale, B. Chrunyk, D. Cunningham, D. Flynn, R.S. Garofalo, D. Griffith, M. Griffor, P. Loulakis, B. Pabst, X. Qiu, B. Stockman, V. Thanabal, A. Varghese, J. Ward, J. Withka, and K. Ahn SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1 J. Biol. Chem. 285 2010 8340 8351
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 8340-8351
-
-
Pacholec, M.1
Bleasdale, J.E.2
Chrunyk, B.3
Cunningham, D.4
Flynn, D.5
Garofalo, R.S.6
Griffith, D.7
Griffor, M.8
Loulakis, P.9
Pabst, B.10
Qiu, X.11
Stockman, B.12
Thanabal, V.13
Varghese, A.14
Ward, J.15
Withka, J.16
Ahn, K.17
-
25
-
-
80053168829
-
Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila
-
C. Burnett, S. Valentini, F. Cabreiro, M. Goss, M. Somogyvari, M.D. Piper, M. Hoddinott, G.L. Sutphin, V. Leko, J.J. McElwee, R.P. Vazquez-Manrique, A.M. Orfila, D. Ackerman, C. Au, G. Vinti, M. Riesen, K. Howard, C. Neri, A. Bedalov, M. Kaeberlein, C. Soti, L. Partridge, and D. Gems Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila Nature 477 2011 482 485
-
(2011)
Nature
, vol.477
, pp. 482-485
-
-
Burnett, C.1
Valentini, S.2
Cabreiro, F.3
Goss, M.4
Somogyvari, M.5
Piper, M.D.6
Hoddinott, M.7
Sutphin, G.L.8
Leko, V.9
McElwee, J.J.10
Vazquez-Manrique, R.P.11
Orfila, A.M.12
Ackerman, D.13
Au, C.14
Vinti, G.15
Riesen, M.16
Howard, K.17
Neri, C.18
Bedalov, A.19
Kaeberlein, M.20
Soti, C.21
Partridge, L.22
Gems, D.23
more..
-
26
-
-
78649482634
-
SIRT1: Recent lessons from mouse models
-
D. Herranz, and M. Serrano SIRT1: recent lessons from mouse models Nat. Rev. Cancer 10 2010 819 823
-
(2010)
Nat. Rev. Cancer
, vol.10
, pp. 819-823
-
-
Herranz, D.1
Serrano, M.2
-
27
-
-
34547098165
-
Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation
-
DOI 10.1074/jbc.M702990200
-
B.J. North, and E. Verdin Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation J. Biol. Chem. 282 2007 19546 19555 (Pubitemid 47100062)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.27
, pp. 19546-19555
-
-
North, B.J.1
Verdin, E.2
-
28
-
-
20444409132
-
Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
-
DOI 10.1074/jbc.M413296200
-
G. Liszt, E. Ford, M. Kurtev, and L. Guarente Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase J. Biol. Chem. 280 2005 21313 21320 (Pubitemid 40805693)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.22
, pp. 21313-21320
-
-
Liszt, G.1
Ford, E.2
Kurtev, M.3
Guarente, L.4
-
29
-
-
41349090663
-
SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
-
DOI 10.1038/nature06736, PII NATURE06736
-
E. Michishita, R.A. McCord, E. Berber, M. Kioi, H. Padilla-Nash, M. Damian, P. Cheung, R. Kusumoto, T.L. Kawahara, J.C. Barrett, H.Y. Chang, V.A. Bohr, T. Ried, O. Gozani, and K.F. Chua SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin Nature 452 2008 492 496 (Pubitemid 351450840)
-
(2008)
Nature
, vol.452
, Issue.7186
, pp. 492-496
-
-
Michishita, E.1
McCord, R.A.2
Berber, E.3
Kioi, M.4
Padilla-Nash, H.5
Damian, M.6
Cheung, P.7
Kusumoto, R.8
Kawahara, T.L.A.9
Barrett, J.C.10
Chang, H.Y.11
Bohr, V.A.12
Ried, T.13
Gozani, O.14
Chua, K.F.15
-
30
-
-
42349085704
-
Sirt1 contributes critically to the redox-dependent fate of neural progenitors
-
T. Prozorovski, U. Schulze-Topphoff, R. Glumm, J. Baumgart, F. Schroter, O. Ninnemann, E. Siegert, I. Bendix, O. Brustle, R. Nitsch, F. Zipp, and O. Aktas Sirt1 contributes critically to the redox-dependent fate of neural progenitors Nat. Cell Biol. 10 2008 385 394
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 385-394
-
-
Prozorovski, T.1
Schulze-Topphoff, U.2
Glumm, R.3
Baumgart, J.4
Schroter, F.5
Ninnemann, O.6
Siegert, E.7
Bendix, I.8
Brustle, O.9
Nitsch, R.10
Zipp, F.11
Aktas, O.12
-
31
-
-
79954609893
-
Hypoxia increases sirtuin 1 expression in a hypoxia-inducible factor-dependent manner
-
R. Chen, E.M. Dioum, R.T. Hogg, R.D. Gerard, and J.A. Garcia Hypoxia increases sirtuin 1 expression in a hypoxia-inducible factor-dependent manner J. Biol. Chem. 286 2011 13869 13878
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 13869-13878
-
-
Chen, R.1
Dioum, E.M.2
Hogg, R.T.3
Gerard, R.D.4
Garcia, J.A.5
-
32
-
-
77956180402
-
SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress
-
S. Caito, S. Rajendrasozhan, S. Cook, S. Chung, H. Yao, A.E. Friedman, P.S. Brookes, and I. Rahman SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress FASEB J. 24 2010 3145 3159
-
(2010)
FASEB J.
, vol.24
, pp. 3145-3159
-
-
Caito, S.1
Rajendrasozhan, S.2
Cook, S.3
Chung, S.4
Yao, H.5
Friedman, A.E.6
Brookes, P.S.7
Rahman, I.8
-
33
-
-
35748962613
-
SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress
-
DOI 10.1038/ncb1645, PII NCB1645
-
Y. Yang, W. Fu, J. Chen, N. Olashaw, X. Zhang, S.V. Nicosia, K. Bhalla, and W. Bai SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress Nat. Cell Biol. 9 2007 1253 1262 (Pubitemid 350042357)
-
(2007)
Nature Cell Biology
, vol.9
, Issue.11
, pp. 1253-1262
-
-
Yang, Y.1
Fu, W.2
Chen, J.3
Olashaw, N.4
Zhang, X.5
Nicosia, S.V.6
Bhalla, K.7
Bai, W.8
-
34
-
-
28644447272
-
The antioxidant function of the p53 tumor suppressor
-
DOI 10.1038/nm1320
-
A.A. Sablina, A.V. Budanov, G.V. Ilyinskaya, L.S. Agapova, J.E. Kravchenko, and P.M. Chumakov The antioxidant function of the p53 tumor suppressor Nat. Med. 11 2005 1306 1313 (Pubitemid 41752911)
-
(2005)
Nature Medicine
, vol.11
, Issue.12
, pp. 1306-1313
-
-
Sablina, A.A.1
Budanov, A.V.2
Ilyinskaya, G.V.3
Agapova, L.S.4
Kravchenko, J.E.5
Chumakov, P.M.6
-
35
-
-
0035913903
-
SIRT1 functions as an NAD-dependent p53 deacetylase
-
DOI 10.1016/S0092-8674(01)00527-X
-
H. Vaziri, S.K. Dessain, E.E. Ng, S.I. Imai, R.A. Frye, T.K. Pandita, L. Guarente, and R.A. Weinberg hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase Cell 107 2001 149 159 (Pubitemid 33035942)
