메뉴 건너뛰기




Volumn 92, Issue , 2015, Pages 89-125

Challenges for the Production of Bioethanol from Biomass Using Recombinant Yeasts

Author keywords

Bioethanol; Lignocellulose biomass; Pentose and hexose sugar fermentation; Recombinant yeasts

Indexed keywords

ARABINOSE; BIOETHANOL; BIOFUEL; CELLULOSE; FOSSIL FUEL; HEMICELLULOSE; HEXOSE; LIGNOCELLULOSE; PENTOSE; TRANSCRIPTOME; XYLOSE; ALCOHOL; LIGNIN;

EID: 84942422926     PISSN: 00652164     EISSN: None     Source Type: Book Series    
DOI: 10.1016/bs.aambs.2015.02.003     Document Type: Article
Times cited : (35)

References (160)
  • 2
    • 84892508791 scopus 로고    scopus 로고
    • Impact of pretreatments on morphology and enzymatic saccharification of shedding bark of Melaleuca leucadendron
    • Ahmed I.N., Santoso S.P., Tran-Nguyen P.L., Huynh L.H., Ismadji S., Ju Y.H. Impact of pretreatments on morphology and enzymatic saccharification of shedding bark of Melaleuca leucadendron. Bioresource Technology 2013, 139:410-414.
    • (2013) Bioresource Technology , vol.139 , pp. 410-414
    • Ahmed, I.N.1    Santoso, S.P.2    Tran-Nguyen, P.L.3    Huynh, L.H.4    Ismadji, S.5    Ju, Y.H.6
  • 3
    • 84896419256 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass
    • Almario M.P., Reyes L.H., Kao K.C. Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnology and Bioengineering 2013, 110:2616-2623.
    • (2013) Biotechnology and Bioengineering , vol.110 , pp. 2616-2623
    • Almario, M.P.1    Reyes, L.H.2    Kao, K.C.3
  • 4
    • 84925067568 scopus 로고    scopus 로고
    • Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene
    • An J., Kwon H., Kim E., Lee Y.M., Ko H.J., Park H., et al. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene. Environmental Microbiology 2014, 10.1111/1462-2920.12489.
    • (2014) Environmental Microbiology
    • An, J.1    Kwon, H.2    Kim, E.3    Lee, Y.M.4    Ko, H.J.5    Park, H.6
  • 5
    • 84873736185 scopus 로고    scopus 로고
    • The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae
    • Ask M., Bettiga M., Mapelli V., Olsson L. The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnology for Biofuels 2013, 6:22.
    • (2013) Biotechnology for Biofuels , vol.6 , pp. 22
    • Ask, M.1    Bettiga, M.2    Mapelli, V.3    Olsson, L.4
  • 6
    • 84884791723 scopus 로고    scopus 로고
    • Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials
    • Ask M., Mapelli V., Hock H., Olsson L., Bettiga M. Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microbial Cell Factories 2013, 12:87.
    • (2013) Microbial Cell Factories , vol.12 , pp. 87
    • Ask, M.1    Mapelli, V.2    Hock, H.3    Olsson, L.4    Bettiga, M.5
  • 7
    • 84867202661 scopus 로고    scopus 로고
    • Cellulosic ethanol production by combination of cellulase-displaying yeast cells
    • Baek S.H., Kim S., Lee K., Lee J.K., Hahn J.S. Cellulosic ethanol production by combination of cellulase-displaying yeast cells. Enzyme and Microbial Technology 2012, 51:366-372.
    • (2012) Enzyme and Microbial Technology , vol.51 , pp. 366-372
    • Baek, S.H.1    Kim, S.2    Lee, K.3    Lee, J.K.4    Hahn, J.S.5
  • 8
    • 84878315786 scopus 로고    scopus 로고
    • Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural
    • Bajwa P.K., Ho C.Y., Chan C.K., Martin V.J., Trevors J.T., Lee H. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Antonie Van Leeuwenhoek 2013, 103:1281-1295.
    • (2013) Antonie Van Leeuwenhoek , vol.103 , pp. 1281-1295
    • Bajwa, P.K.1    Ho, C.Y.2    Chan, C.K.3    Martin, V.J.4    Trevors, J.T.5    Lee, H.6
  • 10
    • 66749091546 scopus 로고    scopus 로고
    • Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae
    • Bengtsson O., Hahn-Hägerdal B., Gorwa-Grauslund M. Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels 2009, 2:9.
    • (2009) Biotechnology for Biofuels , vol.2 , pp. 9
    • Bengtsson, O.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.3
  • 11
    • 58149347653 scopus 로고    scopus 로고
    • Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering
    • Bengtsson O., Jeppsson M., Sonderegger M., Parachin N.S., Sauer U., Hahn-Hagerdal B., et al. Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 2008, 25:835-847.
    • (2008) Yeast , vol.25 , pp. 835-847
    • Bengtsson, O.1    Jeppsson, M.2    Sonderegger, M.3    Parachin, N.S.4    Sauer, U.5    Hahn-Hagerdal, B.6
  • 13
    • 77955555768 scopus 로고    scopus 로고
    • Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering
    • Bera A.K., Sedlak M., Khan A., Ho N.W. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Applied Microbiology and Biotechnology 2010, 87:1803-1811.
    • (2010) Applied Microbiology and Biotechnology , vol.87 , pp. 1803-1811
    • Bera, A.K.1    Sedlak, M.2    Khan, A.3    Ho, N.W.4
  • 14
    • 68949213819 scopus 로고    scopus 로고
    • Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway
    • Bettiga M., Bengtsson O., Hahn-Hagerdal B., Gorwa-Grauslund M.F. Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microbial Cell Factories 2009, 8:40.
    • (2009) Microbial Cell Factories , vol.8 , pp. 40
    • Bettiga, M.1    Bengtsson, O.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 15
    • 64749094343 scopus 로고    scopus 로고
    • Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
    • Brat D., Boles E., Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Applied and Environmental Microbiology 2009, 75:2304-2311.
    • (2009) Applied and Environmental Microbiology , vol.75 , pp. 2304-2311
    • Brat, D.1    Boles, E.2    Wiedemann, B.3
  • 17
    • 33846884378 scopus 로고    scopus 로고
    • Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501
    • Chandel A.K., Kapoor R.K., Singh A., Kuhad R.C. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technology 2007, 98:1947-1950.
    • (2007) Bioresource Technology , vol.98 , pp. 1947-1950
    • Chandel, A.K.1    Kapoor, R.K.2    Singh, A.3    Kuhad, R.C.4
  • 18
    • 84868483522 scopus 로고    scopus 로고
    • Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method
    • Chiaramonti D., Prussi M., Ferrero S., Oriani L., Ottonello P., Torre P., et al. Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass and Bioenergy 2012, 46:25-35.
    • (2012) Biomass and Bioenergy , vol.46 , pp. 25-35
    • Chiaramonti, D.1    Prussi, M.2    Ferrero, S.3    Oriani, L.4    Ottonello, P.5    Torre, P.6
  • 19
    • 84902871353 scopus 로고    scopus 로고
    • Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose
    • Chomvong K., Kordic V., Li X., Bauer S., Gillespie A.E., Ha S.J., et al. Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose. Biotechnology for Biofuels 2014, 7:85.
    • (2014) Biotechnology for Biofuels , vol.7 , pp. 85
    • Chomvong, K.1    Kordic, V.2    Li, X.3    Bauer, S.4    Gillespie, A.E.5    Ha, S.J.6
  • 20
    • 84873164214 scopus 로고    scopus 로고
    • Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend
    • De Figueiredo Vilela L., De Mello V.M., Reis V.C., Bon E.P., Goncalves Torres F.A., Neves B.C., et al. Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend. Bioresource Technology 2013, 128:792-796.
