-
1
-
-
84861890085
-
Regulation of glucose transporter translocation in health and diabetes
-
Bogan, J. S. (2012) Regulation of glucose transporter translocation in health and diabetes. Annu. Rev. Biochem. 81, 507-532
-
(2012)
Annu. Rev. Biochem.
, vol.81
, pp. 507-532
-
-
Bogan, J.S.1
-
2
-
-
77955051874
-
Biogenesis and regulation of insulin- responsive vesicles containing GLUT4
-
Bogan, J. S., and Kandror, K. V. (2010) Biogenesis and regulation of insulin- responsive vesicles containing GLUT4. Curr. Opin. Cell Biol. 22, 506-512
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 506-512
-
-
Bogan, J.S.1
Kandror, K.V.2
-
3
-
-
79955715306
-
The sugar is sIRVed: Sorting Glut4 and its fellow travelers
-
Kandror, K. V., and Pilch, P. F. (2011) The sugar is sIRVed: sorting Glut4 and its fellow travelers. Traffic 12, 665-671
-
(2011)
Traffic
, vol.12
, pp. 665-671
-
-
Kandror, K.V.1
Pilch, P.F.2
-
4
-
-
84891679672
-
Prolonged insulin stimulation down-regulates GLUT4 through oxidative stress-mediated retromer inhibition by a protein kinase CK2-dependent mechanism in 3T3-L1 adipocytes
-
Ma, J., Nakagawa, Y., Kojima, I., and Shibata, H. (2014) Prolonged insulin stimulation down-regulates GLUT4 through oxidative stress-mediated retromer inhibition by a protein kinase CK2-dependent mechanism in 3T3-L1 adipocytes. J. Biol. Chem. 289, 133-142
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 133-142
-
-
Ma, J.1
Nakagawa, Y.2
Kojima, I.3
Shibata, H.4
-
5
-
-
66349085035
-
Arole for the CHC22 clathrin heavy-chain isoform in human glucose metabolism
-
Vassilopoulos, S., Esk, C., Hoshino, S., Funke, B. H., Chen, C. Y., Plocik, A. M., Wright, W. E., Kucherlapati, R., and Brodsky, F. M. (2009)Arole for the CHC22 clathrin heavy-chain isoform in human glucose metabolism. Science 324, 1192-1196
-
(2009)
Science
, vol.324
, pp. 1192-1196
-
-
Vassilopoulos, S.1
Esk, C.2
Hoshino, S.3
Funke, B.H.4
Chen, C.Y.5
Plocik, A.M.6
Wright, W.E.7
Kucherlapati, R.8
Brodsky, F.M.9
-
6
-
-
0037073741
-
Translocation of small preformed vesicles is responsible for the insulin activation of glucose transport in adipose cells: Evidence from the in vitro reconstitution assay
-
Xu, Z., and Kandror, K. V. (2002) Translocation of small preformed vesicles is responsible for the insulin activation of glucose transport in adipose cells: evidence from the in vitro reconstitution assay. J. Biol. Chem. 277, 47972-47975
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 47972-47975
-
-
Xu, Z.1
Kandror, K.V.2
-
7
-
-
0032104120
-
Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance
-
Garvey, W. T., Maianu, L., Zhu, J. H., Brechtel-Hook, G., Wallace, P., and Baron, A. D. (1998) Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J. Clin. Invest. 101, 2377-2386
-
(1998)
J. Clin. Invest.
, vol.101
, pp. 2377-2386
-
-
Garvey, W.T.1
Maianu, L.2
Zhu, J.H.3
Brechtel-Hook, G.4
Wallace, P.5
Baron, A.D.6
-
8
-
-
0035191192
-
Adipocytes exhibit abnormal subcellular distribution and translocation of vesicles containing glucose transporter 4 and insulin-regulated aminopeptidase in type 2 diabetes mellitus: Implications regarding defects in vesicle trafficking
-
Maianu, L., Keller, S. R., and Garvey, W. T. (2001) Adipocytes exhibit abnormal subcellular distribution and translocation of vesicles containing glucose transporter 4 and insulin-regulated aminopeptidase in type 2 diabetes mellitus: implications regarding defects in vesicle trafficking. J. Clin. Endocrinol. Metab. 86, 5450-5456
-
(2001)
J. Clin. Endocrinol. Metab.
, vol.86
, pp. 5450-5456
-
-
Maianu, L.1
Keller, S.R.2
Garvey, W.T.3
-
9
-
-
0034961514
-
Insulin-responsive compartments containing GLUT4 in 3T3-L1 and CHO cells: Regulation by amino acid concentrations
-
Bogan, J. S., McKee, A. E., and Lodish, H. F. (2001) Insulin-responsive compartments containing GLUT4 in 3T3-L1 and CHO cells: regulation by amino acid concentrations. Mol. Cell. Biol. 21, 4785-4806
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 4785-4806
-
-
Bogan, J.S.1
McKee, A.E.2
Lodish, H.F.3
-
10
-
-
21344439799
-
Sortilin is essential and sufficient for the formation of Glut4 storage vesicles in 3T3-L1 adipocytes
-
Shi, J., and Kandror, K. V. (2005) Sortilin is essential and sufficient for the formation of Glut4 storage vesicles in 3T3-L1 adipocytes. Dev. Cell 9, 99-108
-
(2005)
Dev. Cell
, vol.9
, pp. 99-108
-
-
Shi, J.1
Kandror, K.V.2
-
11
-
-
38049174667
-
Insulin releases Glut4 from static storage compartments into cycling endosomes and increases the rate constant for Glut4 exocytosis
-
Muretta, J. M., Romenskaia, I., and Mastick, C. C. (2008) Insulin releases Glut4 from static storage compartments into cycling endosomes and increases the rate constant for Glut4 exocytosis. J. Biol. Chem. 283, 311-323
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 311-323
-
-
Muretta, J.M.1
Romenskaia, I.2
Mastick, C.C.3
-
12
-
-
79958236857
-
Dual-mode of insulin action controls GLUT4 vesicle exocytosis
-
Xu, Y., Rubin, B. R., Orme, C. M., Karpikov, A., Yu, C., Bogan, J. S., and Toomre, D. K. (2011) Dual-mode of insulin action controls GLUT4 vesicle exocytosis. J. Cell Biol. 193, 643-653
-
(2011)
