메뉴 건너뛰기




Volumn 25, Issue 11, 2008, Pages 835-847

Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering

Author keywords

Inverse metabolic engineering; MNI1; RPA49; Saccharomyces cerevisiae; SOL3; TAL1; Transcriptome; Xylose; YLR042C

Indexed keywords

6 PHOSPHOGLUCONOLACTONASE; RNA POLYMERASE; S ADENOSYLMETHIONINE DEPENDENT METHYLTRANSFERASE; SACCHAROMYCES CEREVISIAE PROTEIN; TRANSALDOLASE; TRANSCRIPTION FACTOR TAL1; UNCLASSIFIED DRUG; XYLOSE;

EID: 58149347653     PISSN: 0749503X     EISSN: 10970061     Source Type: Journal    
DOI: 10.1002/yea.1638     Document Type: Article
Times cited : (47)

References (56)
  • 1
    • 0037316031 scopus 로고    scopus 로고
    • Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains
    • Askenazi M, Driggers EM, Holtzman DA, et al. 2003. Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21: 150-156.
    • (2003) Nat Biotechnol , vol.21 , pp. 150-156
    • Askenazi, M.1    Driggers, E.M.2    Holtzman, D.A.3
  • 2
    • 0004270170 scopus 로고
    • Ausubel FM, Brent R, Kingston E, et al, eds, Wiley: New York
    • Ausubel FM, Brent R, Kingston E, et al. (eds). 1995. Current Protocols in Molecular Biology. Wiley: New York.
    • (1995) Current Protocols in Molecular Biology
  • 3
    • 0037026501 scopus 로고    scopus 로고
    • Inverse metabolic engineering: A strategy for directed genetic engineering of useful phenotypes
    • Bailey JE, Sburlati A, Hatzimanikatis V, et al. 2002. Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 79: 568-579.
    • (2002) Biotechnol Bioeng , vol.79 , pp. 568-579
    • Bailey, J.E.1    Sburlati, A.2    Hatzimanikatis, V.3
  • 4
    • 0037962155 scopus 로고    scopus 로고
    • A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol
    • Becker J, Boles E. 2003. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl Environ Microbiol 69: 4144-4150.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 4144-4150
    • Becker, J.1    Boles, E.2
  • 5
    • 32044452893 scopus 로고    scopus 로고
    • Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: Example of transcript analysis as a tool in inverse metabolic engineering
    • Bro C, Knudsen S, Regenberg B, et al. 2005. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71: 6465-6472.
    • (2005) Appl Environ Microbiol , vol.71 , pp. 6465-6472
    • Bro, C.1    Knudsen, S.2    Regenberg, B.3
  • 6
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C, Regenberg B, Förster J, et al. 2006. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8: 102-111.
    • (2006) Metab Eng , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Förster, J.3
  • 7
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DeRisi JL, Iyer VR, Brown PO. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680-686.
    • (1997) Science , vol.278 , pp. 680-686
    • DeRisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 8
    • 0033856888 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
    • Eliasson A, Christensson C, Wahlbom CF, et al. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66: 3381-3386.
    • (2000) Appl Environ Microbiol , vol.66 , pp. 3381-3386
    • Eliasson, A.1    Christensson, C.2    Wahlbom, C.F.3
  • 9
    • 77956676759 scopus 로고    scopus 로고
    • Yeast mutant and plasmid collections
    • Brown AJP, Tuite MF eds, Academic Press: New York;
    • Entian KD, Kötter P. 1998. Yeast mutant and plasmid collections. In Yeast Gene Analysis, Brown AJP, Tuite MF (eds). Academic Press: New York; 431-449.
    • (1998) Yeast Gene Analysis , pp. 431-449
    • Entian, K.D.1    Kötter, P.2
  • 10
    • 0038363853 scopus 로고    scopus 로고
    • Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae
    • Gardonyi M, Jeppsson M, Lidén G, et al. 2003. Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 82: 818-824.
    • (2003) Biotechnol Bioeng , vol.82 , pp. 818-824
    • Gardonyi, M.1    Jeppsson, M.2    Lidén, G.3
  • 11
    • 0037173615 scopus 로고    scopus 로고
    • Functional profiling of the Saccharomyces cerevisiae genome
    • Giaever G, Chu AM, Ni L, et al. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387-391.
    • (2002) Nature , vol.418 , pp. 387-391
    • Giaever, G.1    Chu, A.M.2    Ni, L.3
  • 12
    • 0029994841 scopus 로고    scopus 로고
    • A new efficient gene disruption cassette for repeated use in budding yeast
    • Güldener U, Heck S, Fielder T, et al. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24: 2519-2524.
    • (1996) Nucleic Acids Res , vol.24 , pp. 2519-2524
    • Güldener, U.1    Heck, S.2    Fielder, T.3
  • 13
  • 15