    • (2013) Bioresource Technology , vol.128 , pp. 792-796
    • De Figueiredo Vilela, L.1    De Mello, V.M.2    Reis, V.C.3    Bon, E.P.4    Goncalves Torres, F.A.5    Neves, B.C.6
  • 21
    • 84879119602 scopus 로고    scopus 로고
    • Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
    • Demeke M.M., Dietz H., Li Y., Foulquie-Moreno M.R., Mutturi S., Deprez S., et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for Biofuels 2013, 6:89.
    • (2013) Biotechnology for Biofuels , vol.6 , pp. 89
    • Demeke, M.M.1    Dietz, H.2    Li, Y.3    Foulquie-Moreno, M.R.4    Mutturi, S.5    Deprez, S.6
  • 22
    • 33847642855 scopus 로고    scopus 로고
    • Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol
    • Den Haan R., Mcbride J., La Grange D.C., Lynd L.R., Van Zyl W.H. Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme and Microbial Technology 2007, 40:1291-1299.
    • (2007) Enzyme and Microbial Technology , vol.40 , pp. 1291-1299
    • Den Haan, R.1    Mcbride, J.2    La Grange, D.C.3    Lynd, L.R.4    Van Zyl, W.H.5
  • 23
    • 33845609259 scopus 로고    scopus 로고
    • Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae
    • Den Haan R., Rose S.H., Lynd L.R., Van Zyl W.H. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic Engineering 2007, 9:87-94.
    • (2007) Metabolic Engineering , vol.9 , pp. 87-94
    • Den Haan, R.1    Rose, S.H.2    Lynd, L.R.3    Van Zyl, W.H.4
  • 24
    • 84890317534 scopus 로고    scopus 로고
    • Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution
    • Diao L., Liu Y., Qian F., Yang J., Jiang Y., Yang S. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnology 2013, 13:110.
    • (2013) BMC Biotechnology , vol.13 , pp. 110
    • Diao, L.1    Liu, Y.2    Qian, F.3    Yang, J.4    Jiang, Y.5    Yang, S.6
  • 25
    • 77952889881 scopus 로고    scopus 로고
    • Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains
    • Du Plessis L., Rose S.H., Van Zyl W.H. Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains. Applied Microbiological Biotechnology 2010, 86:1503-1511.
    • (2010) Applied Microbiological Biotechnology , vol.86 , pp. 1503-1511
    • Du Plessis, L.1    Rose, S.H.2    Van Zyl, W.H.3
  • 27
    • 84888247001 scopus 로고    scopus 로고
    • Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production
    • Favaro L., Basaglia M., Trento A., Van Rensburg E., Garcia-Aparicio M., Van Zyl W.H., et al. Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production. Biotechnology for Biofuels 2013, 6:168.
    • (2013) Biotechnology for Biofuels , vol.6 , pp. 168
    • Favaro, L.1    Basaglia, M.2    Trento, A.3    Van Rensburg, E.4    Garcia-Aparicio, M.5    Van Zyl, W.H.6
  • 29
    • 84902544670 scopus 로고    scopus 로고
    • Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose
    • Fitzpatrick J., Kricka W., James T.C., Bond U. Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose. Journal of Applied Microbiology 2014, 117:96-108.
    • (2014) Journal of Applied Microbiology , vol.117 , pp. 96-108
    • Fitzpatrick, J.1    Kricka, W.2    James, T.C.3    Bond, U.4
  • 30
    • 2342638898 scopus 로고    scopus 로고
    • Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme
    • Fujita Y., Ito J., Ueda M., Fukuda H., Kondo A. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Applied and Environmental Microbiology 2004, 70:1207-1212.
    • (2004) Applied and Environmental Microbiology , vol.70 , pp. 1207-1212
    • Fujita, Y.1    Ito, J.2    Ueda, M.3    Fukuda, H.4    Kondo, A.5
  • 31
    • 84858748257 scopus 로고    scopus 로고
    • Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural
    • Fujitomi K., Sanda T., Hasunuma T., Kondo A. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresource Technology 2012, 111:161-166.
    • (2012) Bioresource Technology , vol.111 , pp. 161-166
    • Fujitomi, K.1    Sanda, T.2    Hasunuma, T.3    Kondo, A.4
  • 32
    • 34548783309 scopus 로고    scopus 로고
    • Pretreatment of lignocellulosic materials for efficient bioethanol production
    • Galbe M., Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Advances in Biochemical Engineering/Biotechnology 2007, 108:41-65.
    • (2007) Advances in Biochemical Engineering/Biotechnology , vol.108 , pp. 41-65
    • Galbe, M.1    Zacchi, G.2
  • 33
    • 84901459053 scopus 로고    scopus 로고
    • Comparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEX, and ionic liquid pretreatments
    • Gao X., Kumar R., Singh S., Simmons B.A., Balan V., Dale B.E., et al. Comparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEX, and ionic liquid pretreatments. Biotechnology for Biofuels 2014, 7:71.
    • (2014) Biotechnology for Biofuels , vol.7 , pp. 71
    • Gao, X.1    Kumar, R.2    Singh, S.3    Simmons, B.A.4    Balan, V.5    Dale, B.E.6
  • 34
    • 80455156250 scopus 로고    scopus 로고
    • Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae
    • Ghosh A., Zhao H., Price N. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae. PLoS One 2011, 6.
    • (2011) PLoS One , vol.6
    • Ghosh, A.1    Zhao, H.2    Price, N.3
  • 35
    • 80055040909 scopus 로고    scopus 로고
    • Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome
    • Goyal G., Tsai S.L., Madan B., Dasilva N.A., Chen W. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microbial Cell Factories 2011, 10:89.
    • (2011) Microbial Cell Factories , vol.10 , pp. 89
    • Goyal, G.1    Tsai, S.L.2    Madan, B.3    Dasilva, N.A.4    Chen, W.5
  • 36
    • 33749508094 scopus 로고    scopus 로고
    • Plate ethanol-screening assay for selection of the Pichia stipitis and Hansenula polymorpha yeast mutants with altered capability for xylose alcoholic fermentation
    • Grabek-Lejko D., Ryabova O.B., Oklejewicz B., Voronovsky A.Y., Sibirny A.A. Plate ethanol-screening assay for selection of the Pichia stipitis and Hansenula polymorpha yeast mutants with altered capability for xylose alcoholic fermentation. Journal of Industrial Microbiology and Biotechnology 2006, 33:934-940.
    • (2006) Journal of Industrial Microbiology and Biotechnology , vol.33 , pp. 934-940
    • Grabek-Lejko, D.1    Ryabova, O.B.2    Oklejewicz, B.3    Voronovsky, A.Y.4    Sibirny, A.A.5
  • 37
    • 35348861836 scopus 로고    scopus 로고
    • Sustainable liquid biofuels and their environmental impact
    • Granda C.B., Zhu L., Holtzapple M. Sustainable liquid biofuels and their environmental impact. Environmental Progress 2007, 26:233-250.
    • (2007) Environmental Progress , vol.26 , pp. 233-250
    • Granda, C.B.1    Zhu, L.2    Holtzapple, M.3
  • 38
    • 84856239135 scopus 로고    scopus 로고
    • Fermentation of reactive-membrane-extracted and ammonium-hydroxide-conditioned dilute-acid-pretreated corn stover
    • Grzenia D.L., Wickramasinghe S.R., Schell D.J. Fermentation of reactive-membrane-extracted and ammonium-hydroxide-conditioned dilute-acid-pretreated corn stover. Applied Biochemistry and Biotechnology 2012, 166:470-478.
