-
1
-
-
0030770513
-
Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene
-
Alepuz P.M., Cunningham K.W., Estruch F. Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Molecular Microbiology 1997, 26:91-98.
-
(1997)
Molecular Microbiology
, vol.26
, pp. 91-98
-
-
Alepuz, P.M.1
Cunningham, K.W.2
Estruch, F.3
-
2
-
-
80053098801
-
Ethanol production from selected lignocellulosic hydrolysates by genome shuffled strains of Scheffersomyces stipitis
-
Bajwa P.K., Phaenark C., Grant N., Zhang X., Paice M., Martin V.J.J., Trevors J.T., Lee H. Ethanol production from selected lignocellulosic hydrolysates by genome shuffled strains of Scheffersomyces stipitis. Bioresource Technology 2011, 102:9965-9969.
-
(2011)
Bioresource Technology
, vol.102
, pp. 9965-9969
-
-
Bajwa, P.K.1
Phaenark, C.2
Grant, N.3
Zhang, X.4
Paice, M.5
Martin, V.J.J.6
Trevors, J.T.7
Lee, H.8
-
3
-
-
84855810623
-
CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae
-
Benjaphokee S., Koedrith P., Auesukaree C., Asvarak T., Sugiyama M., Kaneko Y., Boonchird C., Harashima S. CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae. Nature Biotechnology 2012, 166-176.
-
(2012)
Nature Biotechnology
, pp. 166-176
-
-
Benjaphokee, S.1
Koedrith, P.2
Auesukaree, C.3
Asvarak, T.4
Sugiyama, M.5
Kaneko, Y.6
Boonchird, C.7
Harashima, S.8
-
4
-
-
84868563164
-
-
G3, Bethesda, MD, pp. 131-141
-
Bester M.C., Jacobson D., Bauer F.F. Many Saccharomyces cerevisiae Cell Wall Protein Encoding Genes are Coregulated by Mss11, but Cellular Adhesion Phenotypes Appear Only Flo Protein Dependent 2012, vol. 2. G3, Bethesda, MD, pp. 131-141.
-
(2012)
Many Saccharomyces cerevisiae Cell Wall Protein Encoding Genes are Coregulated by Mss11, but Cellular Adhesion Phenotypes Appear Only Flo Protein Dependent
, vol.2
-
-
Bester, M.C.1
Jacobson, D.2
Bauer, F.F.3
-
5
-
-
0033037610
-
The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons
-
Boy-Marcotte E., Lagniel G., Perrot M., Bussereau F., Boudsocq A., Jacquet M., Labarre J. The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Molecular Microbiology 1999, 33:274-283.
-
(1999)
Molecular Microbiology
, vol.33
, pp. 274-283
-
-
Boy-Marcotte, E.1
Lagniel, G.2
Perrot, M.3
Bussereau, F.4
Boudsocq, A.5
Jacquet, M.6
Labarre, J.7
-
6
-
-
55549147135
-
Novel Ree1 regulates the expression of ENO1 via the Snf1 complex pathway in Saccharomyces cerevisiae
-
Choi I.-D., Jeong M.-Y., Ham M.-S., Sung H.-C., Yun C.-W. Novel Ree1 regulates the expression of ENO1 via the Snf1 complex pathway in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications 2008, 377:395-399.
-
(2008)
Biochemical and Biophysical Research Communications
, vol.377
, pp. 395-399
-
-
Choi, I.-D.1
Jeong, M.-Y.2
Ham, M.-S.3
Sung, H.-C.4
Yun, C.-W.5
-
7
-
-
34447286236
-
Genetic improvement of Saccharomyces cerevisiae for xylose fermentation
-
Chu B.C.H., Lee H. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnology Advances 2007, 25:425-441.
-
(2007)
Biotechnology Advances
, vol.25
, pp. 425-441
-
-
Chu, B.C.H.1
Lee, H.2
-
8
-
-
68349130200
-
Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray
-
Dinh T.N., Nagahisa K., Yoshikawa K., Hirasawa T., Furusawa C., Shimizu H. Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray. Bioprocess and Biosystems Engineering 2009, 32:681-688.