    • 0036738179 scopus 로고    scopus 로고
    • Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
    • Hamacher T, Becker J, Gardonyi M, et al. 2002. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148: 2783-2788.
    • (2002) Microbiology , vol.148 , pp. 2783-2788
    • Hamacher, T.1    Becker, J.2    Gardonyi, M.3
  • 16
    • 0033024416 scopus 로고    scopus 로고
    • Amino acid residues in the omega-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins
    • Hamada K, Terashima H, Arisawa M, et al. 1999. Amino acid residues in the omega-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J Bacteriol 181: 3886-3889.
    • (1999) J Bacteriol , vol.181 , pp. 3886-3889
    • Hamada, K.1    Terashima, H.2    Arisawa, M.3
  • 17
    • 13444280500 scopus 로고    scopus 로고
    • Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle- and long-term
    • Hamelinck CN, van Hooijdonk G, Faaij APC. 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28: 384-410.
    • (2005) Biomass Bioenergy , vol.28 , pp. 384-410
    • Hamelinck, C.N.1    van Hooijdonk, G.2    Faaij, A.P.C.3
  • 18
    • 0002162176 scopus 로고
    • Basic research and pilot studies on the enzymatic conversion of lignocellulosics
    • Saddler JN ed, CAB International: Wallingford, UK;
    • Hayn M, Steiner W, Klinger R, et al. 1993. Basic research and pilot studies on the enzymatic conversion of lignocellulosics. In Bioconversion of Forest and Agricultural Plant Residues, Saddler JN (ed.). CAB International: Wallingford, UK; 33-72.
    • (1993) Bioconversion of Forest and Agricultural Plant Residues , pp. 33-72
    • Hayn, M.1    Steiner, W.2    Klinger, R.3
  • 19
    • 0031832290 scopus 로고    scopus 로고
    • Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
    • Ho NW, Chen Z, Brainard AP. 1998. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64: 1852-1859.
    • (1998) Appl Environ Microbiol , vol.64 , pp. 1852-1859
    • Ho, N.W.1    Chen, Z.2    Brainard, A.P.3
  • 20
    • 0025675856 scopus 로고
    • High efficiency transformation of Escherichia coli with plasmids
    • Inoue H, Nojima H, Okayama H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96: 23-28.
    • (1990) Gene , vol.96 , pp. 23-28
    • Inoue, H.1    Nojima, H.2    Okayama, H.3
  • 21
    • 33744914986 scopus 로고    scopus 로고
    • Engineering yeasts for xylose metabolism
    • Jeffries TW. 2006. Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17: 320-326.
    • (2006) Curr Opin Biotechnol , vol.17 , pp. 320-326
    • Jeffries, T.W.1
  • 22
    • 33644879465 scopus 로고    scopus 로고
    • The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
    • Jeppsson M, Bengtsson O, Franke K, et al. 2006. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 93: 665-673.
    • (2006) Biotechnol Bioeng , vol.93 , pp. 665-673
    • Jeppsson, M.1    Bengtsson, O.2    Franke, K.3
  • 23
    • 0036208491 scopus 로고    scopus 로고
    • Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose
    • Jeppsson M, Johansson B, Hahn-Hägerdal B, et al. 2002. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68: 1604-1609.
    • (2002) Appl Environ Microbiol , vol.68 , pp. 1604-1609
    • Jeppsson, M.1    Johansson, B.2    Hahn-Hägerdal, B.3
  • 24
    • 0345329541 scopus 로고    scopus 로고
    • The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains
    • Jeppsson M, Johansson B, Ruhdal-Jensen P, et al. 2003. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast 20: 1263-1272.
    • (2003) Yeast , vol.20 , pp. 1263-1272
    • Jeppsson, M.1    Johansson, B.2    Ruhdal-Jensen, P.3
  • 25
    • 29144502422 scopus 로고    scopus 로고
    • Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
    • Jin YS, Alper H, Yang YT, et al. 2005. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol 71: 8249-8256.
    • (2005) Appl Environ Microbiol , vol.71 , pp. 8249-8256
    • Jin, Y.S.1    Alper, H.2    Yang, Y.T.3
  • 26
    • 8744293844 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response
    • Jin YS, Laplaza JM, Jeffries TW. 2004. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 70: 6816-6825.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 6816-6825
    • Jin, Y.S.1    Laplaza, J.M.2    Jeffries, T.W.3
  • 27
    • 0035458838 scopus 로고    scopus 로고
    • Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate
    • Johansson B, Christensson C, Hobley T, et al. 2001. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67: 4249-4255.
    • (2001) Appl Environ Microbiol , vol.67 , pp. 4249-4255
    • Johansson, B.1    Christensson, C.2    Hobley, T.3
  • 28