    • (2012) Applied Biochemistry and Biotechnology , vol.166 , pp. 470-478
    • Grzenia, D.L.1    Wickramasinghe, S.R.2    Schell, D.J.3
  • 40
    • 84885716527 scopus 로고    scopus 로고
    • Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae
    • Ha S.J., Kim S.R., Kim H., Du J., Cate J.H., Jin Y.S. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. Bioresource Technology 2013, 149:525-531.
    • (2013) Bioresource Technology , vol.149 , pp. 525-531
    • Ha, S.J.1    Kim, S.R.2    Kim, H.3    Du, J.4    Cate, J.H.5    Jin, Y.S.6
  • 41
    • 0036738179 scopus 로고    scopus 로고
    • Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
    • Hamacher T., Becker J., Gardonyi M., Hahn-Hagerdal B., Boles E. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002, 148:2783-2788.
    • (2002) Microbiology , vol.148 , pp. 2783-2788
    • Hamacher, T.1    Becker, J.2    Gardonyi, M.3    Hahn-Hagerdal, B.4    Boles, E.5
  • 43
    • 84892374041 scopus 로고    scopus 로고
    • Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural
    • Hasunuma T., Ismail K.S., Nambu Y., Kondo A. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Journal of Bioscience and Bioengineering 2014, 117:165-169.
    • (2014) Journal of Bioscience and Bioengineering , vol.117 , pp. 165-169
    • Hasunuma, T.1    Ismail, K.S.2    Nambu, Y.3    Kondo, A.4
  • 44
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • Hasunuma T., Sanda T., Yamada R., Yoshimura K., Ishii J., Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microbial Cell Factories 2011, 10:2.
    • (2011) Microbial Cell Factories , vol.10 , pp. 2
    • Hasunuma, T.1    Sanda, T.2    Yamada, R.3    Yoshimura, K.4    Ishii, J.5    Kondo, A.6
  • 45
    • 84878237818 scopus 로고    scopus 로고
    • Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24
    • Hector R.E., Dien B.S., Cotta M.A., Mertens J.A. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnology for Biofuels 2013, 6:84.
    • (2013) Biotechnology for Biofuels , vol.6 , pp. 84
    • Hector, R.E.1    Dien, B.S.2    Cotta, M.A.3    Mertens, J.A.4
  • 46
    • 80052513736 scopus 로고    scopus 로고
    • Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion
    • Hector R.E., Dien B.S., Cotta M.A., Qureshi N. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. Journal of Industrial Microbiology and Biotechnology 2011, 38:1193-1202.
    • (2011) Journal of Industrial Microbiology and Biotechnology , vol.38 , pp. 1193-1202
    • Hector, R.E.1    Dien, B.S.2    Cotta, M.A.3    Qureshi, N.4
  • 47
    • 64849104184 scopus 로고    scopus 로고
    • Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain
    • Heer D., Sauer U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microbial Biotechnology 2008, 1:497-506.
    • (2008) Microbial Biotechnology , vol.1 , pp. 497-506
    • Heer, D.1    Sauer, U.2
  • 51
    • 84858444031 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by Spathaspora passalidarum
    • Hou X. Anaerobic xylose fermentation by Spathaspora passalidarum. Applied Microbiology and Biotechnology 2012, 94:205-214.
    • (2012) Applied Microbiology and Biotechnology , vol.94 , pp. 205-214
    • Hou, X.1
  • 53
    • 84892376781 scopus 로고    scopus 로고
    • Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter
    • Inokuma K., Hasunuma T., Kondo A. Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnology for Biofuels 2014, 7:1-11.
    • (2014) Biotechnology for Biofuels , vol.7 , pp. 1-11
    • Inokuma, K.1    Hasunuma, T.2    Kondo, A.3
  • 54
    • 84878836519 scopus 로고    scopus 로고
    • Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway
    • Ishii J., Yoshimura K., Hasunuma T., Kondo A. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Applied Microbiology and Biotechnology 2013, 97:2597-2607.
    • (2013) Applied Microbiology and Biotechnology , vol.97 , pp. 2597-2607
    • Ishii, J.1    Yoshimura, K.2    Hasunuma, T.3    Kondo, A.4
  • 55
    • 84870369602 scopus 로고    scopus 로고
    • Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose
    • Ismail K.S., Sakamoto T., Hatanaka H., Hasunuma T., Kondo A. Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. Journal of Biotechnology 2013, 163:50-60.
    • (2013) Journal of Biotechnology , vol.163 , pp. 50-60
    • Ismail, K.S.1    Sakamoto, T.2    Hatanaka, H.3    Hasunuma, T.4    Kondo, A.5
  • 56
    • 39649104571 scopus 로고    scopus 로고
    • Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplification in response to stress
    • James T.C., Usher J., Campbell S., Bond U. Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplification in response to stress. Current Genetics 2008, 53:139-152.
    • (2008) Current Genetics , vol.53 , pp. 139-152
    • James, T.C.1    Usher, J.2    Campbell, S.3    Bond, U.4
  • 57
    • 1242264261 scopus 로고    scopus 로고
    • Metabolic engineering for improved fermentation of pentoses by yeasts
    • Jeffries T.W., Jin Y.S. Metabolic engineering for improved fermentation of pentoses by yeasts. Applied Microbiology and Biotechnology 2004, 63:495-509.
    • (2004) Applied Microbiology and Biotechnology , vol.63 , pp. 495-509
    • Jeffries, T.W.1    Jin, Y.S.2
  • 58
    • 71049173223 scopus 로고    scopus 로고
    • Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovorans endoglucanase and Saccharomycopsis fibuligera beta-glucosidase
    • Jeon E., Hyeon J., Eun L.S., Park B.S., Kim S.W., Lee J., et al. Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovorans endoglucanase and Saccharomycopsis fibuligera beta-glucosidase. FEMS Microbiology Letters 2009, 301:130-136.
    • (2009) FEMS Microbiology Letters , vol.301 , pp. 130-136
    • Jeon, E.1    Hyeon, J.2    Eun, L.S.3    Park, B.S.4    Kim, S.W.5    Lee, J.6
  • 59
    • 0035458838 scopus 로고    scopus 로고
    • Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate
    • Johansson B., Christensson C., Hobley T., Hahn-Hagerdal B. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Applied and Environmental Microbiology 2001, 67:4249-4255.
    • (2001) Applied and Environmental Microbiology , vol.67 , pp. 4249-4255
    • Johansson, B.1    Christensson, C.2    Hobley, T.3    Hahn-Hagerdal, B.4
  • 61
    • 33845807902 scopus 로고    scopus 로고
    • High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa K., Fromanger R., Hahn-Hagerdal B., Gorwa-Grauslund M.F. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 2007, 73:1039-1046.
    • (2007) Applied Microbiology and Biotechnology , vol.73 , pp. 1039-1046
    • Karhumaa, K.1    Fromanger, R.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 62
    • 33847202270 scopus 로고    scopus 로고
    • Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa K., Garcia Sanchez R., Hahn-Hagerdal B., Gorwa-Grauslund M.F. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microbial Cell Factories 2007, 6:5.
    • (2007) Microbial Cell Factories , vol.6 , pp. 5
    • Karhumaa, K.1    Garcia Sanchez, R.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 64
    • 84881101974 scopus 로고    scopus 로고
    • Cocktail delta-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae
    • Kato H., Matsuda F., Yamada R., Nagata K., Shirai T., Hasunuma T., et al. Cocktail delta-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering 2013, 116:333-336.