J. Cell Biol.
, vol.193
, pp. 643-653
-
-
Xu, Y.1
Rubin, B.R.2
Orme, C.M.3
Karpikov, A.4
Yu, C.5
Bogan, J.S.6
Toomre, D.K.7
-
13
-
-
84866347107
-
Rab10 and myosin- Va mediate insulin-stimulated GLUT4 storage vesicle translocation in adipocytes
-
Chen, Y., Wang, Y., Zhang, J., Deng, Y., Jiang, L., Song, E., Wu, X. S., Hammer, J. A., Xu, T., and Lippincott-Schwartz, J. (2012) Rab10 and myosin- Va mediate insulin-stimulated GLUT4 storage vesicle translocation in adipocytes. J. Cell Biol. 198, 545-560
-
(2012)
J. Cell Biol.
, vol.198
, pp. 545-560
-
-
Chen, Y.1
Wang, Y.2
Zhang, J.3
Deng, Y.4
Jiang, L.5
Song, E.6
Wu, X.S.7
Hammer, J.A.8
Xu, T.9
Lippincott-Schwartz, J.10
-
14
-
-
84896275160
-
A proteolytic pathway that controls glucose uptake in fat and muscle
-
Belman, J. P., Habtemichael, E. N., and Bogan, J. S. (2014) A proteolytic pathway that controls glucose uptake in fat and muscle. Rev. Endocr. Metab. Disord. 15, 55-66
-
(2014)
Rev. Endocr. Metab. Disord.
, vol.15
, pp. 55-66
-
-
Belman, J.P.1
Habtemichael, E.N.2
Bogan, J.S.3
-
15
-
-
0142184334
-
Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking
-
Bogan, J. S., Hendon, N., McKee, A. E., Tsao, T. S., and Lodish, H. F. (2003) Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking. Nature 425, 727-733
-
(2003)
Nature
, vol.425
, pp. 727-733
-
-
Bogan, J.S.1
Hendon, N.2
McKee, A.E.3
Tsao, T.S.4
Lodish, H.F.5
-
16
-
-
33947592425
-
The glucose transporter 4-regulating protein TUG is essential for highly insulin-responsive glucose uptake in 3T3-L1 adipocytes
-
Yu, C., Cresswell, J., Löffler, M. G., and Bogan, J. S. (2007) The glucose transporter 4-regulating protein TUG is essential for highly insulin-responsive glucose uptake in 3T3-L1 adipocytes. J. Biol. Chem. 282, 7710-7722
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 7710-7722
-
-
Yu, C.1
Cresswell, J.2
Löffler, M.G.3
Bogan, J.S.4
-
17
-
-
84863621392
-
Endoproteolytic cleavage of TUG protein regulates GLUT4 glucose transporter translocation
-
Bogan, J. S., Rubin, B. R., Yu, C., Löffler, M. G., Orme, C. M., Belman, J. P., McNally, L. J., Hao, M., and Cresswell, J. A. (2012) Endoproteolytic cleavage of TUG protein regulates GLUT4 glucose transporter translocation. J. Biol. Chem. 287, 23932-23947
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 23932-23947
-
-
Bogan, J.S.1
Rubin, B.R.2
Yu, C.3
Löffler, M.G.4
Orme, C.M.5
Belman, J.P.6
McNally, L.J.7
Hao, M.8
Cresswell, J.A.9
-
18
-
-
84880058904
-
Enhanced fasting glucose turnover in mice with disrupted action of TUG protein in skeletal muscle
-
Löffler, M. G., Birkenfeld, A. L., Philbrick, K. M., Belman, J. P., Habtemichael, E. N., Booth, C. J., Castorena, C. M., Choi, C. S., Jornayvaz, F. R., Gassaway, B. M., Lee, H. Y., Cartee, G. D., Philbrick, W., Shulman, G. I., Samuel, V. T., and Bogan, J. S. (2013) Enhanced fasting glucose turnover in mice with disrupted action of TUG protein in skeletal muscle. J. Biol. Chem. 288, 20135-20150
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 20135-20150
-
-
Löffler, M.G.1
Birkenfeld, A.L.2
Philbrick, K.M.3
Belman, J.P.4
Habtemichael, E.N.5
Booth, C.J.6
Castorena, C.M.7
Choi, C.S.8
Jornayvaz, F.R.9
Gassaway, B.M.10
Lee, H.Y.11
Cartee, G.D.12
Philbrick, W.13
Shulman, G.I.14
Samuel, V.T.15
Bogan, J.S.16
-
19
-
-
84857464993
-
The ubiquitin regulatory X (UBX) domain-containing protein TUG regulates the p97 ATPase and resides at the endoplasmic reticulum-Golgi intermediate compartment
-
Orme, C. M., and Bogan, J. S. (2012) The ubiquitin regulatory X (UBX) domain-containing protein TUG regulates the p97 ATPase and resides at the endoplasmic reticulum-Golgi intermediate compartment. J. Biol. Chem. 287, 6679-6692
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 6679-6692
-
-
Orme, C.M.1
Bogan, J.S.2
-
20
-
-
3042841303
-
Insulin increases cell surface GLUT4 levels by dose dependently discharging GLUT4 into a cell surface recycling pathway
-
Govers, R., Coster, A. C., and James, D. E. (2004) Insulin increases cell surface GLUT4 levels by dose dependently discharging GLUT4 into a cell surface recycling pathway. Mol. Cell Biol. 24, 6456-6466
-
(2004)
Mol. Cell Biol.