    • 0036053504 scopus 로고    scopus 로고
    • The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001
    • Johansson B, Hahn-Hägerdal B. 2002. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res 2: 277-282.
    • (2002) FEMS Yeast Res , vol.2 , pp. 277-282
    • Johansson, B.1    Hahn-Hägerdal, B.2
  • 29
    • 17644373035 scopus 로고    scopus 로고
    • Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
    • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF. 2005. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22: 359-368.
    • (2005) Yeast , vol.22 , pp. 359-368
    • Karhumaa, K.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.F.3
  • 30
    • 12144288423 scopus 로고    scopus 로고
    • High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
    • Kuyper M, Harhangi HR, Stave AK, et al. 2003. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4: 69-78.
    • (2003) FEMS Yeast Res , vol.4 , pp. 69-78
    • Kuyper, M.1    Harhangi, H.R.2    Stave, A.K.3
  • 31
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
    • Kuyper M, Hartog MM, Toirkens MJ, et al. 2005. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5: 399-409.
    • (2005) FEMS Yeast Res , vol.5 , pp. 399-409
    • Kuyper, M.1    Hartog, M.M.2    Toirkens, M.J.3
  • 32
    • 0027395082 scopus 로고
    • Xylose fermentation by Saccharomyces cerevisiae
    • Kötter P, Ciriacy M. 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38: 776-783.
    • (1993) Appl Microbiol Biotechnol , vol.38 , pp. 776-783
    • Kötter, P.1    Ciriacy, M.2
  • 33
    • 10544256600 scopus 로고    scopus 로고
    • Expression monitoring by hybridization to high-density oligonucleotide arrays
    • Lockhart DJ, Dong H, Byrne MC, et al. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14: 1675-1680.
    • (1996) Nat Biotechnol , vol.14 , pp. 1675-1680
    • Lockhart, D.J.1    Dong, H.2    Byrne, M.C.3
  • 34
    • 0031761689 scopus 로고    scopus 로고
    • Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae
    • Lutfiyya LL, Iyer VR, DeRisi J, et al. 1998. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. Genetics 150: 1377-1391.
    • (1998) Genetics , vol.150 , pp. 1377-1391
    • Lutfiyya, L.L.1    Iyer, V.R.2    DeRisi, J.3
  • 35
    • 0033527694 scopus 로고    scopus 로고
    • A biochemical genomics approach for identifying genes by the activity of their products
    • Martzen MR, McCraith SM, Spinelli SL, et al. 1999. A biochemical genomics approach for identifying genes by the activity of their products. Science 286: 1153-1155.
    • (1999) Science , vol.286 , pp. 1153-1155
    • Martzen, M.R.1    McCraith, S.M.2    Spinelli, S.L.3
  • 37
    • 0028953840 scopus 로고
    • Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
    • Mumberg D, Müller R, Funk M. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119-122.
    • (1995) Gene , vol.156 , pp. 119-122
    • Mumberg, D.1    Müller, R.2    Funk, M.3
  • 38
    • 33744474816 scopus 로고    scopus 로고
    • A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance
    • Petersson A, Almeida JR, Modig T, et al. 2006. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23: 455-464.
    • (2006) Yeast , vol.23 , pp. 455-464
    • Petersson, A.1    Almeida, J.R.2    Modig, T.3
  • 39
    • 0037020260 scopus 로고    scopus 로고
    • Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae
    • Piper MD, Daran-Lapujade P, Bro C, et al. 2002. Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 277: 37001-37008.
    • (2002) J Biol Chem , vol.277 , pp. 37001-37008
    • Piper, M.D.1    Daran-Lapujade, P.2    Bro, C.3
  • 41
    • 33646873502 scopus 로고    scopus 로고
    • Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose
    • Salusjärvi L, Pitkänen JP, Aristidou A, et al. 2006. Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose. Appl Biochem Biotechnol 128: 237-261.
    • (2006) Appl Biochem Biotechnol , vol.128 , pp. 237-261
    • Salusjärvi, L.1    Pitkänen, J.P.2    Aristidou, A.3
  • 42
    • 0024694679 scopus 로고
    • Overproduction of glycolytic enzymes in yeast
    • Schaaff I, Heinisch J, Zimmermann FK. 1989. Overproduction of glycolytic enzymes in yeast. Yeast 5: 285-290.
    • (1989) Yeast , vol.5 , pp. 285-290
    • Schaaff, I.1    Heinisch, J.2    Zimmermann, F.K.3
  • 43
    • 0025362399 scopus 로고
    • A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae
    • Schmitt ME, Brown TA, Trumpower BL. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18: 3091-3092.
    • (1990) Nucleic Acids Res , vol.18 , pp. 3091-3092
    • Schmitt, M.E.1    Brown, T.A.2    Trumpower, B.L.3