    • (2013) Journal of Bioscience and Bioengineering , vol.116 , pp. 333-336
    • Kato, H.1    Matsuda, F.2    Yamada, R.3    Nagata, K.4    Shirai, T.5    Hasunuma, T.6
  • 65
    • 84873260717 scopus 로고    scopus 로고
    • Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and beta-glucosidase
    • Kim S., Baek S.H., Lee K., Hahn J.S. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and beta-glucosidase. Microbial Cell Factories 2013, 12:14.
    • (2013) Microbial Cell Factories , vol.12 , pp. 14
    • Kim, S.1    Baek, S.H.2    Lee, K.3    Hahn, J.S.4
  • 66
    • 84871668967 scopus 로고    scopus 로고
    • Reaction mechanisms and kinetics of xylo-oligosaccharide hydrolysis by dicarboxylic acids
    • Kim Y., Kreke T., Ladisch M. Reaction mechanisms and kinetics of xylo-oligosaccharide hydrolysis by dicarboxylic acids. American Institute of Chemical Engineers 2013, 59:188-199.
    • (2013) American Institute of Chemical Engineers , vol.59 , pp. 188-199
    • Kim, Y.1    Kreke, T.2    Ladisch, M.3
  • 67
    • 0037457404 scopus 로고    scopus 로고
    • Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast
    • Klinke H.B., Olsson L., Thomsen A.B., Ahring B.K. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast. Biotechnology and Bioengineering 2003, 81:738-747.
    • (2003) Biotechnology and Bioengineering , vol.81 , pp. 738-747
    • Klinke, H.B.1    Olsson, L.2    Thomsen, A.B.3    Ahring, B.K.4
  • 68
    • 84864575136 scopus 로고    scopus 로고
    • Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass
    • Koppram R., Albers E., Olsson L. Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnology for Biofuels 2012, 5:32.
    • (2012) Biotechnology for Biofuels , vol.5 , pp. 32
    • Koppram, R.1    Albers, E.2    Olsson, L.3
  • 69
    • 84859499872 scopus 로고    scopus 로고
    • Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae
    • Krahulec S., Klimacek M., Nidetzky B. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. Journal of Biotechnology 2012, 158:192-202.
    • (2012) Journal of Biotechnology , vol.158 , pp. 192-202
    • Krahulec, S.1    Klimacek, M.2    Nidetzky, B.3
  • 70
    • 84899666911 scopus 로고    scopus 로고
    • Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective
    • Kricka W., Fitzpatrick J., Bond U. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective. Frontiers in Microbiology 2014, 5:174.
    • (2014) Frontiers in Microbiology , vol.5 , pp. 174
    • Kricka, W.1    Fitzpatrick, J.2    Bond, U.3
  • 71
    • 84894500570 scopus 로고    scopus 로고
    • Endoglucanase and total cellulase from newly isolated Rhizopus oryzae and Trichoderma reesei: production, characterization, and thermal stability
    • Kupski L., Pagnussatt F.A., Buffon J.G., Furlong E.B. Endoglucanase and total cellulase from newly isolated Rhizopus oryzae and Trichoderma reesei: production, characterization, and thermal stability. Applied Biochemistry and Biotechnology 2014, 172:458-468.
    • (2014) Applied Biochemistry and Biotechnology , vol.172 , pp. 458-468
    • Kupski, L.1    Pagnussatt, F.A.2    Buffon, J.G.3    Furlong, E.B.4
  • 72
    • 1642315441 scopus 로고    scopus 로고
    • Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle
    • Kuyper M., Winkler A.A., Van Dijken J.P., Pronk J.T. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Research 2004, 4:655-664.
    • (2004) FEMS Yeast Research , vol.4 , pp. 655-664
    • Kuyper, M.1    Winkler, A.A.2    Van Dijken, J.P.3    Pronk, J.T.4
  • 73
    • 41549139616 scopus 로고    scopus 로고
    • Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae
    • Laadan B., Almeida J.R., Radstrom P., Hahn-Hagerdal B., Gorwa-Grauslund M. Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae. Yeast 2008, 25:191-198.
    • (2008) Yeast , vol.25 , pp. 191-198
    • Laadan, B.1    Almeida, J.R.2    Radstrom, P.3    Hahn-Hagerdal, B.4    Gorwa-Grauslund, M.5
  • 75
    • 84891366912 scopus 로고    scopus 로고
    • Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms
    • Latif H., Zeidan A.A., Nielsen A.T., Zengler K. Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Current Opinion in Biotechnology 2014, 27:79-87.
    • (2014) Current Opinion in Biotechnology , vol.27 , pp. 79-87
    • Latif, H.1    Zeidan, A.A.2    Nielsen, A.T.3    Zengler, K.4
  • 76
    • 33646252240 scopus 로고    scopus 로고
    • Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter
    • Leandro M.J., Goncalves P., Spencer-Martins I. Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochemical Journal 2006, 395:543-549.
    • (2006) Biochemical Journal , vol.395 , pp. 543-549
    • Leandro, M.J.1    Goncalves, P.2    Spencer-Martins, I.3
  • 77
    • 84866172183 scopus 로고    scopus 로고
    • Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae
    • Lee S.M., Jellison T., Alper H.S. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Applied and Environmental Microbiology 2012, 78:5708-5716.
    • (2012) Applied and Environmental Microbiology , vol.78 , pp. 5708-5716
    • Lee, S.M.1    Jellison, T.2    Alper, H.S.3
  • 78
    • 84881556167 scopus 로고    scopus 로고
    • From first- to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity
    • Lee R.A., Lavoie J.M. From first- to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Animal Frontiers 2013, 3:6-11.
    • (2013) Animal Frontiers , vol.3 , pp. 6-11
    • Lee, R.A.1    Lavoie, J.M.2
  • 79
    • 84922577459 scopus 로고    scopus 로고
    • Integration of the first and second generation bioethanol processes and the importance of by-products
    • Lennartsson P.R., Erlandsson P., Taherzadeh M.J. Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresource Technology 2014, 165:3-8.
    • (2014) Bioresource Technology , vol.165 , pp. 3-8
    • Lennartsson, P.R.1    Erlandsson, P.2    Taherzadeh, M.J.3
  • 80
    • 77952876202 scopus 로고    scopus 로고
    • Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
    • Li B.Z., Yuan Y.J. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 2010, 86:1915-1924.
    • (2010) Applied Microbiology and Biotechnology , vol.86 , pp. 1915-1924
    • Li, B.Z.1    Yuan, Y.J.2
  • 81
    • 84878948725 scopus 로고    scopus 로고
    • Influence of pretreatment condition on the fermentable sugar production and enzymatic hydrolysis of dilute acid-pretreated mixed softwood
    • Lim W.S., Lee J.W. Influence of pretreatment condition on the fermentable sugar production and enzymatic hydrolysis of dilute acid-pretreated mixed softwood. Bioresource Technology 2013, 140:306-311.
    • (2013) Bioresource Technology , vol.140 , pp. 306-311
    • Lim, W.S.1    Lee, J.W.2
  • 82
    • 31344479544 scopus 로고    scopus 로고
    • Ethanol fermentation from biomass resources: current state and prospects
    • Lin Y., Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology 2006, 69:627-642.
    • (2006) Applied Microbiology and Biotechnology , vol.69 , pp. 627-642
    • Lin, Y.1    Tanaka, S.2
  • 83
    • 57249097175 scopus 로고    scopus 로고
    • Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae
    • Liu Z.L., Moon J., Andersh B.J., Slininger P.J., Weber S. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 2008, 81:743-753.
