-
1
-
-
0037316031
-
Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains
-
Askenazi M, Driggers EM, Holtzman DA, et al. 2003. Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21: 150-156.
-
(2003)
Nat Biotechnol
, vol.21
, pp. 150-156
-
-
Askenazi, M.1
Driggers, E.M.2
Holtzman, D.A.3
-
2
-
-
0004270170
-
-
Ausubel FM, Brent R, Kingston E, et al, eds, Wiley: New York
-
Ausubel FM, Brent R, Kingston E, et al. (eds). 1995. Current Protocols in Molecular Biology. Wiley: New York.
-
(1995)
Current Protocols in Molecular Biology
-
-
-
3
-
-
0037026501
-
Inverse metabolic engineering: A strategy for directed genetic engineering of useful phenotypes
-
Bailey JE, Sburlati A, Hatzimanikatis V, et al. 2002. Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 79: 568-579.
-
(2002)
Biotechnol Bioeng
, vol.79
, pp. 568-579
-
-
Bailey, J.E.1
Sburlati, A.2
Hatzimanikatis, V.3
-
4
-
-
0037962155
-
A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol
-
Becker J, Boles E. 2003. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl Environ Microbiol 69: 4144-4150.
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 4144-4150
-
-
Becker, J.1
Boles, E.2
-
5
-
-
32044452893
-
Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: Example of transcript analysis as a tool in inverse metabolic engineering
-
Bro C, Knudsen S, Regenberg B, et al. 2005. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71: 6465-6472.
-
(2005)
Appl Environ Microbiol
, vol.71
, pp. 6465-6472
-
-
Bro, C.1
Knudsen, S.2
Regenberg, B.3
-
6
-
-
33644832381
-
In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
-
Bro C, Regenberg B, Förster J, et al. 2006. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8: 102-111.
-
(2006)
Metab Eng
, vol.8
, pp. 102-111
-
-
Bro, C.1
Regenberg, B.2
Förster, J.3
-
7
-
-
0030669030
-
Exploring the metabolic and genetic control of gene expression on a genomic scale
-
DeRisi JL, Iyer VR, Brown PO. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680-686.
-
(1997)
Science
, vol.278
, pp. 680-686
-
-
DeRisi, J.L.1
Iyer, V.R.2
Brown, P.O.3
-
8
-
-
0033856888
-
Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
-
Eliasson A, Christensson C, Wahlbom CF, et al. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66: 3381-3386.
-
(2000)
Appl Environ Microbiol
, vol.66
, pp. 3381-3386
-
-
Eliasson, A.1
Christensson, C.2
Wahlbom, C.F.3
-
9
-
-
77956676759
-
Yeast mutant and plasmid collections
-
Brown AJP, Tuite MF eds, Academic Press: New York;
-
Entian KD, Kötter P. 1998. Yeast mutant and plasmid collections. In Yeast Gene Analysis, Brown AJP, Tuite MF (eds). Academic Press: New York; 431-449.
-
(1998)
Yeast Gene Analysis
, pp. 431-449
-
-
Entian, K.D.1
Kötter, P.2
-
10
-
-
0038363853
-
Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae
-
Gardonyi M, Jeppsson M, Lidén G, et al. 2003. Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 82: 818-824.
-
(2003)
Biotechnol Bioeng
, vol.82
, pp. 818-824
-
-
Gardonyi, M.1
Jeppsson, M.2
Lidén, G.3
-
11
-
-
0037173615
-
Functional profiling of the Saccharomyces cerevisiae genome
-
Giaever G, Chu AM, Ni L, et al. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387-391.
-
(2002)
Nature
, vol.418
, pp. 387-391
-
-
Giaever, G.1
Chu, A.M.2
Ni, L.3
-
12
-
-
0029994841
-
A new efficient gene disruption cassette for repeated use in budding yeast
-
Güldener U, Heck S, Fielder T, et al. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24: 2519-2524.
-
(1996)
Nucleic Acids Res
, vol.24
, pp. 2519-2524
-
-
Güldener, U.1
Heck, S.2
Fielder, T.3
-
15
-
-
0036738179
-
Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
-
Hamacher T, Becker J, Gardonyi M, et al. 2002. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148: 2783-2788.