-
(2001)
Cell
, vol.107
, Issue.2
, pp. 149-159
-
-
Vaziri, H.1
Dessain, S.K.2
Eaton, E.N.3
Imai, S.-I.4
Frye, R.A.5
Pandita, T.K.6
Guarente, L.7
Weinberg, R.A.8
-
36
-
-
0035913911
-
Negative control of p53 by Sir2α promotes cell survival under stress
-
DOI 10.1016/S0092-8674(01)00524-4
-
J. Luo, A.Y. Nikolaev, S. Imai, D. Chen, F. Su, A. Shiloh, L. Guarente, and W. Gu Negative control of p53 by Sir2alpha promotes cell survival under stress Cell 107 2001 137 148 (Pubitemid 33035941)
-
(2001)
Cell
, vol.107
, Issue.2
, pp. 137-148
-
-
Luo, J.1
Nikolaev, A.Y.2
Imai, S.-I.3
Chen, D.4
Su, F.5
Shiloh, A.6
Guarente, L.7
Gu, W.8
-
37
-
-
33745166337
-
Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation
-
DOI 10.1016/j.freeradbiomed.2006.02.014, PII S0891584906001249
-
S. Kume, M. Haneda, K. Kanasaki, T. Sugimoto, S. Araki, M. Isono, K. Isshiki, T. Uzu, A. Kashiwagi, and D. Koya Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation Free Radic. Biol. Med. 40 2006 2175 2182 (Pubitemid 43903102)
-
(2006)
Free Radical Biology and Medicine
, vol.40
, Issue.12
, pp. 2175-2182
-
-
Kume, S.1
Haneda, M.2
Kanasaki, K.3
Sugimoto, T.4
Araki, S.-i.5
Isono, M.6
Isshiki, K.7
Uzu, T.8
Kashiwagi, A.9
Koya, D.10
-
38
-
-
39749087530
-
SIRT1 Regulates Apoptosis and Nanog Expression in Mouse Embryonic Stem Cells by Controlling p53 Subcellular Localization
-
DOI 10.1016/j.stem.2008.01.002, PII S1934590908000039
-
M.K. Han, E.K. Song, Y. Guo, X. Ou, C. Mantel, and H.E. Broxmeyer SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization Cell Stem Cell 2 2008 241 251 (Pubitemid 351298591)
-
(2008)
Cell Stem Cell
, vol.2
, Issue.3
, pp. 241-251
-
-
Han, M.-K.1
Song, E.-K.2
Guo, Y.3
Ou, X.4
Mantel, C.5
Broxmeyer, H.E.6
-
39
-
-
12144290563
-
Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase
-
DOI 10.1126/science.1094637
-
A. Brunet, L.B. Sweeney, J.F. Sturgill, K.F. Chua, P.L. Greer, Y. Lin, H. Tran, S.E. Ross, R. Mostoslavsky, H.Y. Cohen, L.S. Hu, H.L. Cheng, M.P. Jedrychowski, S.P. Gygi, D.A. Sinclair, F.W. Alt, and M.E. Greenberg Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase Science 303 2004 2011 2015 (Pubitemid 38393275)
-
(2004)
Science
, vol.303
, Issue.5666
, pp. 2011-2015
-
-
Brunet, A.1
Sweeney, L.B.2
Sturgill, J.F.3
Chua, K.F.4
Greer, P.L.5
Lin, Y.6
Tran, H.7
Ross, S.E.8
Mostoslavsy, R.9
Cohen, H.Y.10
Hu, L.S.11
Cheng, H.-L.12
Jedrychowski, M.P.13
Gygi, S.P.14
Sinclair, D.A.15
Alt, F.W.16
Greenberg, M.E.17
-
40
-
-
34447626095
-
SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
-
DOI 10.1111/j.1474-9726.2007.00304.x
-
F. Wang, M. Nguyen, F.X. Qin, and Q. Tong SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction Aging Cell 6 2007 505 514 (Pubitemid 47087055)
-
(2007)
Aging Cell
, vol.6
, Issue.4
, pp. 505-514
-
-
Wang, F.1
Nguyen, M.2
Qin, F.X.-F.3
Tong, Q.4
-
41
-
-
0037136563
-
Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress
-
G.J. Kops, T.B. Dansen, P.E. Polderman, I. Saarloos, K.W. Wirtz, P.J. Coffer, T.T. Huang, J.L. Bos, R.H. Medema, and B.M. Burgering Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress Nature 419 2002 316 321
-
(2002)
Nature
, vol.419
, pp. 316-321
-
-
Kops, G.J.1
Dansen, T.B.2
Polderman, P.E.3
Saarloos, I.4
Wirtz, K.W.5
Coffer, P.J.6
Huang, T.T.7
Bos, J.L.8
Medema, R.H.9
Burgering, B.M.10
-
42
-
-
46349096040
-
Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression
-
K. Hasegawa, S. Wakino, K. Yoshioka, S. Tatematsu, Y. Hara, H. Minakuchi, N. Washida, H. Tokuyama, K. Hayashi, and H. Itoh Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression Biochem. Biophys. Res. Commun. 372 2008 51 56
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.372
, pp. 51-56
-
-
Hasegawa, K.1
Wakino, S.2
Yoshioka, K.3
Tatematsu, S.4
Hara, Y.5
Minakuchi, H.6
Washida, N.7
Tokuyama, H.8
Hayashi, K.9
Itoh, H.10
-
43
-
-
34249669270
-
Sirt1 regulates aging and resistance to oxidative stress in the heart
-
DOI 10.1161/01.RES.0000267723.65696.4a
-
R.R. Alcendor, S. Gao, P. Zhai, D. Zablocki, E. Holle, X. Yu, B. Tian, T. Wagner, S.F. Vatner, and J. Sadoshima Sirt1 regulates aging and resistance to oxidative stress in the heart Circ. Res. 100 2007 1512 1521 (Pubitemid 46834764)
-
(2007)
Circulation Research
, vol.100
, Issue.10
, pp. 1512-1521
-
-
Alcendor, R.R.1
Gao, S.2
Zhai, P.3
Zablocki, D.4
Holle, E.5
Yu, X.6
Tian, B.7
Wagner, T.8
Vatner, S.F.9
Sadoshima, J.10
-
44
-
-
43049121395
-
Glucose Restriction Inhibits Skeletal Myoblast Differentiation by Activating SIRT1 through AMPK-Mediated Regulation of Nampt
-
DOI 10.1016/j.devcel.2008.02.004, PII S1534580708000749
-
M. Fulco, Y. Cen, P. Zhao, E.P. Hoffman, M.W. McBurney, A.A. Sauve, and V. Sartorelli Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt Dev. Cell 14 2008 661 673 (Pubitemid 351622608)
-
(2008)
Developmental Cell
, vol.14
, Issue.5
, pp. 661-673
-
-
Fulco, M.1
Cen, Y.2
Zhao, P.3
Hoffman, E.P.4
McBurney, M.W.5
Sauve, A.A.6
Sartorelli, V.7
-
45
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity
-
C. Canto, Z. Gerhart-Hines, J.N. Feige, M. Lagouge, L. Noriega, J.C. Milne, P.J. Elliott, P. Puigserver, and J. Auwerx AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity Nature 458 2009 1056 1060
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
Lagouge, M.4
Noriega, L.5
Milne, J.C.6
Elliott, P.J.7
Puigserver, P.8
Auwerx, J.9
-
46
-
-
64549127790
-
PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure
-
C. Canto, and J. Auwerx PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure Curr. Opin. Lipidol. 20 2009 98 105
-
(2009)
Curr. Opin. Lipidol.