-
(2009)
Bioprocess and Biosystems Engineering
, vol.32
, pp. 681-688
-
-
Dinh, T.N.1
Nagahisa, K.2
Yoshikawa, K.3
Hirasawa, T.4
Furusawa, C.5
Shimizu, H.6
-
10
-
-
0032811933
-
Enolase is present in the cell wall of Saccharomyces cerevisiae
-
Edwards S.R., Braley R., Chaffin W.L. Enolase is present in the cell wall of Saccharomyces cerevisiae. FEMS Microbiology Letters 1999, 177:211-216.
-
(1999)
FEMS Microbiology Letters
, vol.177
, pp. 211-216
-
-
Edwards, S.R.1
Braley, R.2
Chaffin, W.L.3
-
11
-
-
0035812350
-
The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae
-
Eliasson A., Hofmeyr J.-H.S., Pedler S., Hahn-Hägerdal B. The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme and Microbial Technology 2001, 29:288-297.
-
(2001)
Enzyme and Microbial Technology
, vol.29
, pp. 288-297
-
-
Eliasson, A.1
Hofmeyr, J.-H.S.2
Pedler, S.3
Hahn-Hägerdal, B.4
-
12
-
-
0038665162
-
Genome-wide expression analyses: metabolic adaptation of Saccharomyces cerevisiae to high sugar stress
-
Erasmus D.J., van der Merwe G.K., van Vurren H.J.J. Genome-wide expression analyses: metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Research 2003, 3:375-399.
-
(2003)
FEMS Yeast Research
, vol.3
, pp. 375-399
-
-
Erasmus, D.J.1
van der Merwe, G.K.2
van Vurren, H.J.J.3
-
13
-
-
0347355518
-
Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure
-
Fernandes P.M.B., Domitrovic T., Kao C.M., Kurtenbach E. Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Letters 2004, 556:153-160.
-
(2004)
FEBS Letters
, vol.556
, pp. 153-160
-
-
Fernandes, P.M.B.1
Domitrovic, T.2
Kao, C.M.3
Kurtenbach, E.4
-
14
-
-
0032873415
-
Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae
-
Goldstein A.L., McCusker J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 1999, 15:1541-1553.
-
(1999)
Yeast
, vol.15
, pp. 1541-1553
-
-
Goldstein, A.L.1
McCusker, J.H.2
-
15
-
-
0036738179
-
Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
-
Hamacher T., Becker J., Gardonyi M., Hahn-Hagerdal B., Boles E. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002, 148:2783-2788.
-
(2002)
Microbiology
, vol.148
, pp. 2783-2788
-
-
Hamacher, T.1
Becker, J.2
Gardonyi, M.3
Hahn-Hagerdal, B.4
Boles, E.5
-
16
-
-
84862882871
-
Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains
-
Hasunuma T., Kondo A. Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochemistry 2012, 47:1287-1294.
-
(2012)
Process Biochemistry
, vol.47
, pp. 1287-1294
-
-
Hasunuma, T.1
Kondo, A.2
-
17
-
-
84867712304
-
Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering
-
Hasunuma T., Kondo A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnology Advances 2012, 30:1207-1218.
-
(2012)
Biotechnology Advances
, vol.30
, pp. 1207-1218
-
-
Hasunuma, T.1
Kondo, A.2
-
18
-
-
78650995732
-
Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
-
Hasunuma T., Sanda T., Yamada R., Yoshimura K., Ishii J., Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microbial Cell Factories 2011, 10:2.
-
(2011)
Microbial Cell Factories
, vol.10
, pp. 2
-
-
Hasunuma, T.1
Sanda, T.2
Yamada, R.3
Yoshimura, K.4
Ishii, J.5
Kondo, A.6
-
19
-
-
79954706261
-
Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae
-
Hasunuma T., Sung K.-m., Sanda T., Yoshimura K., Matsuda F., Kondo A. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 2011, 90:997-1004.