    • (2008) Applied Microbiology and Biotechnology , vol.81 , pp. 743-753
    • Liu, Z.L.1    Moon, J.2    Andersh, B.J.3    Slininger, P.J.4    Weber, S.5
  • 84
    • 84873423316 scopus 로고    scopus 로고
    • Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment
    • Liu Z.H., Qin L., Jin M.J., Pang F., Li B.Z., Kang Y., et al. Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment. Bioresource Technology 2013, 132:5-15.
    • (2013) Bioresource Technology , vol.132 , pp. 5-15
    • Liu, Z.H.1    Qin, L.2    Jin, M.J.3    Pang, F.4    Li, B.Z.5    Kang, Y.6
  • 85
    • 84884489848 scopus 로고    scopus 로고
    • Diversity and fermentation products of xylose-utilizing yeasts isolated from buffalo feces in Thailand
    • Lorliam W., Akaracharanya A., Suzuki M., Ohkuma M., Tanasupawat S. Diversity and fermentation products of xylose-utilizing yeasts isolated from buffalo feces in Thailand. Microbes and Environments 2013, 28:354-360.
    • (2013) Microbes and Environments , vol.28 , pp. 354-360
    • Lorliam, W.1    Akaracharanya, A.2    Suzuki, M.3    Ohkuma, M.4    Tanasupawat, S.5
  • 87
    • 84856703096 scopus 로고    scopus 로고
    • Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae
    • Madhavan A., Srivastava A., Kondo A., Bisaria V.S. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Critical Reviews in Biotechnology 2012, 32:22-48.
    • (2012) Critical Reviews in Biotechnology , vol.32 , pp. 22-48
    • Madhavan, A.1    Srivastava, A.2    Kondo, A.3    Bisaria, V.S.4
  • 88
    • 63949086429 scopus 로고    scopus 로고
    • Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
    • Madhavan A., Tamalampudi S., Ushida K., Kanai D., Katahira S., Srivastava A., et al. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Applied Microbiology and Biotechnology 2009, 82:1067-1078.
    • (2009) Applied Microbiology and Biotechnology , vol.82 , pp. 1067-1078
    • Madhavan, A.1    Tamalampudi, S.2    Ushida, K.3    Kanai, D.4    Katahira, S.5    Srivastava, A.6
  • 89
    • 84860836081 scopus 로고    scopus 로고
    • Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae
    • Matsushika A., Goshima T., Fujii T., Inoue H., Sawayama S., Yano S. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae. Enzyme and Microbial Technology 2012, 51:16-25.
    • (2012) Enzyme and Microbial Technology , vol.51 , pp. 16-25
    • Matsushika, A.1    Goshima, T.2    Fujii, T.3    Inoue, H.4    Sawayama, S.5    Yano, S.6
  • 90
    • 68349109625 scopus 로고    scopus 로고
    • Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
    • Matsushika A., Inoue H., Kodaki T., Sawayama S. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Applied Microbiology and Biotechnology 2009, 84:37-53.
    • (2009) Applied Microbiology and Biotechnology , vol.84 , pp. 37-53
    • Matsushika, A.1    Inoue, H.2    Kodaki, T.3    Sawayama, S.4
  • 91
    • 58649098156 scopus 로고    scopus 로고
    • Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae
    • Matsushika A., Inoue H., Murakami K., Takimura O., Sawayama S. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresource Technology 2009, 100:2392-2398.
    • (2009) Bioresource Technology , vol.100 , pp. 2392-2398
    • Matsushika, A.1    Inoue, H.2    Murakami, K.3    Takimura, O.4    Sawayama, S.5
  • 93
    • 0036566476 scopus 로고    scopus 로고
    • Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase
    • Modig T., Liden G., Taherzadeh M.J. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochemical Journal 2002, 363:769-776.
    • (2002) Biochemical Journal , vol.363 , pp. 769-776
    • Modig, T.1    Liden, G.2    Taherzadeh, M.J.3
  • 96
    • 0030579206 scopus 로고    scopus 로고
    • Probing the limits of expression levels by varying promoter strength and plasmid copy number in Saccharomyces cerevisiae
    • Nacken V., Achstetter T., Degryse E. Probing the limits of expression levels by varying promoter strength and plasmid copy number in Saccharomyces cerevisiae. Gene 1996, 175:253-260.
    • (1996) Gene , vol.175 , pp. 253-260
    • Nacken, V.1    Achstetter, T.2    Degryse, E.3
  • 97
    • 84879820772 scopus 로고    scopus 로고
    • Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose
    • Nakatani Y., Yamada R., Ogino C., Kondo A. Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose. Microbial Cell Factories 2013, 12:66.
    • (2013) Microbial Cell Factories , vol.12 , pp. 66
    • Nakatani, Y.1    Yamada, R.2    Ogino, C.3    Kondo, A.4
  • 98
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
    • Palmqvist E., Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology 2000, 74:25-33.
    • (2000) Bioresource Technology , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hagerdal, B.2
  • 99
    • 77956804303 scopus 로고    scopus 로고
    • The deletion of YLR042c improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae
    • Parachin N.S., Bengtsson O., Hahn-Hagerdal B., Gorwa-Grauslund M.F. The deletion of YLR042c improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Yeast 2010, 27:741-751.
    • (2010) Yeast , vol.27 , pp. 741-751
    • Parachin, N.S.1    Bengtsson, O.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 100
    • 84897450938 scopus 로고    scopus 로고
    • Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass
    • Pereira F.B., Romani A., Ruiz H.A., Teixeira J.A., Domingues L. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Bioresource Technology 2014, 161:192-199.
    • (2014) Bioresource Technology , vol.161 , pp. 192-199
    • Pereira, F.B.1    Romani, A.2    Ruiz, H.A.3    Teixeira, J.A.4    Domingues, L.5
  • 101
    • 84855228527 scopus 로고    scopus 로고
    • Trichoderma reesei RUT-C30-thirty years of strain improvement
    • Peterson R., Nevalainen H. Trichoderma reesei RUT-C30-thirty years of strain improvement. Microbiology 2012, 158:58-68.
    • (2012) Microbiology , vol.158 , pp. 58-68
    • Peterson, R.1    Nevalainen, H.2
  • 102
    • 33744474816 scopus 로고    scopus 로고
    • A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance
    • Petersson A., Almeida J.R., Modig T., Karhumaa K., Hahn-Hagerdal B., Gorwa-Grauslund M.F., et al. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 2006, 23:455-464.
    • (2006) Yeast , vol.23 , pp. 455-464
    • Petersson, A.1    Almeida, J.R.2    Modig, T.3    Karhumaa, K.4    Hahn-Hagerdal, B.5    Gorwa-Grauslund, M.F.6
  • 103
    • 42449145157 scopus 로고    scopus 로고
    • Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
    • Petschacher B., Nidetzky B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microbial Cell Factories 2008, 7:9.
    • (2008) Microbial Cell Factories , vol.7 , pp. 9
    • Petschacher, B.1    Nidetzky, B.2
  • 105
    • 0038514106 scopus 로고    scopus 로고
    • Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture
    • Pitkanen J.P., Aristidou A., Salusjarvi L., Ruohonen L., Penttila M. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metabolic Engineering 2003, 5:16-31.
    • (2003) Metabolic Engineering , vol.5 , pp. 16-31
    • Pitkanen, J.P.1    Aristidou, A.2    Salusjarvi, L.3    Ruohonen, L.4    Penttila, M.5
  • 106
    • 84862162242 scopus 로고    scopus 로고
    • Crystalline and amorphous cellulose in the secondary walls of Arabidopsis
    • Ruel K., Nishiyama Y., Joseleau J.P. Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Science 2012, 193-194:48-61.