, vol.20
, pp. 98-105
-
-
Canto, C.1
Auwerx, J.2
-
47
-
-
55549096745
-
SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1: Possible role in AMP-activated protein kinase activation
-
F. Lan, J.M. Cacicedo, N. Ruderman, and Y. Ido SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1: possible role in AMP-activated protein kinase activation J. Biol. Chem. 283 2008 27628 27635
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 27628-27635
-
-
Lan, F.1
Cacicedo, J.M.2
Ruderman, N.3
Ido, Y.4
-
48
-
-
50649112638
-
SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase
-
X. Hou, S. Xu, K.A. Maitland-Toolan, K. Sato, B. Jiang, Y. Ido, F. Lan, K. Walsh, M. Wierzbicki, T.J. Verbeuren, R.A. Cohen, and M. Zang SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase J. Biol. Chem. 283 2008 20015 20026
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 20015-20026
-
-
Hou, X.1
Xu, S.2
Maitland-Toolan, K.A.3
Sato, K.4
Jiang, B.5
Ido, Y.6
Lan, F.7
Walsh, K.8
Wierzbicki, M.9
Verbeuren, T.J.10
Cohen, R.A.11
Zang, M.12
-
49
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
-
DOI 10.1038/nature03354
-
J.T. Rodgers, C. Lerin, W. Haas, S.P. Gygi, B.M. Spiegelman, and P. Puigserver Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1 Nature 434 2005 113 118 (Pubitemid 40349395)
-
(2005)
Nature
, vol.434
, Issue.7029
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
50
-
-
18144411313
-
SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α
-
DOI 10.1074/jbc.M501485200
-
S. Nemoto, M.M. Fergusson, and T. Finkel SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha} J. Biol. Chem. 280 2005 16456 16460 (Pubitemid 40616776)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.16
, pp. 16456-16460
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
51
-
-
33845399894
-
Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α
-
DOI 10.1016/j.cell.2006.11.013, PII S0092867406014280
-
M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, and J. Auwerx Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha Cell 127 2006 1109 1122 (Pubitemid 44894520)
-
(2006)
Cell
, vol.127
, Issue.6
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
Meziane, H.4
Lerin, C.5
Daussin, F.6
Messadeq, N.7
Milne, J.8
Lambert, P.9
Elliott, P.10
Geny, B.11
Laakso, M.12
Puigserver, P.13
Auwerx, J.14
-
52
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α
-
DOI 10.1038/sj.emboj.7601633, PII 7601633
-
Z. Gerhart-Hines, J.T. Rodgers, O. Bare, C. Lerin, S.H. Kim, R. Mostoslavsky, F.W. Alt, Z. Wu, and P. Puigserver Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha EMBO J. 26 2007 1913 1923 (Pubitemid 46624046)
-
(2007)
EMBO Journal
, vol.26
, Issue.7
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
Lerin, C.4
Kim, S.-H.5
Mostoslavsky, R.6
Alt, F.W.7
Wu, Z.8
Puigserver, P.9
-
53
-
-
77951872309
-
2 + and AMPK/SIRT1
-
2 + and AMPK/SIRT1 Nature 464 2010 1313 1319
-
(2010)
Nature
, vol.464
, pp. 1313-1319
-
-
Iwabu, M.1
Yamauchi, T.2
Okada-Iwabu, M.3
Sato, K.4
Nakagawa, T.5
Funata, M.6
Yamaguchi, M.7
Namiki, S.8
Nakayama, R.9
Tabata, M.10
Ogata, H.11
Kubota, N.12
Takamoto, I.13
Hayashi, Y.K.14
Yamauchi, N.15
Waki, H.16
Fukayama, M.17
Nishino, I.18
Tokuyama, K.19
Ueki, K.20
Oike, Y.21
Ishii, S.22
Hirose, K.23
Shimizu, T.24
Touhara, K.25
Kadowaki, T.26
more..
-
54
-
-
77955434383
-
Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway
-
M.D. Chau, J. Gao, Q. Yang, Z. Wu, and J. Gromada Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway Proc. Natl. Acad. Sci. USA 107 2010 12553 12558
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 12553-12558
-
-
Chau, M.D.1
Gao, J.2
Yang, Q.3
Wu, Z.4
Gromada, J.5
-
55
-
-
77955871829
-
PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload
-
Z. Lu, X. Xu, X. Hu, J. Fassett, G. Zhu, Y. Tao, J. Li, Y. Huang, P. Zhang, B. Zhao, and Y. Chen PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload Antioxid. Redox Signal. 13 2010 1011 1022
-
(2010)
Antioxid. Redox Signal.
, vol.13
, pp. 1011-1022
-
-
Lu, Z.1
Xu, X.2
Hu, X.3
Fassett, J.4
Zhu, G.5
Tao, Y.6
Li, J.7
Huang, Y.8
Zhang, P.9
Zhao, B.10
Chen, Y.11
-
56
-
-
0031444281
-
Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor
-
DOI 10.1073/pnas.94.25.14138
-
B.D. Gehm, J.M. McAndrews, P.Y. Chien, and J.L. Jameson Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor Proc. Natl. Acad. Sci. USA 94 1997 14138 14143 (Pubitemid 28009723)
-
(1997)
Proceedings of the National Academy of Sciences of the United States of America
, vol.94
, Issue.25
, pp. 14138-14143
-
-
Gehm, B.D.1
McAndrews, J.M.2
Chien, P.-Y.3
Jameson, J.L.4
-
57
-
-
0037167677
-
Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase
-
T. Wallerath, G. Deckert, T. Ternes, H. Anderson, H. Li, K. Witte, and U. Forstermann Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase Circulation 106 2002 1652 1658
-
(2002)
Circulation
, vol.106
, pp. 1652-1658
-
-
Wallerath, T.1
Deckert, G.2
Ternes, T.3
Anderson, H.4
Li, H.5
Witte, K.6
Forstermann, U.7
-
59
-
-
35549008884
-
SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase
-
DOI 10.1073/pnas.0704329104
-
I. Mattagajasingh, C.S. Kim, A. Naqvi, T. Yamamori, T.A. Hoffman, S.B. Jung, J. DeRicco, K. Kasuno, and K. Irani SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase Proc. Natl. Acad. Sci. USA 104 2007 14855 14860 (Pubitemid 350003232)
-
(2007)
Proceedings of the National Academy of Sciences of the United States of America
, vol.104
, Issue.37
, pp. 14855-14860
-
-
Mattagajasingh, I.1
Kim, C.-S.2
Naqvi, A.3
Yamamori, T.4
Hoffman, T.A.5
Jung, S.-B.6
DeRicco, J.7
Kasuno, K.8
Irani, K.9
-
60
-
-
78649364332
-
Hypoxia-inducible factors and the response to hypoxic stress
-
A.J. Majmundar, W.J. Wong, and M.C. Simon Hypoxia-inducible factors and the response to hypoxic stress Mol. Cell 40 2010 294 309
-
(2010)
Mol. Cell
, vol.40
, pp. 294-309
-
-
Majmundar, A.J.1
Wong, W.J.2
Simon, M.C.3
-
61
-
-
66749129781
-
Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1
-
E.M. Dioum, R. Chen, M.S. Alexander, Q. Zhang, R.T. Hogg, R.D. Gerard, and J.A. Garcia Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1 Science 324 2009 1289 1293
-
(2009)
Science
, vol.324
, pp. 1289-1293
-
-
Dioum, E.M.1
Chen, R.2
Alexander, M.S.3
Zhang, Q.4
Hogg, R.T.5
Gerard, R.D.6
Garcia, J.A.7
-
62
-
-
77955499804
-
Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha
-
J.H. Lim, Y.M. Lee, Y.S. Chun, J. Chen, J.E. Kim, and J.W. Park Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha Mol. Cell 38 2010 864 878
-
(2010)
Mol. Cell
, vol.38
, pp. 864-878
-
-
Lim, J.H.1
Lee, Y.M.2
Chun, Y.S.3
Chen, J.4
Kim, J.E.5
Park, J.W.6
-
63
-
-
74549142287
-
The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha
-
L. Zhong, A. D'Urso, D. Toiber, C. Sebastian, R.E. Henry, D.D. Vadysirisack, A. Guimaraes, B. Marinelli, J.D. Wikstrom, T. Nir, C.B. Clish, B. Vaitheesvaran, O. Iliopoulos, I. Kurland, Y. Dor, R. Weissleder, O.S. Shirihai, L.W. Ellisen, J.M. Espinosa, and R. Mostoslavsky The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha Cell 140 2010 280 293
-
(2010)
Cell
, vol.140
, pp. 280-293
-
-
Zhong, L.1
D'Urso, A.2
Toiber, D.3
Sebastian, C.4
Henry, R.E.5
Vadysirisack, D.D.6
Guimaraes, A.7
Marinelli, B.8
Wikstrom, J.D.9
Nir, T.10
Clish, C.B.11
Vaitheesvaran, B.12
Iliopoulos, O.13
Kurland, I.14
Dor, Y.15
Weissleder, R.16
Shirihai, O.S.17
Ellisen, L.W.18
Espinosa, J.M.19
Mostoslavsky, R.20
more..