  • 44
    • 0037735189 scopus 로고    scopus 로고
    • DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose cofermentation by metabolically engineered Saccharomyces yeast
    • Sedlak M, Edenberg HJ, Ho NWY. 2003. DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose cofermentation by metabolically engineered Saccharomyces yeast. Enzyme Microb Technol 33: 19-28.
    • (2003) Enzyme Microb Technol , vol.33 , pp. 19-28
    • Sedlak, M.1    Edenberg, H.J.2    Ho, N.W.Y.3
  • 45
    • 22144434877 scopus 로고    scopus 로고
    • Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae
    • Shi F, Kawai S, Mori S, et al. 2005. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae. FEBS J 272: 3337-3349.
    • (2005) FEBS J , vol.272 , pp. 3337-3349
    • Shi, F.1    Kawai, S.2    Mori, S.3
  • 46
    • 0033753004 scopus 로고    scopus 로고
    • Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae
    • Smits HP, Hauf J, Müller S, et al. 2000. Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16: 1325-1334.
    • (2000) Yeast , vol.16 , pp. 1325-1334
    • Smits, H.P.1    Hauf, J.2    Müller, S.3
  • 47
    • 2442641770 scopus 로고    scopus 로고
    • Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis
    • Sonderegger M, Jeppsson M, Hahn-Hägerdal B, et al. 2004a. Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70: 2307-2317.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 2307-2317
    • Sonderegger, M.1    Jeppsson, M.2    Hahn-Hägerdal, B.3
  • 48
    • 3042799359 scopus 로고    scopus 로고
    • Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains
    • Sonderegger M, Jeppsson M, Larsson C, et al. 2004b. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 87: 90-98.
    • (2004) Biotechnol Bioeng , vol.87 , pp. 90-98
    • Sonderegger, M.1    Jeppsson, M.2    Larsson, C.3
  • 49
    • 0037394596 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
    • Sonderegger M, Sauer U. 2003. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69: 1990-1998.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 1990-1998
    • Sonderegger, M.1    Sauer, U.2
  • 50
    • 0034878314 scopus 로고    scopus 로고
    • Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability
    • Toivari MH, Aristidou A, Ruohonen L, et al. 2001. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3: 236-249.
    • (2001) Metab Eng , vol.3 , pp. 236-249
    • Toivari, M.H.1    Aristidou, A.2    Ruohonen, L.3
  • 51
    • 0347297600 scopus 로고    scopus 로고
    • Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
    • Wahlbom CF, Cordero Otero RR, van Zyl WH, et al. 2003a. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69: 740-746.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 740-746
    • Wahlbom, C.F.1    Cordero Otero, R.R.2    van Zyl, W.H.3
  • 52
    • 0035809032 scopus 로고    scopus 로고
    • Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations
    • Wahlbom CF, Eliasson A, Hahn-Hägerdal B. 2001. Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations. Biotechnol Bioeng 72: 289-296.
    • (2001) Biotechnol Bioeng , vol.72 , pp. 289-296
    • Wahlbom, C.F.1    Eliasson, A.2    Hahn-Hägerdal, B.3
  • 53
    • 12444258773 scopus 로고    scopus 로고
    • Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054
    • Wahlbom CF, van Zyl WH, Jönsson LJ, et al. 2003b. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 3: 319-326.
    • (2003) FEMS Yeast Res , vol.3 , pp. 319-326
    • Wahlbom, C.F.1    van Zyl, W.H.2    Jönsson, L.J.3
  • 54
    • 0029909726 scopus 로고    scopus 로고
    • Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
    • Walfridsson M, Bao X, Anderlund M, et al. 1996. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62: 4648-4651.
    • (1996) Appl Environ Microbiol , vol.62 , pp. 4648-4651
    • Walfridsson, M.1    Bao, X.2    Anderlund, M.3
  • 55
    • 0028829654 scopus 로고
    • Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase
    • Walfridsson M, Hallborn J, Penttilä M, et al. 1995. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61: 4184-4190.
    • (1995) Appl Environ Microbiol , vol.61 , pp. 4184-4190
    • Walfridsson, M.1    Hallborn, J.2    Penttilä, M.3
  • 56
    • 0031453850 scopus 로고    scopus 로고
    • Genome-wide expression monitoring in Saccharomyces cerevisiae
    • Wodicka L, Dong H, Mittmann M, et al. 1997. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol 15: 1359-1367.
    • (1997) Nat Biotechnol , vol.15 , pp. 1359-1367
    • Wodicka, L.1    Dong, H.2    Mittmann, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.