, vol.24
, pp. 6456-6466
-
-
Govers, R.1
Coster, A.C.2
James, D.E.3
-
21
-
-
0029955714
-
The pCL vector system: Rapid production of helper-free, high-titer, recombinant retroviruses
-
Naviaux, R. K., Costanzi, E., Haas, M., and Verma, I. M. (1996) The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701-5705
-
(1996)
J. Virol.
, vol.70
, pp. 5701-5705
-
-
Naviaux, R.K.1
Costanzi, E.2
Haas, M.3
Verma, I.M.4
-
22
-
-
33947729578
-
The mammalian Golgi regulates numb signaling in asymmetric cell division by releasing ACBD3 during mitosis
-
Zhou, Y., Atkins, J. B., Rompani, S. B., Bancescu, D. L., Petersen, P. H., Tang, H., Zou, K., Stewart, S. B., and Zhong, W. (2007) The mammalian Golgi regulates numb signaling in asymmetric cell division by releasing ACBD3 during mitosis. Cell 129, 163-178
-
(2007)
Cell
, vol.129
, pp. 163-178
-
-
Zhou, Y.1
Atkins, J.B.2
Rompani, S.B.3
Bancescu, D.L.4
Petersen, P.H.5
Tang, H.6
Zou, K.7
Stewart, S.B.8
Zhong, W.9
-
23
-
-
0037291214
-
The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
-
North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M., and Verdin, E. (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437-444
-
(2003)
Mol. Cell
, vol.11
, pp. 437-444
-
-
North, B.J.1
Marshall, B.L.2
Borra, M.T.3
Denu, J.M.4
Verdin, E.5
-
24
-
-
0034630496
-
Generation of mammalian cells stably expressing multiple genes at predetermined levels
-
Liu, X., Constantinescu, S. N., Sun, Y., Bogan, J. S., Hirsch, D., Weinberg, R. A., and Lodish, H. F. (2000) Generation of mammalian cells stably expressing multiple genes at predetermined levels. Anal. Biochem. 280, 20-28
-
(2000)
Anal. Biochem.
, vol.280
, pp. 20-28
-
-
Liu, X.1
Constantinescu, S.N.2
Sun, Y.3
Bogan, J.S.4
Hirsch, D.5
Weinberg, R.A.6
Lodish, H.F.7
-
25
-
-
84884745683
-
Insulin responsiveness of glucose transporter 4 in 3T3-L1 cells depends on the presence of sortilin
-
Huang, G., Buckler-Pena, D., Nauta, T., Singh, M., Asmar, A., Shi, J., Kim, J. Y., and Kandror, K. V. (2013) Insulin responsiveness of glucose transporter 4 in 3T3-L1 cells depends on the presence of sortilin. Mol. Biol. Cell 24, 3115-3122
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 3115-3122
-
-
Huang, G.1
Buckler-Pena, D.2
Nauta, T.3
Singh, M.4
Asmar, A.5
Shi, J.6
Kim, J.Y.7
Kandror, K.V.8
-
26
-
-
84883167011
-
Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice
-
Camporez, J. P., Jornayvaz, F. R., Petersen, M. C., Pesta, D., Guigni, B. A., Serr, J., Zhang, D., Kahn, M., Samuel, V. T., Jurczak, M. J., and Shulman, G. I. (2013) Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 154, 3099-3109
-
(2013)
Endocrinology
, vol.154
, pp. 3099-3109
-
-
Camporez, J.P.1
Jornayvaz, F.R.2
Petersen, M.C.3
Pesta, D.4
Guigni, B.A.5
Serr, J.6
Zhang, D.7
Kahn, M.8
Samuel, V.T.9
Jurczak, M.J.10
Shulman, G.I.11
-
27
-
-
33750982609
-
Golgin- 160 is required for the Golgi membrane sorting of the insulin-responsive glucose transporter GLUT4 in adipocytes
-
Williams, D., Hicks, S. W., Machamer, C. E., and Pessin, J. E. (2006) Golgin- 160 is required for the Golgi membrane sorting of the insulin-responsive glucose transporter GLUT4 in adipocytes. Mol. Biol. Cell 17, 5346-5355
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 5346-5355
-
-
Williams, D.1
Hicks, S.W.2
Machamer, C.E.3
Pessin, J.E.4
-
28
-
-
84864996189
-
Mechanistic insights into the regulation of metabolic enzymes by acetylation
-
Xiong, Y., and Guan, K. L. (2012) Mechanistic insights into the regulation of metabolic enzymes by acetylation. J. Cell Biol. 198, 155-164
-
(2012)
J. Cell Biol.
, vol.198
, pp. 155-164
-
-
Xiong, Y.1
Guan, K.L.2
-
29
-
-
84871938521
-
Life, death, and the metabolically controlled protein acetylome
-
Johnson, E. S., and Kornbluth, S. (2012) Life, death, and the metabolically controlled protein acetylome. Curr. Opin. Cell Biol. 24, 876-880
-
(2012)
Curr. Opin. Cell Biol.