-
64
-
-
77951165669
-
Sirt1 activation protects the mouse renal medulla from oxidative injury
-
W. He, Y. Wang, M.Z. Zhang, L. You, L.S. Davis, H. Fan, H.C. Yang, A.B. Fogo, R. Zent, R.C. Harris, M.D. Breyer, and C.M. Hao Sirt1 activation protects the mouse renal medulla from oxidative injury J. Clin. Invest. 120 2010 1056 1068
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 1056-1068
-
-
He, W.1
Wang, Y.2
Zhang, M.Z.3
You, L.4
Davis, L.S.5
Fan, H.6
Yang, H.C.7
Fogo, A.B.8
Zent, R.9
Harris, R.C.10
Breyer, M.D.11
Hao, C.M.12
-
65
-
-
53149144656
-
Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis
-
R.H. Wang, Y. Zheng, H.S. Kim, X. Xu, L. Cao, T. Luhasen, M.H. Lee, C. Xiao, A. Vassilopoulos, W. Chen, K. Gardner, Y.G. Man, M.C. Hung, T. Finkel, and C.X. Deng Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis Mol. Cell 32 2008 11 20
-
(2008)
Mol. Cell
, vol.32
, pp. 11-20
-
-
Wang, R.H.1
Zheng, Y.2
Kim, H.S.3
Xu, X.4
Cao, L.5
Luhasen, T.6
Lee, M.H.7
Xiao, C.8
Vassilopoulos, A.9
Chen, W.10
Gardner, K.11
Man, Y.G.12
Hung, M.C.13
Finkel, T.14
Deng, C.X.15
-
66
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
A. Purushotham, T.T. Schug, Q. Xu, S. Surapureddi, X. Guo, and X. Li Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation Cell Metab. 9 2009 327 338
-
(2009)
Cell Metab.
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
Li, X.6
-
67
-
-
77956241193
-
Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: Roles for Sirt1 in neuronal firing and synaptic plasticity
-
M.O. Dietrich, C. Antunes, G. Geliang, Z.W. Liu, E. Borok, Y. Nie, A.W. Xu, D.O. Souza, Q. Gao, S. Diano, X.B. Gao, and T.L. Horvath Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity J. Neurosci. 30 2010 11815 11825
-
(2010)
J. Neurosci.
, vol.30
, pp. 11815-11825
-
-
Dietrich, M.O.1
Antunes, C.2
Geliang, G.3
Liu, Z.W.4
Borok, E.5
Nie, Y.6
Xu, A.W.7
Souza, D.O.8
Gao, Q.9
Diano, S.10
Gao, X.B.11
Horvath, T.L.12
-
68
-
-
47749128879
-
Sirt1 protects against high-fat diet-induced metabolic damage
-
DOI 10.1073/pnas.0802917105
-
P.T. Pfluger, D. Herranz, S. Velasco-Miguel, M. Serrano, and M.H. Tschop Sirt1 protects against high-fat diet-induced metabolic damage Proc. Natl. Acad. Sci. USA 105 2008 9793 9798 (Pubitemid 352031379)
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.28
, pp. 9793-9798
-
-
Pfluger, P.T.1
Herranz, D.2
Velasco-Miguel, S.3
Serrano, M.4
Tschop, M.H.5
-
69
-
-
77951223830
-
Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function
-
K. Hasegawa, S. Wakino, K. Yoshioka, S. Tatematsu, Y. Hara, H. Minakuchi, K. Sueyasu, N. Washida, H. Tokuyama, M. Tzukerman, K. Skorecki, K. Hayashi, and H. Itoh Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function J. Biol. Chem. 285 2010 13045 13056
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 13045-13056
-
-
Hasegawa, K.1
Wakino, S.2
Yoshioka, K.3
Tatematsu, S.4
Hara, Y.5
Minakuchi, H.6
Sueyasu, K.7
Washida, N.8
Tokuyama, H.9
Tzukerman, M.10
Skorecki, K.11
Hayashi, K.12
Itoh, H.13
-
70
-
-
78650758398
-
Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
-
D. Herranz, M. Munoz-Martin, M. Canamero, F. Mulero, B. Martinez-Pastor, O. Fernandez-Capetillo, and M. Serrano Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer Nat. Commun. 1 2010 3
-
(2010)
Nat. Commun.
, vol.1
, pp. 3
-
-
Herranz, D.1
Munoz-Martin, M.2
Canamero, M.3
Mulero, F.4
Martinez-Pastor, B.5
Fernandez-Capetillo, O.6
Serrano, M.7
-
71
-
-
79551470041
-
Lysine deacetylation in ischaemic preconditioning: The role of SIRT1
-
S.M. Nadtochiy, E. Redman, I. Rahman, and P.S. Brookes Lysine deacetylation in ischaemic preconditioning: the role of SIRT1 Cardiovasc. Res. 89 2011 643 649
-
(2011)
Cardiovasc. Res.
, vol.89
, pp. 643-649
-
-
Nadtochiy, S.M.1
Redman, E.2
Rahman, I.3
Brookes, P.S.4
-
72
-
-
39149122568
-
Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis
-
B.J. North, and E. Verdin Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis PLoS One 2 2007 e784
-
(2007)
PLoS One
, vol.2
, pp. 784
-
-
North, B.J.1
Verdin, E.2
-
73
-
-
37549026223
-
Localization of mouse mitochondrial SIRT proteins: Shift of SIRT3 to nucleus by co-expression with SIRT5
-
DOI 10.1016/j.bbrc.2007.11.122, PII S0006291X07025338
-
Y. Nakamura, M. Ogura, D. Tanaka, and N. Inagaki Localization of mouse mitochondrial SIRT proteins: shift of SIRT3 to nucleus by co-expression with SIRT5 Biochem. Biophys. Res. Commun. 366 2008 174 179 (Pubitemid 50010675)
-
(2008)
Biochemical and Biophysical Research Communications
, vol.366
, Issue.1
, pp. 174-179
-
-
Nakamura, Y.1
Ogura, M.2
Tanaka, D.3
Inagaki, N.4
-
74
-
-
77951705893
-
Characterization of the murine SIRT3 mitochondrial localization sequence and comparison of mitochondrial enrichment and deacetylase activity of long and short SIRT3 isoforms
-
J. Bao, Z. Lu, J.J. Joseph, D. Carabenciov, C.C. Dimond, L. Pang, L. Samsel, J.P. McCoy Jr., J. Leclerc, P. Nguyen, D. Gius, and M.N. Sack Characterization of the murine SIRT3 mitochondrial localization sequence and comparison of mitochondrial enrichment and deacetylase activity of long and short SIRT3 isoforms J. Cell. Biochem. 110 2010 238 247
-
(2010)
J. Cell. Biochem.
, vol.110
, pp. 238-247
-
-
Bao, J.1
Lu, Z.2
Joseph, J.J.3
Carabenciov, D.4
Dimond, C.C.5
Pang, L.6
Samsel, L.7
McCoy, Jr.J.P.8
Leclerc, J.9
Nguyen, P.10
Gius, D.11
Sack, M.N.12
-
75
-
-
48749098341
-
SIRT2 is a negative regulator of anoxia-reoxygenation tolerance via regulation of 14-3-3 zeta and BAD in H9c2 cells
-
E.G. Lynn, C.J. McLeod, J.P. Gordon, J. Bao, and M.N. Sack SIRT2 is a negative regulator of anoxia-reoxygenation tolerance via regulation of 14-3-3 zeta and BAD in H9c2 cells FEBS Lett. 582 2008 2857 2862
-
(2008)
FEBS Lett.