-
(2011)
Applied Microbiology and Biotechnology
, vol.90
, pp. 997-1004
-
-
Hasunuma, T.1
Sung, K.-M.2
Sanda, T.3
Yoshimura, K.4
Matsuda, F.5
Kondo, A.6
-
20
-
-
67650142884
-
Gly-46 and His-50 of yeast maltose transporter Mal21p are essential for its resistance against glucose-induced degradation
-
Hatanaka H., Omura F., Kodayama Y., Ashikari T. Gly-46 and His-50 of yeast maltose transporter Mal21p are essential for its resistance against glucose-induced degradation. Journal of Biological Chemistry 2009, 284:15448-15457.
-
(2009)
Journal of Biological Chemistry
, vol.284
, pp. 15448-15457
-
-
Hatanaka, H.1
Omura, F.2
Kodayama, Y.3
Ashikari, T.4
-
21
-
-
34447281116
-
Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis
-
Hirasawa T., Yoshikawa K., Nakakura Y., Nagahisa K., Furusawa C., Katakura Y., Shimizu H., Shioya S. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Journal of Biotechnology 2007, 131:34-44.
-
(2007)
Journal of Biotechnology
, vol.131
, pp. 34-44
-
-
Hirasawa, T.1
Yoshikawa, K.2
Nakakura, Y.3
Nagahisa, K.4
Furusawa, C.5
Katakura, Y.6
Shimizu, H.7
Shioya, S.8
-
22
-
-
0003526162
-
-
Springer-Verlag, Berlin, Heidelberg, New York
-
Hohmann S., Mager W.H. Topics in Current Genetics 2003, Springer-Verlag, Berlin, Heidelberg, New York.
-
(2003)
Topics in Current Genetics
-
-
Hohmann, S.1
Mager, W.H.2
-
23
-
-
77955430660
-
Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering
-
Hong M.-E., Lee K.-S., Yu B.J., Sung Y.-J., Park S.M., Koo H.M., Kweon D.-H., Park J.C., Jin Y.-S. Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. Journal of Biotechnology 2010, 149:52-59.
-
(2010)
Journal of Biotechnology
, vol.149
, pp. 52-59
-
-
Hong, M.-E.1
Lee, K.-S.2
Yu, B.J.3
Sung, Y.-J.4
Park, S.M.5
Koo, H.M.6
Kweon, D.-H.7
Park, J.C.8
Jin, Y.-S.9
-
24
-
-
0033769895
-
Ethanol and thermotolerance in the bioconversion of xylose by yeasts
-
Jeffries T.W., Jin Y.-S. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Advances in Applied Microbiology 2000, 47:221-268.
-
(2000)
Advances in Applied Microbiology
, vol.47
, pp. 221-268
-
-
Jeffries, T.W.1
Jin, Y.-S.2
-
25
-
-
33749828025
-
Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain
-
Katahira S., Mizuike A., Fukuda H., Kondo A. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Applied Microbiology and Biotechnology 2006, 72:1136-1143.
-
(2006)
Applied Microbiology and Biotechnology
, vol.72
, pp. 1136-1143
-
-
Katahira, S.1
Mizuike, A.2
Fukuda, H.3
Kondo, A.4
-
26
-
-
80052614048
-
Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae
-
Kim H.-S., Kim N.-R., Yang J., Choi W. Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae. Applied Microbial and Cell Physiology 2011, 91:1159-1172.
-
(2011)
Applied Microbial and Cell Physiology
, vol.91
, pp. 1159-1172
-
-
Kim, H.-S.1
Kim, N.-R.2
Yang, J.3
Choi, W.4
-
27
-
-
1642527943
-
Global potential bioethanol production from wasted crops and crop residues
-
Kim S., Dale B.E. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy 2004, 26:361-375.