-
(2002)
Microbiology
, vol.148
, pp. 2783-2788
-
-
Hamacher, T.1
Becker, J.2
Gardonyi, M.3
-
16
-
-
0033024416
-
Amino acid residues in the omega-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins
-
Hamada K, Terashima H, Arisawa M, et al. 1999. Amino acid residues in the omega-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J Bacteriol 181: 3886-3889.
-
(1999)
J Bacteriol
, vol.181
, pp. 3886-3889
-
-
Hamada, K.1
Terashima, H.2
Arisawa, M.3
-
17
-
-
13444280500
-
Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle- and long-term
-
Hamelinck CN, van Hooijdonk G, Faaij APC. 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28: 384-410.
-
(2005)
Biomass Bioenergy
, vol.28
, pp. 384-410
-
-
Hamelinck, C.N.1
van Hooijdonk, G.2
Faaij, A.P.C.3
-
18
-
-
0002162176
-
Basic research and pilot studies on the enzymatic conversion of lignocellulosics
-
Saddler JN ed, CAB International: Wallingford, UK;
-
Hayn M, Steiner W, Klinger R, et al. 1993. Basic research and pilot studies on the enzymatic conversion of lignocellulosics. In Bioconversion of Forest and Agricultural Plant Residues, Saddler JN (ed.). CAB International: Wallingford, UK; 33-72.
-
(1993)
Bioconversion of Forest and Agricultural Plant Residues
, pp. 33-72
-
-
Hayn, M.1
Steiner, W.2
Klinger, R.3
-
19
-
-
0031832290
-
Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
-
Ho NW, Chen Z, Brainard AP. 1998. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64: 1852-1859.
-
(1998)
Appl Environ Microbiol
, vol.64
, pp. 1852-1859
-
-
Ho, N.W.1
Chen, Z.2
Brainard, A.P.3
-
20
-
-
0025675856
-
High efficiency transformation of Escherichia coli with plasmids
-
Inoue H, Nojima H, Okayama H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96: 23-28.
-
(1990)
Gene
, vol.96
, pp. 23-28
-
-
Inoue, H.1
Nojima, H.2
Okayama, H.3
-
21
-
-
33744914986
-
Engineering yeasts for xylose metabolism
-
Jeffries TW. 2006. Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17: 320-326.
-
(2006)
Curr Opin Biotechnol
, vol.17
, pp. 320-326
-
-
Jeffries, T.W.1
-
22
-
-
33644879465
-
The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
-
Jeppsson M, Bengtsson O, Franke K, et al. 2006. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 93: 665-673.
-
(2006)
Biotechnol Bioeng
, vol.93
, pp. 665-673
-
-
Jeppsson, M.1
Bengtsson, O.2
Franke, K.3
-
23
-
-
0036208491
-
Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose
-
Jeppsson M, Johansson B, Hahn-Hägerdal B, et al. 2002. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68: 1604-1609.
-
(2002)
Appl Environ Microbiol
, vol.68
, pp. 1604-1609
-
-
Jeppsson, M.1
Johansson, B.2
Hahn-Hägerdal, B.3
-
24
-
-
0345329541
-
The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains
-
Jeppsson M, Johansson B, Ruhdal-Jensen P, et al. 2003. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast 20: 1263-1272.
-
(2003)
Yeast
, vol.20
, pp. 1263-1272
-
-
Jeppsson, M.1
Johansson, B.2
Ruhdal-Jensen, P.3
-
25
-
-
29144502422
-
Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
-
Jin YS, Alper H, Yang YT, et al. 2005. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol 71: 8249-8256.
-
(2005)
Appl Environ Microbiol
, vol.71
, pp. 8249-8256
-
-
Jin, Y.S.1
Alper, H.2
Yang, Y.T.3
-
26
-
-
8744293844
-
Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response
-
Jin YS, Laplaza JM, Jeffries TW. 2004. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 70: 6816-6825.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 6816-6825
-
-
Jin, Y.S.1
Laplaza, J.M.2
Jeffries, T.W.3
-
27
-
-
0035458838
-
Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate
-
Johansson B, Christensson C, Hobley T, et al. 2001. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67: 4249-4255.
-
(2001)
Appl Environ Microbiol
, vol.67
, pp. 4249-4255
-
-
Johansson, B.1
Christensson, C.2
Hobley, T.3
-
28
-
-
0036053504
-
The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001
-
Johansson B, Hahn-Hägerdal B. 2002. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res 2: 277-282.