, vol.24
, pp. 876-880
-
-
Johnson, E.S.1
Kornbluth, S.2
-
30
-
-
33846709501
-
Structural basis for nicotinamide inhibition and base exchange in Sir2 enzymes
-
Sanders, B. D., Zhao, K., Slama, J. T., and Marmorstein, R. (2007) Structural basis for nicotinamide inhibition and base exchange in Sir2 enzymes. Mol. Cell 25, 463-472
-
(2007)
Mol. Cell
, vol.25
, pp. 463-472
-
-
Sanders, B.D.1
Zhao, K.2
Slama, J.T.3
Marmorstein, R.4
-
31
-
-
49349107518
-
Lysine acetylation: Codified crosstalk with other posttranslational modifications
-
Yang, X. J., and Seto, E. (2008) Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol. Cell 31, 449-461
-
(2008)
Mol. Cell
, vol.31
, pp. 449-461
-
-
Yang, X.J.1
Seto, E.2
-
32
-
-
23844518687
-
Isoform-specific interaction of golgin-160 with the Golgi-associated protein PIST
-
Hicks, S. W., and Machamer, C. E. (2005) Isoform-specific interaction of golgin-160 with the Golgi-associated protein PIST. J. Biol. Chem. 280, 28944-28951
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 28944-28951
-
-
Hicks, S.W.1
Machamer, C.E.2
-
33
-
-
33748802760
-
GCP60 preferentially interacts with a caspase-generated golgin-160 fragment
-
Sbodio, J. I., Hicks, S. W., Simon, D., and Machamer, C. E. (2006) GCP60 preferentially interacts with a caspase-generated golgin-160 fragment. J. Biol. Chem. 281, 27924-27931
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 27924-27931
-
-
Sbodio, J.I.1
Hicks, S.W.2
Simon, D.3
Machamer, C.E.4
-
34
-
-
35648978203
-
Identification of a redox-sensitive cysteine in GCP60 that regulates its interaction with golgin-160
-
Sbodio, J. I., and Machamer, C. E. (2007) Identification of a redox-sensitive cysteine in GCP60 that regulates its interaction with golgin-160. J. Biol. Chem. 282, 29874-29881
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 29874-29881
-
-
Sbodio, J.I.1
Machamer, C.E.2
-
35
-
-
77952105024
-
Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): An emerging signaling molecule
-
Fan, J., Liu, J., Culty, M., and Papadopoulos, V. (2010) Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Prog. Lipid Res. 49, 218-234
-
(2010)
Prog. Lipid Res.
, vol.49
, pp. 218-234
-
-
Fan, J.1
Liu, J.2
Culty, M.3
Papadopoulos, V.4
-
36
-
-
84859977895
-
Sirtuins mediate mammalian metabolic responses to nutrient availability
-
Chalkiadaki, A., and Guarente, L. (2012) Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 8, 287-296
-
(2012)
Nat. Rev. Endocrinol.
, vol.8
, pp. 287-296
-
-
Chalkiadaki, A.1
Guarente, L.2
-
37
-
-
0035913911
-
Negative control of p53 by Sir2α promotes cell survival under stress
-
Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001) Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137-148
-
(2001)
Cell
, vol.107
, pp. 137-148
-
-
Luo, J.1
Nikolaev, A.Y.2
Imai, S.3
Chen, D.4
Su, F.5
Shiloh, A.6
Guarente, L.7
Gu, W.8
-
38
-
-
15444379602
-
SIRT1 shows no substrate specificity in vitro
-
Blander, G., Olejnik, J., Krzymanska-Olejnik, E., McDonagh, T., Haigis, M., Yaffe, M. B., and Guarente, L. (2005) SIRT1 shows no substrate specificity in vitro. J. Biol. Chem. 280, 9780-9785
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 9780-9785
-
-
Blander, G.1
Olejnik, J.2
Krzymanska-Olejnik, E.3
McDonagh, T.4
Haigis, M.5
Yaffe, M.B.6
Guarente, L.7
-
39
-
-
0033595120
-
Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes
-
Cline, G. W., Petersen, K. F., Krssak, M., Shen, J., Hundal, R. S., Trajanoski, Z., Inzucchi, S., Dresner, A., Rothman, D. L., and Shulman, G. I. (1999) Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N. Engl. J. Med. 341, 240-246
-
(1999)