, vol.582
, pp. 2857-2862
-
-
Lynn, E.G.1
McLeod, C.J.2
Gordon, J.P.3
Bao, J.4
Sack, M.N.5
-
76
-
-
34250848194
-
Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice: A crucial role of tubulin deacetylation
-
DOI 10.1016/j.neuroscience.2007.04.059, PII S0306452207005441
-
K. Suzuki, and T. Koike Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice: a crucial role of tubulin deacetylation Neuroscience 147 2007 599 612 (Pubitemid 46990654)
-
(2007)
Neuroscience
, vol.147
, Issue.3
, pp. 599-612
-
-
Suzuki, K.1
Koike, T.2
-
77
-
-
34547599329
-
Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson's disease
-
DOI 10.1126/science.1143780
-
T.F. Outeiro, E. Kontopoulos, S.M. Altmann, I. Kufareva, K.E. Strathearn, A.M. Amore, C.B. Volk, M.M. Maxwell, J.C. Rochet, P.J. McLean, A.B. Young, R. Abagyan, M.B. Feany, B.T. Hyman, and A.G. Kazantsev Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease Science 317 2007 516 519 (Pubitemid 47196116)
-
(2007)
Science
, vol.317
, Issue.5837
, pp. 516-519
-
-
Outeiro, T.F.1
Kontopoulos, E.2
Altmann, S.M.3
Kufareva, I.4
Strathearn, K.E.5
Amore, A.M.6
Volk, C.B.7
Maxwell, M.M.8
Rochet, J.-C.9
McLean, P.J.10
Young, A.B.11
Abagyan, R.12
Feany, M.B.13
Hyman, B.T.14
Kazantsev, A.G.15
-
78
-
-
31044445366
-
Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
-
DOI 10.1016/j.cell.2005.11.044, PII S0092867406000493
-
R. Mostoslavsky, K.F. Chua, D.B. Lombard, W.W. Pang, M.R. Fischer, L. Gellon, P. Liu, G. Mostoslavsky, S. Franco, M.M. Murphy, K.D. Mills, P. Patel, J.T. Hsu, A.L. Hong, E. Ford, H.L. Cheng, C. Kennedy, N. Nunez, R. Bronson, D. Frendewey, W. Auerbach, D. Valenzuela, M. Karow, M.O. Hottiger, S. Hursting, J.C. Barrett, L. Guarente, R. Mulligan, B. Demple, G.D. Yancopoulos, and F.W. Alt Genomic instability and aging-like phenotype in the absence of mammalian SIRT6 Cell 124 2006 315 329 (Pubitemid 43121980)
-
(2006)
Cell
, vol.124
, Issue.2
, pp. 315-329
-
-
Mostoslavsky, R.1
Chua, K.F.2
Lombard, D.B.3
Pang, W.W.4
Fischer, M.R.5
Gellon, L.6
Liu, P.7
Mostoslavsky, G.8
Franco, S.9
Murphy, M.M.10
Mills, K.D.11
Patel, P.12
Hsu, J.T.13
Hong, A.L.14
Ford, E.15
Cheng, H.-L.16
Kennedy, C.17
Nunez, N.18
Bronson, R.19
Frendewey, D.20
Auerbach, W.21
Valenzuela, D.22
Karow, M.23
Hottiger, M.O.24
Hursting, S.25
Barrett, J.C.26
Guarente, L.27
Mulligan, R.28
Demple, B.29
Yancopoulos, G.D.30
Alt, F.W.31
more..
-
79
-
-
41449083867
-
Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
-
DOI 10.1161/CIRCRESAHA.107.164558
-
O. Vakhrusheva, C. Smolka, P. Gajawada, S. Kostin, T. Boettger, T. Kubin, T. Braun, and E. Bober Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice Circ. Res. 102 2008 703 710 (Pubitemid 351457857)
-
(2008)
Circulation Research
, vol.102
, Issue.6
, pp. 703-710
-
-
Vakhrusheva, O.1
Smolka, C.2
Gajawada, P.3
Kostin, S.4
Boettger, T.5
Kubin, T.6
Braun, T.7
Bober, E.8
-
80
-
-
64049090625
-
Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging
-
O. Vakhrusheva, D. Braeuer, Z. Liu, T. Braun, and E. Bober Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging J. Physiol. Pharmacol. 59 Suppl. 9 2008 201 212
-
(2008)
J. Physiol. Pharmacol.
, vol.59
, Issue.SUPPL. 9
, pp. 201-212
-
-
Vakhrusheva, O.1
Braeuer, D.2
Liu, Z.3
Braun, T.4
Bober, E.5
-
81
-
-
37549002891
-
Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
-
D.B. Lombard, F.W. Alt, H.L. Cheng, J. Bunkenborg, R.S. Streeper, R. Mostoslavsky, J. Kim, G. Yancopoulos, D. Valenzuela, A. Murphy, Y. Yang, Y. Chen, M.D. Hirschey, R.T. Bronson, M. Haigis, L.P. Guarente, R.V. Farese Jr., S. Weissman, E. Verdin, and B. Schwer Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation Mol. Cell. Biol. 27 2007 8807 8814
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 8807-8814
-
-
Lombard, D.B.1
Alt, F.W.2
Cheng, H.L.3
Bunkenborg, J.4
Streeper, R.S.5
Mostoslavsky, R.6
Kim, J.7
Yancopoulos, G.8
Valenzuela, D.9
Murphy, A.10
Yang, Y.11
Chen, Y.12
Hirschey, M.D.13
Bronson, R.T.14
Haigis, M.15
Guarente, L.P.16
Farese, Jr.R.V.17
Weissman, S.18
Verdin, E.19
Schwer, B.20
more..
-
83
-
-
61449209922
-
Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3
-
L. Jin, H. Galonek, K. Israelian, W. Choy, M. Morrison, Y. Xia, X. Wang, Y. Xu, Y. Yang, J.J. Smith, E. Hoffmann, D.P. Carney, R.B. Perni, M.R. Jirousek, J.E. Bemis, J.C. Milne, D.A. Sinclair, and C.H. Westphal Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3 Protein Sci. 18 2009 514 525
-
(2009)
Protein Sci.
, vol.18
, pp. 514-525
-
-
Jin, L.1
Galonek, H.2
Israelian, K.3
Choy, W.4
Morrison, M.5
Xia, Y.6
Wang, X.7
Xu, Y.8
Yang, Y.9
Smith, J.J.10
Hoffmann, E.11
Carney, D.P.12
Perni, R.B.13
Jirousek, M.R.14
Bemis, J.E.15
Milne, J.C.16
Sinclair, D.A.17
Westphal, C.H.18
-
84
-
-
63749099484
-
A new splice variant of the mouse SIRT3 gene encodes the mitochondrial precursor protein
-
H.M. Cooper, J.Y. Huang, E. Verdin, and J.N. Spelbrink A new splice variant of the mouse SIRT3 gene encodes the mitochondrial precursor protein PLoS One 4 2009 e4986
-
(2009)
PLoS One
, vol.4
, pp. 4986
-
-
Cooper, H.M.1
Huang, J.Y.2
Verdin, E.3
Spelbrink, J.N.4
-
85
-
-
79957979314
-
Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS
-
Y. Chen, J. Zhang, Y. Lin, Q. Lei, K.L. Guan, S. Zhao, and Y. Xiong Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS EMBO Rep. 12 2011 534 541
-
(2011)
EMBO Rep.
, vol.12
, pp. 534-541
-
-
Chen, Y.1
Zhang, J.2
Lin, Y.3
Lei, Q.4
Guan, K.L.5
Zhao, S.6
Xiong, Y.7
-
86
-
-
77956173286
-
SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity
-
J. Bao, I. Scott, Z. Lu, L. Pang, C.C. Dimond, D. Gius, and M.N. Sack SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity Free Radic. Biol. Med. 49 2010 1230 1237
-
(2010)
Free Radic. Biol. Med.