-
(2002)
FEMS Yeast Res
, vol.2
, pp. 277-282
-
-
Johansson, B.1
Hahn-Hägerdal, B.2
-
29
-
-
17644373035
-
Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
-
Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF. 2005. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22: 359-368.
-
(2005)
Yeast
, vol.22
, pp. 359-368
-
-
Karhumaa, K.1
Hahn-Hägerdal, B.2
Gorwa-Grauslund, M.F.3
-
30
-
-
12144288423
-
High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
-
Kuyper M, Harhangi HR, Stave AK, et al. 2003. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4: 69-78.
-
(2003)
FEMS Yeast Res
, vol.4
, pp. 69-78
-
-
Kuyper, M.1
Harhangi, H.R.2
Stave, A.K.3
-
31
-
-
13244262739
-
Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
-
Kuyper M, Hartog MM, Toirkens MJ, et al. 2005. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5: 399-409.
-
(2005)
FEMS Yeast Res
, vol.5
, pp. 399-409
-
-
Kuyper, M.1
Hartog, M.M.2
Toirkens, M.J.3
-
32
-
-
0027395082
-
Xylose fermentation by Saccharomyces cerevisiae
-
Kötter P, Ciriacy M. 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38: 776-783.
-
(1993)
Appl Microbiol Biotechnol
, vol.38
, pp. 776-783
-
-
Kötter, P.1
Ciriacy, M.2
-
33
-
-
10544256600
-
Expression monitoring by hybridization to high-density oligonucleotide arrays
-
Lockhart DJ, Dong H, Byrne MC, et al. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14: 1675-1680.
-
(1996)
Nat Biotechnol
, vol.14
, pp. 1675-1680
-
-
Lockhart, D.J.1
Dong, H.2
Byrne, M.C.3
-
34
-
-
0031761689
-
Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae
-
Lutfiyya LL, Iyer VR, DeRisi J, et al. 1998. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. Genetics 150: 1377-1391.
-
(1998)
Genetics
, vol.150
, pp. 1377-1391
-
-
Lutfiyya, L.L.1
Iyer, V.R.2
DeRisi, J.3
-
35
-
-
0033527694
-
A biochemical genomics approach for identifying genes by the activity of their products
-
Martzen MR, McCraith SM, Spinelli SL, et al. 1999. A biochemical genomics approach for identifying genes by the activity of their products. Science 286: 1153-1155.
-
(1999)
Science
, vol.286
, pp. 1153-1155
-
-
Martzen, M.R.1
McCraith, S.M.2
Spinelli, S.L.3
-
37
-
-
0028953840
-
Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
-
Mumberg D, Müller R, Funk M. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119-122.
-
(1995)
Gene
, vol.156
, pp. 119-122
-
-
Mumberg, D.1
Müller, R.2
Funk, M.3
-
38
-
-
33744474816
-
A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance
-
Petersson A, Almeida JR, Modig T, et al. 2006. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23: 455-464.
-
(2006)
Yeast
, vol.23
, pp. 455-464
-
-
Petersson, A.1
Almeida, J.R.2
Modig, T.3
-
39
-
-
0037020260
-
Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae
-
Piper MD, Daran-Lapujade P, Bro C, et al. 2002. Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 277: 37001-37008.
-
(2002)
J Biol Chem
, vol.277
, pp. 37001-37008
-
-
Piper, M.D.1
Daran-Lapujade, P.2
Bro, C.3
-
41
-
-
33646873502
-
Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose
-
Salusjärvi L, Pitkänen JP, Aristidou A, et al. 2006. Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose. Appl Biochem Biotechnol 128: 237-261.
-
(2006)
Appl Biochem Biotechnol
, vol.128
, pp. 237-261
-
-
Salusjärvi, L.1
Pitkänen, J.P.2
Aristidou, A.3
-
42
-
-
0024694679
-
Overproduction of glycolytic enzymes in yeast
-
Schaaff I, Heinisch J, Zimmermann FK. 1989. Overproduction of glycolytic enzymes in yeast. Yeast 5: 285-290.
-
(1989)
Yeast
, vol.5
, pp. 285-290
-
-
Schaaff, I.1
Heinisch, J.2
Zimmermann, F.K.3
-
43
-
-
0025362399
-
A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae
-
Schmitt ME, Brown TA, Trumpower BL. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18: 3091-3092.