-
(2004)
Biomass and Bioenergy
, vol.26
, pp. 361-375
-
-
Kim, S.1
Dale, B.E.2
-
28
-
-
0035434752
-
Isolation and characterization of a gene specific to lager brewing yeast that encodes a branched-chain amino acid permease
-
Kodama Y., Omura F., Ashikari T. Isolation and characterization of a gene specific to lager brewing yeast that encodes a branched-chain amino acid permease. Applied and Environment Microbiology 2001, 67:3455-3462.
-
(2001)
Applied and Environment Microbiology
, vol.67
, pp. 3455-3462
-
-
Kodama, Y.1
Omura, F.2
Ashikari, T.3
-
29
-
-
77955058081
-
Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress
-
Li B.-Z., Cheng J.-S., Ding M.-Z., Yuan Y.-J. Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress. Journal of Biotechnology 2010, 148:194-203.
-
(2010)
Journal of Biotechnology
, vol.148
, pp. 194-203
-
-
Li, B.-Z.1
Cheng, J.-S.2
Ding, M.-Z.3
Yuan, Y.-J.4
-
30
-
-
76949100778
-
Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation
-
Li B.-Z., Cheng J.-S., Qiao B., Yuan Y.-J. Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation. Journal of Industrial Microbiology and Biotechnology 2010, 37:43-55.
-
(2010)
Journal of Industrial Microbiology and Biotechnology
, vol.37
, pp. 43-55
-
-
Li, B.-Z.1
Cheng, J.-S.2
Qiao, B.3
Yuan, Y.-J.4
-
31
-
-
68549139856
-
The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses
-
Li L., Ye Y., Pan L., Zhu Y., Zheng S., Lin Y. The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses. Biochemical and Biophysical Research Communications 2009, 387:778-783.
-
(2009)
Biochemical and Biophysical Research Communications
, vol.387
, pp. 778-783
-
-
Li, L.1
Ye, Y.2
Pan, L.3
Zhu, Y.4
Zheng, S.5
Lin, Y.6
-
33
-
-
84857687637
-
Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray
-
Mahmud S.A., Hirasawa T., Furusawa C., Yoshikawa K., Shimizu H. Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray. Journal of Bioscience and Bioengineering 2012, 113:526-528.
-
(2012)
Journal of Bioscience and Bioengineering
, vol.113
, pp. 526-528
-
-
Mahmud, S.A.1
Hirasawa, T.2
Furusawa, C.3
Yoshikawa, K.4
Shimizu, H.5
-
34
-
-
55649111344
-
Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
-
Matsushika A., Watanabe S., Kodaki T., Makino K., Inoue H., Murakami K., Takimura O., Sawayama S. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 2008, 81:243-255.
-
(2008)
Applied Microbiology and Biotechnology
, vol.81
, pp. 243-255
-
-
Matsushika, A.1
Watanabe, S.2
Kodaki, T.3
Makino, K.4
Inoue, H.5
Murakami, K.6
Takimura, O.7
Sawayama, S.8
-
35
-
-
39649107109
-
Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae
-
Olofsson K., Rudolf A., Lidén G. Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. Journal of Biotechnology 2008, 134:112-120.
-
(2008)
Journal of Biotechnology
, vol.134
, pp. 112-120
-
-
Olofsson, K.1
Rudolf, A.2
Lidén, G.3
-
37
-
-
0025608322
-
Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid
-
Pampulha M.E., Loureiro-Dias M.C. Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Applied Microbiology and Biotechnology 1990, 34:375-380.
-
(1990)
Applied Microbiology and Biotechnology
, vol.34
, pp. 375-380
-
-
Pampulha, M.E.1
Loureiro-Dias, M.C.2
-
38
-
-
77949323765
-
Saccharomyces cerevisiae BY4741 and W303-1A laboratory strains differ in salt tolerance
-
Petrezselyova S., Zahradka J., Sychrova H. Saccharomyces cerevisiae BY4741 and W303-1A laboratory strains differ in salt tolerance. Fungal Biology 2010, 114:144-150.