, vol.49
, pp. 1230-1237
-
-
Bao, J.1
Scott, I.2
Lu, Z.3
Pang, L.4
Dimond, C.C.5
Gius, D.6
Sack, M.N.7
-
87
-
-
79955768567
-
Peroxisome proliferator-activated receptor-γ coactivator-1α controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype
-
A. Giralt, E. Hondares, J.A. Villena, F. Ribas, J. Diaz-Delfin, M. Giralt, R. Iglesias, and F. Villarroya Peroxisome proliferator-activated receptor-γ coactivator-1α controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype J. Biol. Chem. 286 2011 16958 16966
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 16958-16966
-
-
Giralt, A.1
Hondares, E.2
Villena, J.A.3
Ribas, F.4
Diaz-Delfin, J.5
Giralt, M.6
Iglesias, R.7
Villarroya, F.8
-
88
-
-
13944278132
-
Mitochondria, oxidants, and aging
-
DOI 10.1016/j.cell.2005.02.001
-
R.S. Balaban, S. Nemoto, and T. Finkel Mitochondria, oxidants, and aging Cell 120 2005 483 495 (Pubitemid 40269763)
-
(2005)
Cell
, vol.120
, Issue.4
, pp. 483-495
-
-
Balaban, R.S.1
Nemoto, S.2
Finkel, T.3
-
89
-
-
78651468722
-
Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
-
S. Someya, W. Yu, W.C. Hallows, J. Xu, J.M. Vann, C. Leeuwenburgh, M. Tanokura, J.M. Denu, and T.A. Prolla Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction Cell 143 2010 802 812
-
(2010)
Cell
, vol.143
, pp. 802-812
-
-
Someya, S.1
Yu, W.2
Hallows, W.C.3
Xu, J.4
Vann, J.M.5
Leeuwenburgh, C.6
Tanokura, M.7
Denu, J.M.8
Prolla, T.A.9
-
90
-
-
33746992118
-
Substrate and Functional Diversity of Lysine Acetylation Revealed by a Proteomics Survey
-
DOI 10.1016/j.molcel.2006.06.026, PII S1097276506004540
-
S.C. Kim, R. Sprung, Y. Chen, Y. Xu, H. Ball, J. Pei, T. Cheng, Y. Kho, H. Xiao, L. Xiao, N.V. Grishin, M. White, X.J. Yang, and Y. Zhao Substrate and functional diversity of lysine acetylation revealed by a proteomics survey Mol. Cell 23 2006 607 618 (Pubitemid 44205490)
-
(2006)
Molecular Cell
, vol.23
, Issue.4
, pp. 607-618
-
-
Kim, S.C.1
Sprung, R.2
Chen, Y.3
Xu, Y.4
Ball, H.5
Pei, J.6
Cheng, T.7
Kho, Y.8
Xiao, H.9
Xiao, L.10
Grishin, N.V.11
White, M.12
Yang, X.-J.13
Zhao, Y.14
-
91
-
-
50149103440
-
Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
-
C. Schlicker, M. Gertz, P. Papatheodorou, B. Kachholz, C.F. Becker, and C. Steegborn Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5 J. Mol. Biol. 382 2008 790 801
-
(2008)
J. Mol. Biol.
, vol.382
, pp. 790-801
-
-
Schlicker, C.1
Gertz, M.2
Papatheodorou, P.3
Kachholz, B.4
Becker, C.F.5
Steegborn, C.6
-
92
-
-
24144497601
-
Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death
-
DOI 10.1523/JNEUROSCI.2172-05.2005
-
H.S. Ko, R. von Coelln, S.R. Sriram, S.W. Kim, K.K. Chung, O. Pletnikova, J. Troncoso, B. Johnson, R. Saffary, E.L. Goh, H. Song, B.J. Park, M.J. Kim, S. Kim, V.L. Dawson, and T.M. Dawson Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death J. Neurosci. 25 2005 7968 7978 (Pubitemid 41254399)
-
(2005)
Journal of Neuroscience
, vol.25
, Issue.35
, pp. 7968-7978
-
-
Ko, H.S.1
Von Coelln, R.2
Sriram, S.R.3
Kim, S.W.4
Chung, K.K.K.5
Pletnikova, O.6
Troncoso, J.7
Johnson, B.8
Saffary, R.9
Goh, E.L.10
Song, H.11
Park, B.-J.12
Kim, M.J.13
Kim, S.14
Dawson, V.L.15
Dawson, T.M.16
-
93
-
-
74049094817
-
SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
-
H.S. Kim, K. Patel, K. Muldoon-Jacobs, K.S. Bisht, N. Aykin-Burns, J.D. Pennington, R. van der Meer, P. Nguyen, J. Savage, K.M. Owens, A. Vassilopoulos, O. Ozden, S.H. Park, K.K. Singh, S.A. Abdulkadir, D.R. Spitz, C.X. Deng, and D. Gius SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress Cancer Cell 17 2010 41 52
-
(2010)
Cancer Cell
, vol.17
, pp. 41-52
-
-
Kim, H.S.1
Patel, K.2
Muldoon-Jacobs, K.3
Bisht, K.S.4
Aykin-Burns, N.5
Pennington, J.D.6
Van Der Meer, R.7
Nguyen, P.8
Savage, J.9
Owens, K.M.10
Vassilopoulos, A.11
Ozden, O.12
Park, S.H.13
Singh, K.K.14
Abdulkadir, S.A.15
Spitz, D.R.16
Deng, C.X.17
Gius, D.18
-
94
-
-
53549105529
-
SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70
-
N.R. Sundaresan, S.A. Samant, V.B. Pillai, S.B. Rajamohan, and M.P. Gupta SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70 Mol. Cell. Biol. 28 2008 6384 6401
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 6384-6401
-
-
Sundaresan, N.R.1
Samant, S.A.2
Pillai, V.B.3
Rajamohan, S.B.4
Gupta, M.P.5
-
95
-
-
70349208608
-
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
-
N.R. Sundaresan, M. Gupta, G. Kim, S.B. Rajamohan, A. Isbatan, and M.P. Gupta Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice J. Clin. Invest. 119 2009 2758 2771
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2758-2771
-
-
Sundaresan, N.R.1
Gupta, M.2
Kim, G.3
Rajamohan, S.B.4
Isbatan, A.5
Gupta, M.P.6
-
96
-
-
51449083112
-
SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression
-
K.M. Jacobs, J.D. Pennington, K.S. Bisht, N. Aykin-Burns, H.S. Kim, M. Mishra, L. Sun, P. Nguyen, B.H. Ahn, J. Leclerc, C.X. Deng, D.R. Spitz, and D. Gius SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression Int. J. Biol. Sci. 4 2008 291 299
-
(2008)
Int. J. Biol. Sci.
, vol.4
, pp. 291-299
-
-
Jacobs, K.M.1
Pennington, J.D.2
Bisht, K.S.3
Aykin-Burns, N.4
Kim, H.S.5
Mishra, M.6
Sun, L.7
Nguyen, P.8
Ahn, B.H.9
Leclerc, J.10
Deng, C.X.11
Spitz, D.R.12
Gius, D.13
-
97
-
-
78649521247
-
Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
-
X. Qiu, K. Brown, M.D. Hirschey, E. Verdin, and D. Chen Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation Cell Metab. 12 2010 662 667
-
(2010)
Cell Metab.