    • (2012) Plant Science , pp. 48-61
    • Ruel, K.1    Nishiyama, Y.2    Joseleau, J.P.3
  • 107
    • 77951127992 scopus 로고    scopus 로고
    • Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae
    • Runquist D., Hahn-Hagerdal B., Radstrom P. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels 2010, 3:5.
    • (2010) Biotechnology for Biofuels , vol.3 , pp. 5
    • Runquist, D.1    Hahn-Hagerdal, B.2    Radstrom, P.3
  • 109
    • 77955553357 scopus 로고    scopus 로고
    • Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2
    • Saitoh S., Hasunuma T., Tanaka T., Kondo A. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2. Applied Microbiology and Biotechnology 2010, 87:1975-1982.
    • (2010) Applied Microbiology and Biotechnology , vol.87 , pp. 1975-1982
    • Saitoh, S.1    Hasunuma, T.2    Tanaka, T.3    Kondo, A.4
  • 110
    • 33947192191 scopus 로고    scopus 로고
    • Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases
    • Saloheimo A., Rauta J., Stasyk O.V., Sibirny A.A., Penttila M., Ruohonen L. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Applied Microbiology and Biotechnology 2007, 74:1041-1052.
    • (2007) Applied Microbiology and Biotechnology , vol.74 , pp. 1041-1052
    • Saloheimo, A.1    Rauta, J.2    Stasyk, O.V.3    Sibirny, A.A.4    Penttila, M.5    Ruohonen, L.6
  • 112
    • 84904860502 scopus 로고    scopus 로고
    • Optimized membrane process to increase hemicellulosic ethanol production from pretreated rice straw by recombinant xylose-fermenting Saccharomyces cerevisiae
    • Sasaki K., Tsuge Y., Sasaki D., Hasunuma T., Sakamoto T., Sakihama Y., et al. Optimized membrane process to increase hemicellulosic ethanol production from pretreated rice straw by recombinant xylose-fermenting Saccharomyces cerevisiae. Bioresource Technology 2014, 169C:380-386.
    • (2014) Bioresource Technology , vol.169C , pp. 380-386
    • Sasaki, K.1    Tsuge, Y.2    Sasaki, D.3    Hasunuma, T.4    Sakamoto, T.5    Sakihama, Y.6
  • 113
    • 84857689737 scopus 로고    scopus 로고
    • Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production
    • Sasano Y., Watanabe D., Ukibe K., Inai T., Ohtsu I., Shimoi H., et al. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. Journal of Bioscience and Bioengineering 2012, 113:451-455.
    • (2012) Journal of Bioscience and Bioengineering , vol.113 , pp. 451-455
    • Sasano, Y.1    Watanabe, D.2    Ukibe, K.3    Inai, T.4    Ohtsu, I.5    Shimoi, H.6
  • 114
    • 84892462175 scopus 로고    scopus 로고
    • Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass
    • Sato T.K., Liu T., Parreiras L.S., Williams D.L., Wohlbach D.J., Bice B.D., et al. Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass. Applied and Environmental Microbiology 2014, 80:540-554.
    • (2014) Applied and Environmental Microbiology , vol.80 , pp. 540-554
    • Sato, T.K.1    Liu, T.2    Parreiras, L.S.3    Williams, D.L.4    Wohlbach, D.J.5    Bice, B.D.6
  • 115
    • 84893902817 scopus 로고    scopus 로고
    • Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production
    • Shi J., Zhang M., Zhang L., Wang P., Jiang L., Deng H. Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production. Microbial Biotechnology 2014, 7:90-99.
    • (2014) Microbial Biotechnology , vol.7 , pp. 90-99
    • Shi, J.1    Zhang, M.2    Zhang, L.3    Wang, P.4    Jiang, L.5    Deng, H.6
  • 116
    • 80355137351 scopus 로고    scopus 로고
    • Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production
    • Sindhu R., Kuttiraja M., Binod P., Janu K.U., Sukumaran R.K., Pandey A. Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresource Technology 2011, 102:10915-10921.
    • (2011) Bioresource Technology , vol.102 , pp. 10915-10921
    • Sindhu, R.1    Kuttiraja, M.2    Binod, P.3    Janu, K.U.4    Sukumaran, R.K.5    Pandey, A.6
  • 117
    • 84900839963 scopus 로고    scopus 로고
    • Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase
    • Smith J., Van Rensburg E., Gorgens J.F. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnology 2014, 14:41.
    • (2014) BMC Biotechnology , vol.14 , pp. 41
    • Smith, J.1    Van Rensburg, E.2    Gorgens, J.F.3
  • 118
    • 80053902438 scopus 로고    scopus 로고
    • Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters
    • Subtil T., Boles E. Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters. Biotechnology for Biofuels 2011, 4:38.
    • (2011) Biotechnology for Biofuels , vol.4 , pp. 38
    • Subtil, T.1    Boles, E.2
  • 119
    • 84858262547 scopus 로고    scopus 로고
    • Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
    • Subtil T., Boles E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels 2012, 5:14.
    • (2012) Biotechnology for Biofuels , vol.5 , pp. 14
    • Subtil, T.1    Boles, E.2
  • 120
    • 84862817382 scopus 로고    scopus 로고
    • Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae
    • Sun J., Shao Z., Zhao H., Nair N., Wen F., Xu J.H., et al. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnology and Bioengineering 2012, 109:2082-2092.
    • (2012) Biotechnology and Bioengineering , vol.109 , pp. 2082-2092
    • Sun, J.1    Shao, Z.2    Zhao, H.3    Nair, N.4    Wen, F.5    Xu, J.H.6
  • 122
    • 84888197011 scopus 로고    scopus 로고
    • High beta-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation
    • Tang H., Hou J., Shen Y., Xu L., Yang H., Fang X., et al. High beta-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation. Journal of Microbiology and Biotechnology 2013, 23:1577-1585.
    • (2013) Journal of Microbiology and Biotechnology , vol.23 , pp. 1577-1585
    • Tang, H.1    Hou, J.2    Shen, Y.3    Xu, L.4    Yang, H.5    Fang, X.6
  • 123
    • 78149412303 scopus 로고    scopus 로고
    • Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation
    • Tanino T., Hotta A., Ito T., Ishii J., Yamada R., Hasunuma T., et al. Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation. Applied Microbiology and Biotechnology 2010, 88:1215-1221.
    • (2010) Applied Microbiology and Biotechnology , vol.88 , pp. 1215-1221
    • Tanino, T.1    Hotta, A.2    Ito, T.3    Ishii, J.4    Yamada, R.5    Hasunuma, T.6
  • 124
    • 84863216966 scopus 로고    scopus 로고
    • Sugar consumption and ethanol fermentation by transporter-overexpressed xylose-metabolizing Saccharomyces cerevisiae harboring a xylose isomerase pathway
    • Tanino T., Ito T., Ogino C., Ohmura N., Ohshima T., Kondo A. Sugar consumption and ethanol fermentation by transporter-overexpressed xylose-metabolizing Saccharomyces cerevisiae harboring a xylose isomerase pathway. Journal of Bioscience and Bioengineering 2012, 114:209-211.