N. Engl. J. Med.
, vol.341
, pp. 240-246
-
-
Cline, G.W.1
Petersen, K.F.2
Krssak, M.3
Shen, J.4
Hundal, R.S.5
Trajanoski, Z.6
Inzucchi, S.7
Dresner, A.8
Rothman, D.L.9
Shulman, G.I.10
-
40
-
-
84894484960
-
Interactions among glucose delivery, transport, and phosphorylation that underlie skeletal muscle insulin resistance in obesity and type 2 diabetes: Studies with dynamic PET imaging
-
Goodpaster, B. H., Bertoldo, A., Ng, J. M., Azuma, K., Pencek, R. R., Kelley, C., Price, J. C., Cobelli, C., and Kelley, D. E. (2014) Interactions among glucose delivery, transport, and phosphorylation that underlie skeletal muscle insulin resistance in obesity and type 2 diabetes: studies with dynamic PET imaging. Diabetes 63, 1058-1068
-
(2014)
Diabetes
, vol.63
, pp. 1058-1068
-
-
Goodpaster, B.H.1
Bertoldo, A.2
Ng, J.M.3
Azuma, K.4
Pencek, R.R.5
Kelley, C.6
Price, J.C.7
Cobelli, C.8
Kelley, D.E.9
-
41
-
-
61349198937
-
Intracellular retention and insulinstimulated mobilization of GLUT4 glucose transporters
-
Rubin, B. R., and Bogan, J. S. (2009) Intracellular retention and insulinstimulated mobilization of GLUT4 glucose transporters. Vitam. Horm. 80, 155-192
-
(2009)
Vitam. Horm.
, vol.80
, pp. 155-192
-
-
Rubin, B.R.1
Bogan, J.S.2
-
42
-
-
19644372736
-
P115 interacts with the GLUT4 vesicle protein, IRAP, and plays a critical role in insulin-stimulated GLUT4 translocation
-
Hosaka, T., Brooks, C. C., Presman, E., Kim, S. K., Zhang, Z., Breen, M., Gross, D. N., Sztul, E., and Pilch, P. F. (2005) p115 interacts with the GLUT4 vesicle protein, IRAP, and plays a critical role in insulin-stimulated GLUT4 translocation. Mol. Biol. Cell 16, 2882-2890
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 2882-2890
-
-
Hosaka, T.1
Brooks, C.C.2
Presman, E.3
Kim, S.K.4
Zhang, Z.5
Breen, M.6
Gross, D.N.7
Sztul, E.8
Pilch, P.F.9
-
43
-
-
0035976927
-
Identification and characterization of a novel Golgi protein, GCP60, that interacts with the integral membrane protein giantin
-
Sohda, M., Misumi, Y., Yamamoto, A., Yano, A., Nakamura, N., and Ikehara, Y. (2001) Identification and characterization of a novel Golgi protein, GCP60, that interacts with the integral membrane protein giantin. J. Biol. Chem. 276, 45298-45306
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 45298-45306
-
-
Sohda, M.1
Misumi, Y.2
Yamamoto, A.3
Yano, A.4
Nakamura, N.5
Ikehara, Y.6
-
44
-
-
84856501318
-
ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites
-
Sasaki, J., Ishikawa, K., Arita, M., and Taniguchi, K. (2012) ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites. EMBO J. 31, 754-766
-
(2012)
EMBO J.
, vol.31
, pp. 754-766
-
-
Sasaki, J.1
Ishikawa, K.2
Arita, M.3
Taniguchi, K.4
-
45
-
-
84859594211
-
The 3A protein from multiple picornaviruses utilizes the Golgi adaptor protein ACBD3 to recruit PI4KIIIbeta
-
Greninger, A. L., Knudsen, G. M., Betegon, M., Burlingame, A. L., and Derisi, J. L. (2012) The 3A protein from multiple picornaviruses utilizes the Golgi adaptor protein ACBD3 to recruit PI4KIIIbeta. J. Virol. 86, 3605-3616
-
(2012)
J. Virol.
, vol.86
, pp. 3605-3616
-
-
Greninger, A.L.1
Knudsen, G.M.2
Betegon, M.3
Burlingame, A.L.4
Derisi, J.L.5
-
46
-
-
84884530635
-
Steroid hormone synthesis in mitochondria
-
Miller, W. L. (2013) Steroid hormone synthesis in mitochondria. Mol. Cell. Endocrinol. 379, 62-73
-
(2013)
Mol. Cell. Endocrinol.
, vol.379
, pp. 62-73
-
-
Miller, W.L.1
-
47
-
-
33747047271
-
NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1
-
Cheah, J. H., Kim, S. F., Hester, L. D., Clancy, K. W., Patterson, S. E., 3rd, Papadopoulos, V., and Snyder, S. H. (2006) NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron 51, 431-440
-
(2006)
Neuron
, vol.51
, pp. 431-440
-
-
Cheah, J.H.1
Kim, S.F.2
Hester, L.D.3
Clancy, K.W.4
Patterson, S.E.5
Papadopoulos, V.6
Snyder, S.H.7
-
48
-
-
84874218109
-
Dexras1, a small GTPase, is required for glutamate-NMDA neurotoxicity
-
Chen, Y., Khan, R. S., Cwanger, A., Song, Y., Steenstra, C., Bang, S., Cheah, J. H., Dunaief, J., Shindler, K. S., Snyder, S. H., and Kim, S. F. (2013) Dexras1, a small GTPase, is required for glutamate-NMDA neurotoxicity. J. Neurosci. 33, 3582-3587
-
(2013)
J. Neurosci.
, vol.33
, pp. 3582-3587
-
-
Chen, Y.1
Khan, R.S.2
Cwanger, A.3
Song, Y.4
Steenstra, C.5
Bang, S.6
Cheah, J.H.7
Dunaief, J.8
Shindler, K.S.9
Snyder, S.H.10
Kim, S.F.11
-
49
-
-
84884138290
-
Golgi protein ACBD3 mediates neurotoxicity associated with Huntington's disease
-
Sbodio, J. I., Paul, B. D., Machamer, C. E., and Snyder, S. H. (2013) Golgi protein ACBD3 mediates neurotoxicity associated with Huntington's disease. Cell Rep. 4, 890-897
-
(2013)
Cell Rep.