, vol.12
, pp. 662-667
-
-
Qiu, X.1
Brown, K.2
Hirschey, M.D.3
Verdin, E.4
Chen, D.5
-
98
-
-
68949212379
-
Lysine acetylation targets protein complexes and co-regulates major cellular functions
-
C. Choudhary, C. Kumar, F. Gnad, M.L. Nielsen, M. Rehman, T.C. Walther, J.V. Olsen, and M. Mann Lysine acetylation targets protein complexes and co-regulates major cellular functions Science 325 2009 834 840
-
(2009)
Science
, vol.325
, pp. 834-840
-
-
Choudhary, C.1
Kumar, C.2
Gnad, F.3
Nielsen, M.L.4
Rehman, M.5
Walther, T.C.6
Olsen, J.V.7
Mann, M.8
-
99
-
-
78650248160
-
Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
-
R. Tao, M.C. Coleman, J.D. Pennington, O. Ozden, S.H. Park, H. Jiang, H.S. Kim, C.R. Flynn, S. Hill, W. Hayes McDonald, A.K. Olivier, D.R. Spitz, and D. Gius Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress Mol. Cell 40 2010 893 904
-
(2010)
Mol. Cell
, vol.40
, pp. 893-904
-
-
Tao, R.1
Coleman, M.C.2
Pennington, J.D.3
Ozden, O.4
Park, S.H.5
Jiang, H.6
Kim, H.S.7
Flynn, C.R.8
Hill, S.9
Hayes McDonald, W.10
Olivier, A.K.11
Spitz, D.R.12
Gius, D.13
-
100
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
B.H. Ahn, H.S. Kim, S. Song, I.H. Lee, J. Liu, A. Vassilopoulos, C.X. Deng, and T. Finkel A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis Proc. Natl. Acad. Sci. USA 105 2008 14447 14452
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 14447-14452
-
-
Ahn, B.H.1
Kim, H.S.2
Song, S.3
Lee, I.H.4
Liu, J.5
Vassilopoulos, A.6
Deng, C.X.7
Finkel, T.8
-
101
-
-
75349111140
-
Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
-
H. Cimen, M.J. Han, Y. Yang, Q. Tong, H. Koc, and E.C. Koc Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria Biochemistry 49 2010 304 311
-
(2010)
Biochemistry
, vol.49
, pp. 304-311
-
-
Cimen, H.1
Han, M.J.2
Yang, Y.3
Tong, Q.4
Koc, H.5
Koc, E.C.6
-
102
-
-
33748316536
-
SIRT4 Inhibits Glutamate Dehydrogenase and Opposes the Effects of Calorie Restriction in Pancreatic β Cells
-
DOI 10.1016/j.cell.2006.06.057, PII S0092867406010208
-
M.C. Haigis, R. Mostoslavsky, K.M. Haigis, K. Fahie, D.C. Christodoulou, A.J. Murphy, D.M. Valenzuela, G.D. Yancopoulos, M. Karow, G. Blander, C. Wolberger, T.A. Prolla, R. Weindruch, F.W. Alt, and L. Guarente SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells Cell 126 2006 941 954 (Pubitemid 44321935)
-
(2006)
Cell
, vol.126
, Issue.5
, pp. 941-954
-
-
Haigis, M.C.1
Mostoslavsky, R.2
Haigis, K.M.3
Fahie, K.4
Christodoulou, D.C.5
Murphy, AndrewJ.6
Valenzuela, D.M.7
Yancopoulos, G.D.8
Karow, M.9
Blander, G.10
Wolberger, C.11
Prolla, T.A.12
Weindruch, R.13
Alt, F.W.14
Guarente, L.15
-
103
-
-
77950339065
-
Ammonia toxicity to the brain: Effects on creatine metabolism and transport and protective roles of creatine
-
O. Braissant Ammonia toxicity to the brain: effects on creatine metabolism and transport and protective roles of creatine Mol. Genet. Metab. 100 Suppl. 1 2010 S53 S58
-
(2010)
Mol. Genet. Metab.
, vol.100
, Issue.SUPPL. 1
-
-
Braissant, O.1
-
104
-
-
65249087389
-
SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
-
T. Nakagawa, D.J. Lomb, M.C. Haigis, and L. Guarente SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle Cell 137 2009 560 570
-
(2009)
Cell
, vol.137
, pp. 560-570
-
-
Nakagawa, T.1
Lomb, D.J.2
Haigis, M.C.3
Guarente, L.4
-
105
-
-
33746924468
-
Hexokinase II: Cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria
-
DOI 10.1038/sj.onc.1209603, PII 1209603
-
S.P. Mathupala, Y.H. Ko, and P.L. Pedersen Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria Oncogene 25 2006 4777 4786 (Pubitemid 44187625)
-
(2006)
Oncogene
, vol.25
, Issue.34
, pp. 4777-4786
-
-
Mathupala, S.P.1
Ko, Y.H.2
Pedersen, P.L.3
-
106
-
-
79952501323
-
SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
-
L.W. Finley, A. Carracedo, J. Lee, A. Souza, A. Egia, J. Zhang, J. Teruya-Feldstein, P.I. Moreira, S.M. Cardoso, C.B. Clish, P.P. Pandolfi, and M.C. Haigis SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization Cancer Cell 19 2011 416 428
-
(2011)
Cancer Cell
, vol.19
, pp. 416-428
-
-
Finley, L.W.1
Carracedo, A.2
Lee, J.3
Souza, A.4
Egia, A.5
Zhang, J.6
Teruya-Feldstein, J.7
Moreira, P.I.8
Cardoso, S.M.9
Clish, C.B.10
Pandolfi, P.P.11
Haigis, M.C.12
-
107
-
-
77951176793
-
Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria
-
N. Shulga, R. Wilson-Smith, and J.G. Pastorino Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria J. Cell Sci. 123 2010 894 902
-
(2010)
J. Cell Sci.
, vol.123
, pp. 894-902
-
-
Shulga, N.1
Wilson-Smith, R.2
Pastorino, J.G.3
-
108
-
-
79959819034
-
SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production
-
E.L. Bell, B.M. Emerling, S.J. Ricoult, and L. Guarente SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production Oncogene 30 2011 2986 2996
-
(2011)
Oncogene
, vol.30
, pp. 2986-2996
-
-
Bell, E.L.1
Emerling, B.M.2
Ricoult, S.J.3
Guarente, L.4
-
109
-
-
77955287479
-
Sirt3 protects in vitro-fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest
-
Y. Kawamura, Y. Uchijima, N. Horike, K. Tonami, K. Nishiyama, T. Amano, T. Asano, Y. Kurihara, and H. Kurihara Sirt3 protects in vitro-fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest J. Clin. Invest. 120 2010 2817 2828
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 2817-2828
-
-
Kawamura, Y.1
Uchijima, Y.2
Horike, N.3
Tonami, K.4
Nishiyama, K.5
Amano, T.6
Asano, T.7
Kurihara, Y.8
Kurihara, H.9
-
110
-
-
77956295588
-
P53-induced growth arrest is regulated by the mitochondrial SirT3 deacetylase
-
S. Li, M. Banck, S. Mujtaba, M.M. Zhou, M.M. Sugrue, and M.J. Walsh p53-induced growth arrest is regulated by the mitochondrial SirT3 deacetylase PLoS One 5 2010 e10486
-
(2010)
PLoS One
, vol.5
, pp. 10486
-
-
Li, S.1
Banck, M.2
Mujtaba, S.3
Zhou, M.M.4
Sugrue, M.M.5
Walsh, M.J.6
-
111
-
-
36849002444
-
SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways
-
S.J. Allison, and J. Milner SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways Cell Cycle 6 2007 2669 2677 (Pubitemid 350224051)
-
(2007)
Cell Cycle
, vol.6
, Issue.21
, pp. 2669-2677
-
-
Allison, S.J.1
Milner, J.2
-
112
-
-
79953799195
-
Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer
-
T.Y. Alhazzazi, P. Kamarajan, N. Joo, J.Y. Huang, E. Verdin, N.J. D'Silva, and Y.L. Kapila Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer Cancer 117 2011 1670 1678
-
(2011)
Cancer
, vol.117
, pp. 1670-1678
-
-
Alhazzazi, T.Y.1
Kamarajan, P.2
Joo, N.3
Huang, J.Y.4
Verdin, E.5
D'Silva, N.J.6
Kapila, Y.L.7
-
113
-
-
72449194701
-
Obesity and type 2 diabetes: Slow down!-Can metabolic deceleration protect the islet beta cell from excess nutrient-induced damage?
-
S. Andrikopoulos Obesity and type 2 diabetes: slow down!-Can metabolic deceleration protect the islet beta cell from excess nutrient-induced damage? Mol. Cell. Endocrinol. 316 2010 140 146
-
(2010)
Mol. Cell. Endocrinol.