    • (2012) Journal of Bioscience and Bioengineering , vol.114 , pp. 209-211
    • Tanino, T.1    Ito, T.2    Ogino, C.3    Ohmura, N.4    Ohshima, T.5    Kondo, A.6
  • 125
    • 82155167022 scopus 로고    scopus 로고
    • Screening of optimal cellulases from symbiotic protists of termites through expression in the secretory pathway of Saccharomyces cerevisiae
    • Todaka N., Nakamura R., Moriya S., Ohkuma M., Kudo T., Takahashi H., et al. Screening of optimal cellulases from symbiotic protists of termites through expression in the secretory pathway of Saccharomyces cerevisiae. Bioscience, Biotechnology and Biochemistry 2011, 75:2260-2263.
    • (2011) Bioscience, Biotechnology and Biochemistry , vol.75 , pp. 2260-2263
    • Todaka, N.1    Nakamura, R.2    Moriya, S.3    Ohkuma, M.4    Kudo, T.5    Takahashi, H.6
  • 126
    • 0034878314 scopus 로고    scopus 로고
    • Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability
    • Toivari M.H., Aristidou A., Ruohonen L., Penttila M. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metabolic Engineering 2001, 3:236-249.
    • (2001) Metabolic Engineering , vol.3 , pp. 236-249
    • Toivari, M.H.1    Aristidou, A.2    Ruohonen, L.3    Penttila, M.4
  • 127
    • 84885996258 scopus 로고    scopus 로고
    • Cloning and expression of the cold-adapted endo-1,4-beta-glucanase gene from Eisenia fetida
    • Ueda M., Ito A., Nakazawa M., Miyatake K., Sakaguchi M., Inouye K. Cloning and expression of the cold-adapted endo-1,4-beta-glucanase gene from Eisenia fetida. Carbohydrate Polymers 2014, 101:511-516.
    • (2014) Carbohydrate Polymers , vol.101 , pp. 511-516
    • Ueda, M.1    Ito, A.2    Nakazawa, M.3    Miyatake, K.4    Sakaguchi, M.5    Inouye, K.6
  • 128
    • 84880837044 scopus 로고    scopus 로고
    • Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade
    • Urbina H., Frank R., Blackwell M. Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade. Mycologia 2013, 105:650-660.
    • (2013) Mycologia , vol.105 , pp. 650-660
    • Urbina, H.1    Frank, R.2    Blackwell, M.3
  • 129
    • 84873736810 scopus 로고    scopus 로고
    • Chemical and synthetic genetic array analysis identifies genes that suppress xylose utilization and fermentation in Saccharomyces cerevisiae
    • Usher J., Balderas-Hernandez V., Quon P., Gold N.D., Martin V.J., Mahadevan R., et al. Chemical and synthetic genetic array analysis identifies genes that suppress xylose utilization and fermentation in Saccharomyces cerevisiae. G3 (Bethesda) 2011, 1:247-258.
    • (2011) G3 (Bethesda) , vol.1 , pp. 247-258
    • Usher, J.1    Balderas-Hernandez, V.2    Quon, P.3    Gold, N.D.4    Martin, V.J.5    Mahadevan, R.6
  • 132
    • 57049166496 scopus 로고    scopus 로고
    • Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose
    • Van Vleet J.H., Jeffries T.W., Olsson L. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metabolic Engineering 2008, 10:360-369.
    • (2008) Metabolic Engineering , vol.10 , pp. 360-369
    • Van Vleet, J.H.1    Jeffries, T.W.2    Olsson, L.3
  • 133
    • 79957439086 scopus 로고    scopus 로고
    • Cloning of two genes (LAT1,2) encoding specific L: -arabinose transporters of the L: -arabinose fermenting yeast Ambrosiozyma monospora
    • Verho R., Penttila M., Richard P. Cloning of two genes (LAT1,2) encoding specific L: -arabinose transporters of the L: -arabinose fermenting yeast Ambrosiozyma monospora. Applied Biochemistry and Biotechnology 2011, 164:604-611.
    • (2011) Applied Biochemistry and Biotechnology , vol.164 , pp. 604-611
    • Verho, R.1    Penttila, M.2    Richard, P.3
  • 134
    • 0347297600 scopus 로고    scopus 로고
    • Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
    • Wahlbom C.F., Cordero Otero R.R., Van Zyl W.H., Hahn-Hagerdal B., Jonsson L.J. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Applied and Environmental Microbiology 2003, 69:740-746.
    • (2003) Applied and Environmental Microbiology , vol.69 , pp. 740-746
    • Wahlbom, C.F.1    Cordero Otero, R.R.2    Van Zyl, W.H.3    Hahn-Hagerdal, B.4    Jonsson, L.J.5
  • 135
    • 0029909726 scopus 로고    scopus 로고
    • Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
    • Walfridsson M., Bao X., Anderlund M., Lilius G., Bulow L., Hahn-Hagerdal B. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Applied and Environmental Microbiology 1996, 62:4648-4651.
    • (1996) Applied and Environmental Microbiology , vol.62 , pp. 4648-4651
    • Walfridsson, M.1    Bao, X.2    Anderlund, M.3    Lilius, G.4    Bulow, L.5    Hahn-Hagerdal, B.6
  • 136
    • 84885551317 scopus 로고    scopus 로고
    • Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature
    • Wallace-Salinas V., Gorwa-Grauslund M.F. Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnology for Biofuels 2013, 6:151.
    • (2013) Biotechnology for Biofuels , vol.6 , pp. 151
    • Wallace-Salinas, V.1    Gorwa-Grauslund, M.F.2
  • 137
    • 84888032956 scopus 로고    scopus 로고
    • Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors
    • Wang X., Jin M., Balan V., Jones A.D., Li X., Li B.Z., et al. Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors. Biotechnology and Bioengineering 2014, 111:152-164.
    • (2014) Biotechnology and Bioengineering , vol.111 , pp. 152-164
    • Wang, X.1    Jin, M.2    Balan, V.3    Jones, A.D.4    Li, X.5    Li, B.Z.6
  • 138
    • 84886468735 scopus 로고    scopus 로고
    • Improvement of L-arabinose fermentation by modifying the metabolic pathway and transport in Saccharomyces cerevisiae
    • Wang C., Shen Y., Zhang Y., Suo F., Hou J., Bao X. Improvement of L-arabinose fermentation by modifying the metabolic pathway and transport in Saccharomyces cerevisiae. BioMed Research International 2013, 2013:461204.
    • (2013) BioMed Research International , vol.2013 , pp. 461204
    • Wang, C.1    Shen, Y.2    Zhang, Y.3    Suo, F.4    Hou, J.5    Bao, X.6
  • 139
    • 34547629220 scopus 로고    scopus 로고
    • Life cycle energy and greenhouse gas emission impacts of different corn ethanol plant types
    • Wang M., Wu M., Huo H. Life cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environmental Research Letters 2007, 2:1-13.
    • (2007) Environmental Research Letters , vol.2 , pp. 1-13
    • Wang, M.1    Wu, M.2    Huo, H.3
  • 140
    • 34948882785 scopus 로고    scopus 로고
    • Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis
    • Watanabe S., Abu Saleh A., Pack S., Annaluru N., Kodaki T., Makino K. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology (Reading, England) 2007, 153:3044-3054.
    • (2007) Microbiology (Reading, England) , vol.153 , pp. 3044-3054
    • Watanabe, S.1    Abu Saleh, A.2    Pack, S.3    Annaluru, N.4    Kodaki, T.5    Makino, K.6
  • 142
    • 78650704614 scopus 로고    scopus 로고
    • A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance
    • Watanabe T., Watanabe I., Yamamoto M., Ando A., Nakamura T. A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance. Bioresource Technology 2011, 102:1844-1848.