-
(2010)
Fungal Biology
, vol.114
, pp. 144-150
-
-
Petrezselyova, S.1
Zahradka, J.2
Sychrova, H.3
-
39
-
-
80054843009
-
Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14
-
Prasetyo J., Naruse K., Kato T., Chuenchit B., Harashima S., Park E.Y. Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14. Biotechnology for Biofuels 2011, 4:35.
-
(2011)
Biotechnology for Biofuels
, vol.4
, pp. 35
-
-
Prasetyo, J.1
Naruse, K.2
Kato, T.3
Chuenchit, B.4
Harashima, S.5
Park, E.Y.6
-
40
-
-
70449428931
-
Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae
-
Runquist D., Hahn-Hagerdal B., Bettiga M. Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microbial Cell Factories 2009, 8:49.
-
(2009)
Microbial Cell Factories
, vol.8
, pp. 49
-
-
Runquist, D.1
Hahn-Hagerdal, B.2
Bettiga, M.3
-
41
-
-
0242576754
-
Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha
-
Ryabova O.B., Chmil O.M., Sibirny A.A. Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Research 2003, 4:157-164.
-
(2003)
FEMS Yeast Research
, vol.4
, pp. 157-164
-
-
Ryabova, O.B.1
Chmil, O.M.2
Sibirny, A.A.3
-
42
-
-
0037735189
-
DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast
-
Sedlak M., Edenberg H.J., Ho N.W.Y. DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast. Enzyme and Microbial Technology 2003, 33:19-28.
-
(2003)
Enzyme and Microbial Technology
, vol.33
, pp. 19-28
-
-
Sedlak, M.1
Edenberg, H.J.2
Ho, N.W.Y.3
-
43
-
-
84867728469
-
Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase
-
Shahsavarani H., Sugiyama M., Kaneko Y., Chuenchit B., Harashima S. Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotechnology Advances 2011, 30:1289-1300.
-
(2011)
Biotechnology Advances
, vol.30
, pp. 1289-1300
-
-
Shahsavarani, H.1
Sugiyama, M.2
Kaneko, Y.3
Chuenchit, B.4
Harashima, S.5
-
44
-
-
19944362572
-
Identification of genes whose expressions are enhanced or reduced in Baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis
-
Shima J., Kuwazaki S., Tanaka F., Watanabe H., Yamamoto H., Nakajima R., Tokashiki T., Tamura H. Identification of genes whose expressions are enhanced or reduced in Baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis. International Journal of Food Microbiology 2005, 102:63-71.
-
(2005)
International Journal of Food Microbiology
, vol.102
, pp. 63-71
-
-
Shima, J.1
Kuwazaki, S.2
Tanaka, F.3
Watanabe, H.4
Yamamoto, H.5
Nakajima, R.6
Tokashiki, T.7
Tamura, H.8
-
45
-
-
78650160055
-
Flocculation in Saccharomyces cerevisiae: a review
-
Soares E.V. Flocculation in Saccharomyces cerevisiae: a review. Journal of Applied Microbiology 2011, 110:1-18.
-
(2011)
Journal of Applied Microbiology
, vol.110
, pp. 1-18
-
-
Soares, E.V.1
-
46
-
-
84870314333
-
Flocculation in Saccharomyces and non-Saccharomyces wine yeasts
-
Tofalo R., Telera G.C., Schirone M., Corsetti A., Suzzi G. Flocculation in Saccharomyces and non-Saccharomyces wine yeasts. Journal of Biotechnology 2010, 150(Supplement):341.
-
(2010)
Journal of Biotechnology
, vol.150
, Issue.SUPPL.
, pp. 341
-
-
Tofalo, R.1
Telera, G.C.2
Schirone, M.3
Corsetti, A.4
Suzzi, G.5
-
47
-
-
67649757165
-
Yeast metabolic engineering for hemicellulosic ethanol production
-
Van Vleet J.H., Jeffries T.W. Yeast metabolic engineering for hemicellulosic ethanol production. Current Opinion in Biotechnology 2009, 20:300-306.