, vol.4
, pp. 890-897
-
-
Sbodio, J.I.1
Paul, B.D.2
Machamer, C.E.3
Snyder, S.H.4
-
50
-
-
0036246301
-
Acyl-coenzyme A dehydrogenases are localized on GLUT4-containing vesicles via association with insulin-regulated aminopeptidase in a manner dependent on its dileucine motif
-
Katagiri, H., Asano, T., Yamada, T., Aoyama, T., Fukushima, Y., Kikuchi, M., Kodama, T., and Oka, Y. (2002) Acyl-coenzyme A dehydrogenases are localized on GLUT4-containing vesicles via association with insulin-regulated aminopeptidase in a manner dependent on its dileucine motif. Mol. Endocrinol. 16, 1049-1059
-
(2002)
Mol. Endocrinol.
, vol.16
, pp. 1049-1059
-
-
Katagiri, H.1
Asano, T.2
Yamada, T.3
Aoyama, T.4
Fukushima, Y.5
Kikuchi, M.6
Kodama, T.7
Oka, Y.8
-
51
-
-
0030801363
-
The amino terminus of insulin-responsive aminopeptidase causes Glut4 translocation in 3T3-L1 adipocytes
-
Waters, S. B., D'Auria, M., Martin, S. S., Nguyen, C., Kozma, L. M., and Luskey, K. L. (1997) The amino terminus of insulin-responsive aminopeptidase causes Glut4 translocation in 3T3-L1 adipocytes. J. Biol. Chem. 272, 23323-23327
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 23323-23327
-
-
Waters, S.B.1
D'Auria, M.2
Martin, S.S.3
Nguyen, C.4
Kozma, L.M.5
Luskey, K.L.6
-
53
-
-
77956629388
-
Adipose acyl- CoA synthetase-1 directs fatty acids towarda-oxidation and is required for cold thermogenesis
-
Ellis, J. M., Li, L. O., Wu, P. C., Koves, T. R., Ilkayeva, O., Stevens, R. D., Watkins, S. M., Muoio, D. M., and Coleman, R. A. (2010) Adipose acyl- CoA synthetase-1 directs fatty acids towarda-oxidation and is required for cold thermogenesis. Cell Metab. 12, 53-64
-
(2010)
Cell Metab.
, vol.12
, pp. 53-64
-
-
Ellis, J.M.1
Li, L.O.2
Wu, P.C.3
Koves, T.R.4
Ilkayeva, O.5
Stevens, R.D.6
Watkins, S.M.7
Muoio, D.M.8
Coleman, R.A.9
-
54
-
-
84869108636
-
Maturation and activity of sterol regulatory element binding protein 1 is inhibited by acyl-CoA binding domain containing 3
-
Chen, Y., Patel, V., Bang, S., Cohen, N., Millar, J., and Kim, S. F. (2012) Maturation and activity of sterol regulatory element binding protein 1 is inhibited by acyl-CoA binding domain containing 3. PLoS One 7, e49906
-
(2012)
PLoS One
, vol.7
, pp. e49906
-
-
Chen, Y.1
Patel, V.2
Bang, S.3
Cohen, N.4
Millar, J.5
Kim, S.F.6
-
55
-
-
57049142094
-
Metabolic flexibility and insulin resistance
-
Galgani, J. E., Moro, C., and Ravussin, E. (2008) Metabolic flexibility and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 295, E1009-E1017
-
(2008)
Am. J. Physiol. Endocrinol. Metab.
, vol.295
, pp. E1009-E1017
-
-
Galgani, J.E.1
Moro, C.2
Ravussin, E.3
-
56
-
-
46249100836
-
Tissue-specific regulation of SIRT1 by calorie restriction
-
Chen, D., Bruno, J., Easlon, E., Lin, S. J., Cheng, H. L., Alt, F. W., and Guarente, L. (2008) Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 22, 1753-1757
-
(2008)
Genes Dev.
, vol.22
, pp. 1753-1757
-
-
Chen, D.1
Bruno, J.2
Easlon, E.3
Lin, S.J.4
Cheng, H.L.5
Alt, F.W.6
Guarente, L.7
-
57
-
-
77249156847
-
Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
-
Cantó, C., Jiang, L. Q., Deshmukh, A. S., Mataki, C., Coste, A., Lagouge, M., Zierath, J. R., and Auwerx, J. (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213-219
-
(2010)
Cell Metab.