    • (2011) Bioresource Technology , vol.102 , pp. 1844-1848
    • Watanabe, T.1    Watanabe, I.2    Yamamoto, M.3    Ando, A.4    Nakamura, T.5
  • 143
    • 84885439374 scopus 로고    scopus 로고
    • Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast
    • Wei N., Quarterman J., Kim S.R., Cate J.H., Jin Y.S. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nature Communications 2013, 4:2580.
    • (2013) Nature Communications , vol.4 , pp. 2580
    • Wei, N.1    Quarterman, J.2    Kim, S.R.3    Cate, J.H.4    Jin, Y.S.5
  • 144
    • 76649105430 scopus 로고    scopus 로고
    • Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol
    • Wen F., Sun J., Zhao H. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Applied and Environmental Microbiology 2010, 76:1251-1260.
    • (2010) Applied and Environmental Microbiology , vol.76 , pp. 1251-1260
    • Wen, F.1    Sun, J.2    Zhao, H.3
  • 145
    • 42249110184 scopus 로고    scopus 로고
    • Emerging strategies of lignin engineering and degradation for cellulosic biofuel production
    • Weng J.K., Li X., Bonawitz N.D., Chapple C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Current Opinion in Biotechnology 2008, 19:166-172.
    • (2008) Current Opinion in Biotechnology , vol.19 , pp. 166-172
    • Weng, J.K.1    Li, X.2    Bonawitz, N.D.3    Chapple, C.4
  • 146
    • 77953211186 scopus 로고    scopus 로고
    • Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae
    • Wenger J., Schwartz K., Sherlock G. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genetics 2010, 6.
    • (2010) PLoS Genetics , vol.6
    • Wenger, J.1    Schwartz, K.2    Sherlock, G.3
  • 147
    • 84908297746 scopus 로고    scopus 로고
    • Improved sugar co-utilisation by encapsulation of a recombinant Saccharomyces cerevisiae strain in alginate-chitosan capsules
    • Westman J.O., Bonander N., Taherzadeh M.J., Franzen C.J. Improved sugar co-utilisation by encapsulation of a recombinant Saccharomyces cerevisiae strain in alginate-chitosan capsules. Biotechnology for Biofuels 2014, 7:102.
    • (2014) Biotechnology for Biofuels , vol.7 , pp. 102
    • Westman, J.O.1    Bonander, N.2    Taherzadeh, M.J.3    Franzen, C.J.4
  • 148
    • 84866949703 scopus 로고    scopus 로고
    • Encapsulation-induced stress helps Saccharomyces cerevisiae resist convertible lignocellulose derived inhibitors
    • Westman J.O., Manikondu R.B., Franzen C.J., Taherzadeh M.J. Encapsulation-induced stress helps Saccharomyces cerevisiae resist convertible lignocellulose derived inhibitors. International Journal of Molecular Sciences 2012, 13:11881-11894.
    • (2012) International Journal of Molecular Sciences , vol.13 , pp. 11881-11894
    • Westman, J.O.1    Manikondu, R.B.2    Franzen, C.J.3    Taherzadeh, M.J.4
  • 149
    • 84908299692 scopus 로고    scopus 로고
    • Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production
    • Westman J.O., Mapelli V., Taherzadeh M.J., Franzen C.J. Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production. Applied and Environmental Microbiology 2014, 80:6908-6918.
    • (2014) Applied and Environmental Microbiology , vol.80 , pp. 6908-6918
    • Westman, J.O.1    Mapelli, V.2    Taherzadeh, M.J.3    Franzen, C.J.4
  • 151
    • 59949093124 scopus 로고    scopus 로고
    • Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains
    • Wisselink H.W., Toirkens M.J., Wu Q., Pronk J.T., Van Maris A.J. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Applied and Environmental Microbiology 2009, 75:907-914.
    • (2009) Applied and Environmental Microbiology , vol.75 , pp. 907-914
    • Wisselink, H.W.1    Toirkens, M.J.2    Wu, Q.3    Pronk, J.T.4    Van Maris, A.J.5
  • 152
    • 80052377729 scopus 로고    scopus 로고
    • Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations
    • Xiong M., Chen G., Barford J. Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations. Bioresource Technology 2011, 102:9206-9215.
    • (2011) Bioresource Technology , vol.102 , pp. 9206-9215
    • Xiong, M.1    Chen, G.2    Barford, J.3
  • 153
    • 84890120229 scopus 로고    scopus 로고
    • Secretory pathway engineering enhances secretion of cellobiohydrolase I from Trichoderma reesei in Saccharomyces cerevisiae
    • Xu L., Shen Y., Hou J., Peng B., Tang H., Bao X. Secretory pathway engineering enhances secretion of cellobiohydrolase I from Trichoderma reesei in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering 2014, 117:45-52.
    • (2014) Journal of Bioscience and Bioengineering , vol.117 , pp. 45-52
    • Xu, L.1    Shen, Y.2    Hou, J.3    Peng, B.4    Tang, H.5    Bao, X.6
  • 154
    • 77953675236 scopus 로고    scopus 로고
    • Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains
    • Yamada R., Taniguchi N., Tanaka T., Ogino C., Fukuda H., Kondo A. Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microbial Cell Factories 2010, 9:32.
    • (2010) Microbial Cell Factories , vol.9 , pp. 32
    • Yamada, R.1    Taniguchi, N.2    Tanaka, T.3    Ogino, C.4    Fukuda, H.5    Kondo, A.6
  • 155
    • 85028099794 scopus 로고    scopus 로고
    • Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression
    • Yamada R., Taniguchi N., Tanaka T., Ogino C., Fukuda H., Kondo A. Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnology for Biofuels 2011, 4:8.
    • (2011) Biotechnology for Biofuels , vol.4 , pp. 8
    • Yamada, R.1    Taniguchi, N.2    Tanaka, T.3    Ogino, C.4    Fukuda, H.5    Kondo, A.6
  • 157
    • 80755143322 scopus 로고    scopus 로고
    • Cloning and characterization of a novel cold-active endoglucanase establishing a new subfamily of glycosyl hydrolase family 5 from a psychrophilic deep-sea bacterium
    • Yang J., Dang H. Cloning and characterization of a novel cold-active endoglucanase establishing a new subfamily of glycosyl hydrolase family 5 from a psychrophilic deep-sea bacterium. FEMS Microbiology Letters 2011, 325:71-76.
    • (2011) FEMS Microbiology Letters , vol.325 , pp. 71-76
    • Yang, J.1    Dang, H.2
  • 158
    • 79958211835 scopus 로고    scopus 로고
    • Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host
    • Young E., Poucher A., Comer A., Bailey A., Alper H. Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Applied and Environmental Microbiology 2011, 77:3311-3319.
    • (2011) Applied and Environmental Microbiology , vol.77 , pp. 3311-3319
    • Young, E.1    Poucher, A.2    Comer, A.3    Bailey, A.4    Alper, H.5
  • 159
    • 77954887926 scopus 로고    scopus 로고
    • MFalpha signal peptide enhances the expression of cellulase eg1 gene in yeast
    • Zhu H., Yao S., Wang S. MFalpha signal peptide enhances the expression of cellulase eg1 gene in yeast. Applied Biochemistry and Biotechnology 2010, 162:617-624.
    • (2010) Applied Biochemistry and Biotechnology , vol.162 , pp. 617-624
    • Zhu, H.1    Yao, S.2    Wang, S.3
  • 160
    • 77950475482 scopus 로고    scopus 로고
    • Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol production
    • Zhuang J., Liu Y., Wu Z., Sun Y., Lin L. Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol production. Bioresources 2009, 4:674-686.
    • (2009) Bioresources , vol.4 , pp. 674-686
    • Zhuang, J.1    Liu, Y.2    Wu, Z.3    Sun, Y.4    Lin, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.