-
(2009)
Current Opinion in Biotechnology
, vol.20
, pp. 300-306
-
-
Van Vleet, J.H.1
Jeffries, T.W.2
-
48
-
-
12444258773
-
Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054
-
Wahlbom C.F., van Zyl W.H., Jonsson L.J., Hahn-Hagerdal B., Otero R.R.C. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Research 2003, 3:319-326.
-
(2003)
FEMS Yeast Research
, vol.3
, pp. 319-326
-
-
Wahlbom, C.F.1
van Zyl, W.H.2
Jonsson, L.J.3
Hahn-Hagerdal, B.4
Otero, R.R.C.5
-
49
-
-
62949088966
-
Characterization of a spontaneous flocculation mutant derived from Candida glabrata: a useful strain for bioethanol production
-
Watanabe I., Nakamura T., Shima J. Characterization of a spontaneous flocculation mutant derived from Candida glabrata: a useful strain for bioethanol production. Journal of Bioscience and Bioengineering 2009, 107:379-382.
-
(2009)
Journal of Bioscience and Bioengineering
, vol.107
, pp. 379-382
-
-
Watanabe, I.1
Nakamura, T.2
Shima, J.3
-
50
-
-
77956006894
-
Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function
-
Welker S., Rudolph B., Frenzel E., Hagn F., Liebisch G., Schmitz G., Scheuring J., Kerth A., Blume A., Weinkauf S., Haslbeck M., Kessler H., Buchner J. Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function. Molecular Cell 2010, 39:507-520.
-
(2010)
Molecular Cell
, vol.39
, pp. 507-520
-
-
Welker, S.1
Rudolph, B.2
Frenzel, E.3
Hagn, F.4
Liebisch, G.5
Schmitz, G.6
Scheuring, J.7
Kerth, A.8
Blume, A.9
Weinkauf, S.10
Haslbeck, M.11
Kessler, H.12
Buchner, J.13
-
51
-
-
67349271568
-
Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways
-
Ye Y., Zhu Y., Pan L., Li L., Wang X., Lin Y. Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways. Biochemical and Biophysical Research Communications 2009, 385:357-362.
-
(2009)
Biochemical and Biophysical Research Communications
, vol.385
, pp. 357-362
-
-
Ye, Y.1
Zhu, Y.2
Pan, L.3
Li, L.4
Wang, X.5
Lin, Y.6
-
52
-
-
84870692544
-
Exploration of a natural reservoir of flocculating genes from various Saccharomyces cerevisiae strains and improved ethanol fermentation using stable genetically engineered flocculating yeast strains
-
Zhao X.-Q., Li Q., He L.-Y., Li F., Que W.-W., Bai F.-W. Exploration of a natural reservoir of flocculating genes from various Saccharomyces cerevisiae strains and improved ethanol fermentation using stable genetically engineered flocculating yeast strains. Process Biochemistry 2011, 10.1016/j.procbio.2011.06.009.
-
(2011)
Process Biochemistry
-
-
Zhao, X.-Q.1
Li, Q.2
He, L.-Y.3
Li, F.4
Que, W.-W.5
Bai, F.-W.6
-
53
-
-
78650829210
-
Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance
-
Zheng D.-Q., Wu X.-C., Tao X.-L., Wang P.-M., Li P., Chi X.-Q., Li Y.-D., Yan Q.-F., Zhao Y.-H. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresource Technology 2011, 102:3020-3027.
-
(2011)
Bioresource Technology
, vol.102
, pp. 3020-3027
-
-
Zheng, D.-Q.1
Wu, X.-C.2
Tao, X.-L.3
Wang, P.-M.4
Li, P.5
Chi, X.-Q.6
Li, Y.-D.7
Yan, Q.-F.8
Zhao, Y.-H.9
|