, vol.11
, pp. 213-219
-
-
Cantó, C.1
Jiang, L.Q.2
Deshmukh, A.S.3
Mataki, C.4
Coste, A.5
Lagouge, M.6
Zierath, J.R.7
Auwerx, J.8
-
58
-
-
79955433960
-
Metabolomic analysis of livers and serum from high-fat diet induced obese mice
-
Kim, H. J., Kim, J. H., Noh, S., Hur, H. J., Sung, M. J., Hwang, J. T., Park, J. H., Yang, H. J., Kim, M. S., Kwon, D. Y., and Yoon, S. H. (2011) Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J. Proteome Res. 10, 722-731
-
(2011)
J. Proteome Res.
, vol.10
, pp. 722-731
-
-
Kim, H.J.1
Kim, J.H.2
Noh, S.3
Hur, H.J.4
Sung, M.J.5
Hwang, J.T.6
Park, J.H.7
Yang, H.J.8
Kim, M.S.9
Kwon, D.Y.10
Yoon, S.H.11
-
59
-
-
84869121812
-
Exploring the therapeutic space around NAD+
-
Houtkooper, R. H., and Auwerx, J. (2012) Exploring the therapeutic space around NAD+. J. Cell Biol. 199, 205-209
-
(2012)
J. Cell Biol.
, vol.199
, pp. 205-209
-
-
Houtkooper, R.H.1
Auwerx, J.2
-
60
-
-
84857861919
-
Mechanisms for insulin resistance: Common threads and missing links
-
Samuel, V. T., and Shulman, G. I. (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852-871
-
(2012)
Cell
, vol.148
, pp. 852-871
-
-
Samuel, V.T.1
Shulman, G.I.2
-
61
-
-
84904751060
-
NAD and sirtuins in aging and disease
-
Imai, S. I., and Guarente, L. (2014) NAD and sirtuins in aging and disease. Trends Cell Biol. 10.1016/j.tcb.2014.04.002
-
(2014)
Trends Cell Biol.
-
-
Imai, S.I.1
Guarente, L.2
-
62
-
-
79957543031
-
Compartmentation of NAD+-dependent signalling
-
Koch-Nolte, F., Fischer, S., Haag, F., and Ziegler, M. (2011) Compartmentation of NAD+-dependent signalling. FEBS Lett. 585, 1651-1656
-
(2011)
FEBS Lett.
, vol.585
, pp. 1651-1656
-
-
Koch-Nolte, F.1
Fischer, S.2
Haag, F.3
Ziegler, M.4
-
63
-
-
0034623934
-
Tankyrase is a Golgi-associated mitogen- activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles
-
Chi, N. W., and Lodish, H. F. (2000) Tankyrase is a Golgi-associated mitogen- activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J. Biol. Chem. 275, 38437-38444
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 38437-38444
-
-
Chi, N.W.1
Lodish, H.F.2
-
64
-
-
70350539541
-
Hypermetabolism, hyperphagia, and reduced adiposity in tankyrase-deficient mice
-
Yeh, T. Y., Beiswenger, K. K., Li, P., Bolin, K. E., Lee, R. M., Tsao, T. S., Murphy, A. N., Hevener, A. L., and Chi, N. W. (2009) Hypermetabolism, hyperphagia, and reduced adiposity in tankyrase-deficient mice. Diabetes 58, 2476-2485
-
(2009)
Diabetes
, vol.58
, pp. 2476-2485
-
-
Yeh, T.Y.1
Beiswenger, K.K.2
Li, P.3
Bolin, K.E.4
Lee, R.M.5
Tsao, T.S.6
Murphy, A.N.7
Hevener, A.L.8
Chi, N.W.9
-
65
-
-
33847701165
-
Insulinstimulated exocytosis of GLUT4 is enhanced by IRAP and its partner tankyrase
-
Yeh, T. Y., Sbodio, J. I., Tsun, Z. Y., Luo, B., and Chi, N. W. (2007) Insulinstimulated exocytosis of GLUT4 is enhanced by IRAP and its partner tankyrase. Biochem. J. 402, 279-290
-
(2007)
Biochem. J.
, vol.402
, pp. 279-290
-
-
Yeh, T.Y.1
Sbodio, J.I.2
Tsun, Z.Y.3
Luo, B.4
Chi, N.W.5
-
66
-
-
84864975933
-
The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation
-
Guo, H. L., Zhang, C., Liu, Q., Li, Q., Lian, G., Wu, D., Li, X., Zhang, W., Shen, Y., Ye, Z., Lin, S. Y., and Lin, S. C. (2012) The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation. Cell Res. 22, 1246-1257
-
(2012)
Cell Res.
, vol.22
, pp. 1246-1257
-
-
Guo, H.L.1
Zhang, C.2
Liu, Q.3
Li, Q.4
Lian, G.5
Wu, D.6
Li, X.7
Zhang, W.8
Shen, Y.9
Ye, Z.10
Lin, S.Y.11
Lin, S.C.12
-
67
-
-
84866013044
-
SIRT2 as a therapeutic target for age-related disorders
-
de Oliveira, R. M., Sarkander, J., Kazantsev, A. G., and Outeiro, T. F. (2012) SIRT2 as a therapeutic target for age-related disorders. Front. Pharmacol. 3, 82
-
(2012)
Front. Pharmacol.
, vol.3
, pp. 82
-
-
De Oliveira, R.M.1
Sarkander, J.2
Kazantsev, A.G.3
Outeiro, T.F.4
-
68
-
-
34547397081
-
SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation
-
Jing, E., Gesta, S., and Kahn, C. R. (2007) SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 6, 105-114
-
(2007)
Cell Metab.