-
(1990)
Nucleic Acids Res
, vol.18
, pp. 3091-3092
-
-
Schmitt, M.E.1
Brown, T.A.2
Trumpower, B.L.3
-
44
-
-
0037735189
-
DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose cofermentation by metabolically engineered Saccharomyces yeast
-
Sedlak M, Edenberg HJ, Ho NWY. 2003. DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose cofermentation by metabolically engineered Saccharomyces yeast. Enzyme Microb Technol 33: 19-28.
-
(2003)
Enzyme Microb Technol
, vol.33
, pp. 19-28
-
-
Sedlak, M.1
Edenberg, H.J.2
Ho, N.W.Y.3
-
45
-
-
22144434877
-
Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae
-
Shi F, Kawai S, Mori S, et al. 2005. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae. FEBS J 272: 3337-3349.
-
(2005)
FEBS J
, vol.272
, pp. 3337-3349
-
-
Shi, F.1
Kawai, S.2
Mori, S.3
-
46
-
-
0033753004
-
Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae
-
Smits HP, Hauf J, Müller S, et al. 2000. Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16: 1325-1334.
-
(2000)
Yeast
, vol.16
, pp. 1325-1334
-
-
Smits, H.P.1
Hauf, J.2
Müller, S.3
-
47
-
-
2442641770
-
Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis
-
Sonderegger M, Jeppsson M, Hahn-Hägerdal B, et al. 2004a. Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70: 2307-2317.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 2307-2317
-
-
Sonderegger, M.1
Jeppsson, M.2
Hahn-Hägerdal, B.3
-
48
-
-
3042799359
-
Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains
-
Sonderegger M, Jeppsson M, Larsson C, et al. 2004b. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 87: 90-98.
-
(2004)
Biotechnol Bioeng
, vol.87
, pp. 90-98
-
-
Sonderegger, M.1
Jeppsson, M.2
Larsson, C.3
-
49
-
-
0037394596
-
Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
-
Sonderegger M, Sauer U. 2003. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69: 1990-1998.
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 1990-1998
-
-
Sonderegger, M.1
Sauer, U.2
-
50
-
-
0034878314
-
Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability
-
Toivari MH, Aristidou A, Ruohonen L, et al. 2001. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3: 236-249.
-
(2001)
Metab Eng
, vol.3
, pp. 236-249
-
-
Toivari, M.H.1
Aristidou, A.2
Ruohonen, L.3
-
51
-
-
0347297600
-
Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
-
Wahlbom CF, Cordero Otero RR, van Zyl WH, et al. 2003a. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69: 740-746.
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 740-746
-
-
Wahlbom, C.F.1
Cordero Otero, R.R.2
van Zyl, W.H.3
-
52
-
-
0035809032
-
Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations
-
Wahlbom CF, Eliasson A, Hahn-Hägerdal B. 2001. Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations. Biotechnol Bioeng 72: 289-296.
-
(2001)
Biotechnol Bioeng
, vol.72
, pp. 289-296
-
-
Wahlbom, C.F.1
Eliasson, A.2
Hahn-Hägerdal, B.3
-
53
-
-
12444258773
-
Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054
-
Wahlbom CF, van Zyl WH, Jönsson LJ, et al. 2003b. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 3: 319-326.
-
(2003)
FEMS Yeast Res
, vol.3
, pp. 319-326
-
-
Wahlbom, C.F.1
van Zyl, W.H.2
Jönsson, L.J.3
-
54
-
-
0029909726
-
Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
-
Walfridsson M, Bao X, Anderlund M, et al. 1996. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62: 4648-4651.
-
(1996)
Appl Environ Microbiol
, vol.62
, pp. 4648-4651
-
-
Walfridsson, M.1
Bao, X.2
Anderlund, M.3
-
55
-
-
0028829654
-
Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase
-
Walfridsson M, Hallborn J, Penttilä M, et al. 1995. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61: 4184-4190.
-
(1995)
Appl Environ Microbiol
, vol.61
, pp. 4184-4190
-
-
Walfridsson, M.1
Hallborn, J.2
Penttilä, M.3
-
56
-
-
0031453850
-
Genome-wide expression monitoring in Saccharomyces cerevisiae
-
Wodicka L, Dong H, Mittmann M, et al. 1997. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol 15: 1359-1367.
-
(1997)
Nat Biotechnol
, vol.15
, pp. 1359-1367
-
-
Wodicka, L.1
Dong, H.2
Mittmann, M.3
|