, vol.316
, pp. 140-146
-
-
Andrikopoulos, S.1
-
114
-
-
17144424946
-
SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes
-
DOI 10.1074/jbc.M414670200
-
T. Shi, F. Wang, E. Stieren, and Q. Tong SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes J. Biol. Chem. 280 2005 13560 13567 (Pubitemid 40517248)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.14
, pp. 13560-13567
-
-
Shi, T.1
Wang, F.2
Stieren, E.3
Tong, Q.4
-
115
-
-
77955347446
-
Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis
-
X. Kong, R. Wang, Y. Xue, X. Liu, H. Zhang, Y. Chen, F. Fang, and Y. Chang Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis PLoS One 5 2010 e11707
-
(2010)
PLoS One
, vol.5
, pp. 11707
-
-
Kong, X.1
Wang, R.2
Xue, Y.3
Liu, X.4
Zhang, H.5
Chen, Y.6
Fang, F.7
Chang, Y.8
-
116
-
-
78751513117
-
Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
-
A.A. Kendrick, M. Choudhury, S.M. Rahman, C.E. McCurdy, M. Friederich, J.L. Van Hove, P.A. Watson, N. Birdsey, J. Bao, D. Gius, M.N. Sack, E. Jing, C.R. Kahn, J.E. Friedman, and K.R. Jonscher Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation Biochem. J. 433 2011 505 514
-
(2011)
Biochem. J.
, vol.433
, pp. 505-514
-
-
Kendrick, A.A.1
Choudhury, M.2
Rahman, S.M.3
McCurdy, C.E.4
Friederich, M.5
Van Hove, J.L.6
Watson, P.A.7
Birdsey, N.8
Bao, J.9
Gius, D.10
Sack, M.N.11
Jing, E.12
Kahn, C.R.13
Friedman, J.E.14
Jonscher, K.R.15
-
117
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
M.D. Hirschey, T. Shimazu, E. Goetzman, E. Jing, B. Schwer, D.B. Lombard, C.A. Grueter, C. Harris, S. Biddinger, O.R. Ilkayeva, R.D. Stevens, Y. Li, A.K. Saha, N.B. Ruderman, J.R. Bain, C.B. Newgard, R.V. Farese Jr., F.W. Alt, C.R. Kahn, and E. Verdin SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation Nature 464 2010 121 125
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
Shimazu, T.2
Goetzman, E.3
Jing, E.4
Schwer, B.5
Lombard, D.B.6
Grueter, C.A.7
Harris, C.8
Biddinger, S.9
Ilkayeva, O.R.10
Stevens, R.D.11
Li, Y.12
Saha, A.K.13
Ruderman, N.B.14
Bain, J.R.15
Newgard, C.B.16
Farese, Jr.R.V.17
Alt, F.W.18
Kahn, C.R.19
Verdin, E.20
more..
-
118
-
-
76349125988
-
SIRT3 reduces lipid accumulation via AMPK activation in human hepatic cells
-
T. Shi, G.Q. Fan, and S.D. Xiao SIRT3 reduces lipid accumulation via AMPK activation in human hepatic cells J. Dig. Dis. 11 2010 55 62
-
(2010)
J. Dig. Dis.
, vol.11
, pp. 55-62
-
-
Shi, T.1
Fan, G.Q.2
Xiao, S.D.3
-
119
-
-
70350706093
-
The emerging characterization of lysine residue deacetylation on the modulation of mitochondrial function and cardiovascular biology
-
Z. Lu, I. Scott, B.R. Webster, and M.N. Sack The emerging characterization of lysine residue deacetylation on the modulation of mitochondrial function and cardiovascular biology Circ. Res. 105 2009 830 841
-
(2009)
Circ. Res.
, vol.105
, pp. 830-841
-
-
Lu, Z.1
Scott, I.2
Webster, B.R.3
Sack, M.N.4
-
120
-
-
78650456535
-
Angiotensin II blockade: A strategy to slow ageing by protecting mitochondria?
-
E.M. de Cavanagh, F. Inserra, and L. Ferder Angiotensin II blockade: a strategy to slow ageing by protecting mitochondria? Cardiovasc. Res. 89 2011 31 40
-
(2011)
Cardiovasc. Res.
, vol.89
, pp. 31-40
-
-
De Cavanagh, E.M.1
Inserra, F.2
Ferder, L.3
-
121
-
-
65349128571
-
Disruption of the Ang II type 1 receptor promotes longevity in mice
-
A. Benigni, D. Corna, C. Zoja, A. Sonzogni, R. Latini, M. Salio, S. Conti, D. Rottoli, L. Longaretti, P. Cassis, M. Morigi, T.M. Coffman, and G. Remuzzi Disruption of the Ang II type 1 receptor promotes longevity in mice J. Clin. Invest. 119 2009 524 530
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 524-530
-
-
Benigni, A.1
Corna, D.2
Zoja, C.3
Sonzogni, A.4
Latini, R.5
Salio, M.6
Conti, S.7
Rottoli, D.8
Longaretti, L.9
Cassis, P.10
Morigi, M.11
Coffman, T.M.12
Remuzzi, G.13
-
122
-
-
46249095235
-
SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells
-
R. Miyazaki, T. Ichiki, T. Hashimoto, K. Inanaga, I. Imayama, J. Sadoshima, and K. Sunagawa SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells Arterioscler. Thromb. Vasc. Biol. 28 2008 1263 1269
-
(2008)
Arterioscler. Thromb. Vasc. Biol.
, vol.28
, pp. 1263-1269
-
-
Miyazaki, R.1
Ichiki, T.2
Hashimoto, T.3
Inanaga, K.4
Imayama, I.5
Sadoshima, J.6
Sunagawa, K.7
-
123
-
-
73449133720
-
Nicotinamide phosphoribosyltransferase regulates cell survival through autophagy in cardiomyocytes
-
C.P. Hsu, N. Hariharan, R.R. Alcendor, S. Oka, and J. Sadoshima Nicotinamide phosphoribosyltransferase regulates cell survival through autophagy in cardiomyocytes Autophagy 5 2009 1229 1231
-
(2009)
Autophagy
, vol.5
, pp. 1229-1231
-
-
Hsu, C.P.1
Hariharan, N.2
Alcendor, R.R.3
Oka, S.4
Sadoshima, J.5
-
124
-
-
79961032436
-
SIRT3-dependent deacetylation exacerbates acetaminophen hepatotoxicity
-
Z. Lu, M. Bourdi, J.H. Li, A.M. Aponte, Y. Chen, D.B. Lombard, M. Gucek, L.R. Pohl, and M.N. Sack SIRT3-dependent deacetylation exacerbates acetaminophen hepatotoxicity EMBO Rep. 12 2011 840 846
-
(2011)
EMBO Rep.
, vol.12
, pp. 840-846
-
-
Lu, Z.1
Bourdi, M.2
Li, J.H.3
Aponte, A.M.4
Chen, Y.5
Lombard, D.B.6
Gucek, M.7
Pohl, L.R.8
Sack, M.N.9
-
125
-
-
31844443064
-
Inhibition of human mitochondrial aldehyde dehydrogenase by 4-hydroxynon-2-enal and 4-oxonon-2-enal
-
DOI 10.1021/tx0501839
-
J.A. Doorn, T.D. Hurley, and D.R. Petersen Inhibition of human mitochondrial aldehyde dehydrogenase by 4-hydroxynon-2-enal and 4-oxonon-2-enal Chem. Res. Toxicol. 19 2006 102 110 (Pubitemid 43185467)
-
(2006)
Chemical Research in Toxicology
, vol.19
, Issue.1
, pp. 102-110
-
-
Doorn, J.A.1
Hurley, T.D.2
Petersen, D.R.3
-
126
-
-
0028149489
-
Association of acetaminophen hepatotoxicity with fasting and ethanol use
-
DOI 10.1001/jama.272.23.1845
-
D.C. Whitcomb, and G.D. Block Association of acetaminophen hepatotoxicity with fasting and ethanol use JAMA 272 1994 1845 1850 (Pubitemid 24374525)
-
(1994)
Journal of the American Medical Association
, vol.272
, Issue.23
, pp. 1845-1850
-
-
Whitcomb, D.C.1
Block, G.D.2
-
127
-
-
70350493682
-
Paracetamol poisoning below toxic level causing liver damage in a fasting adult
-
W.K. Fernando, and P.L. Ariyananda Paracetamol poisoning below toxic level causing liver damage in a fasting adult Ceylon Med. J. 54 2009 16 17
-
(2009)
Ceylon Med. J.
, vol.54
, pp. 16-17
-
-
Fernando, W.K.1
Ariyananda, P.L.2
|