, vol.6
, pp. 105-114
-
-
Jing, E.1
Gesta, S.2
Kahn, C.R.3
-
69
-
-
64049089450
-
SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPAR
-
Wang, F., and Tong, Q. (2009) SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPAR. Mol. Biol. Cell 20, 801-808
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 801-808
-
-
Wang, F.1
Tong, Q.2
-
70
-
-
77954225200
-
Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity
-
Zhao, Y., Yang, J., Liao, W., Liu, X., Zhang, H., Wang, S., Wang, D., Feng, J., Yu, L., and Zhu, W. G. (2010) Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat. Cell Biol. 12, 665-675
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 665-675
-
-
Zhao, Y.1
Yang, J.2
Liao, W.3
Liu, X.4
Zhang, H.5
Wang, S.6
Wang, D.7
Feng, J.8
Yu, L.9
Zhu, W.G.10
-
71
-
-
84856628731
-
Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system
-
Krishnan, J., Danzer, C., Simka, T., Ukropec, J., Walter, K. M., Kumpf, S., Mirtschink, P., Ukropcova, B., Gasperikova, D., Pedrazzini, T., and Krek, W. (2012) Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes Dev. 26, 259-270
-
(2012)
Genes Dev.
, vol.26
, pp. 259-270
-
-
Krishnan, J.1
Danzer, C.2
Simka, T.3
Ukropec, J.4
Walter, K.M.5
Kumpf, S.6
Mirtschink, P.7
Ukropcova, B.8
Gasperikova, D.9
Pedrazzini, T.10
Krek, W.11
-
72
-
-
84896901019
-
Sirt2 deacetylase is a novel AKT binding partner critical for AKT activation by insulin
-
Ramakrishnan, G., Davaakhuu, G., Kaplun, L., Chung, W. C., Rana, A., Atfi, A., Miele, L., and Tzivion, G. (2014) Sirt2 deacetylase is a novel AKT binding partner critical for AKT activation by insulin. J. Biol. Chem. 289, 6054-6066
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 6054-6066
-
-
Ramakrishnan, G.1
Davaakhuu, G.2
Kaplun, L.3
Chung, W.C.4
Rana, A.5
Atfi, A.6
Miele, L.7
Tzivion, G.8
-
73
-
-
34047224186
-
Prior exercise increases phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle
-
Arias, E. B., Kim, J., Funai, K., and Cartee, G. D. (2007) Prior exercise increases phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 292, E1191-E1200
-
(2007)
Am. J. Physiol. Endocrinol. Metab.
, vol.292
, pp. E1191-E1200
-
-
Arias, E.B.1
Kim, J.2
Funai, K.3
Cartee, G.D.4
-
74
-
-
84903200289
-
Postexercise improvement in insulin-stimulated glucose uptake occurs concomitant with greater AS160 phosphorylation in muscle from normal and insulin-resistant rats
-
Castorena, C. M., Arias, E. B., Sharma, N., and Cartee, G. D. (2014) Postexercise improvement in insulin-stimulated glucose uptake occurs concomitant with greater AS160 phosphorylation in muscle from normal and insulin-resistant rats. Diabetes 63, 2297-2308
-
(2014)
Diabetes
, vol.63
, pp. 2297-2308
-
-
Castorena, C.M.1
Arias, E.B.2
Sharma, N.3
Cartee, G.D.4
-
75
-
-
42649127400
-
IRS1-independent defects define major nodes of insulin resistance
-
Hoehn, K. L., Hohnen-Behrens, C., Cederberg, A., Wu, L. E., Turner, N., Yuasa, T., Ebina, Y., and James, D. E. (2008) IRS1-independent defects define major nodes of insulin resistance. Cell Metab. 7, 421-433
-
(2008)
Cell Metab.
, vol.7
, pp. 421-433
-
-
Hoehn, K.L.1
Hohnen-Behrens, C.2
Cederberg, A.3
Wu, L.E.4
Turner, N.5
Yuasa, T.6
Ebina, Y.7
James, D.E.8
-
76
-
-
11144238595
-
Biochemical regulation of mammalian AMP-activated protein kinase activity by NAD and NADH
-
Rafaeloff-Phail, R., Ding, L., Conner, L., Yeh, W. K., McClure, D., Guo, H., Emerson, K., and Brooks, H. (2004) Biochemical regulation of mammalian AMP-activated protein kinase activity by NAD and NADH. J. Biol. Chem. 279, 52934-52939
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 52934-52939
-
-
Rafaeloff-Phail, R.1
Ding, L.2
Conner, L.3
Yeh, W.K.4
McClure, D.5
Guo, H.6
Emerson, K.7
Brooks, H.8
-
77
-
-
67349276169
-
AMPK regulates energy expenditure by modulatingNAD+ metabolism and SIRT1 activity
-
Cantó, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., Elliott, P. J., Puigserver, P., and Auwerx, J. (2009) AMPK regulates energy expenditure by modulatingNAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Cantó, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
Lagouge, M.4
Noriega, L.5
Milne, J.C.6
Elliott, P.J.7
Puigserver, P.8
Auwerx, J.9
-
78
-
-
84872672425
-
Exercise-induced AMPK activity in skeletal muscle: Role in glucose uptake and insulin sensitivity
-
Friedrichsen, M., Mortensen, B., Pehmøller, C., Birk, J. B., and Wojtaszewski, J. F. (2013) Exercise-induced AMPK activity in skeletal muscle: role in glucose uptake and insulin sensitivity. Mol. Cell. Endocrinol. 366, 204-214
-
(2013)
Mol. Cell. Endocrinol.
, vol.366
, pp. 204-214
-
-
Friedrichsen, M.1
Mortensen, B.2
Pehmøller, C.3
Birk, J.B.4
Wojtaszewski, J.F.5
|