메뉴 건너뛰기




Volumn 163, Issue 1, 2013, Pages 50-60

Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose

Author keywords

Bioethanol; Gene expression; Microarray; Thermotolerance; Xylose

Indexed keywords

CELL WALLS; CROSS-PROFILING; ELEVATED TEMPERATURE; ETHANOL PRODUCTION; EXPRESSION PROFILING; GENETICALLY MODIFIED; HEAT STRESS; HIGH TEMPERATURE; INDUSTRIAL STRAIN; NEGATIVE CONTROL; RISK OF CONTAMINATION; SACCHAROMYCES CEREVISIAE STRAINS; THERMOTOLERANCE; TRANSCRIPTOMICS;

EID: 84870369602     PISSN: 01681656     EISSN: 18734863     Source Type: Journal    
DOI: 10.1016/j.jbiotec.2012.10.017     Document Type: Article
Times cited : (31)

References (53)
  • 1
    • 0030770513 scopus 로고    scopus 로고
    • Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene
    • Alepuz P.M., Cunningham K.W., Estruch F. Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Molecular Microbiology 1997, 26:91-98.
    • (1997) Molecular Microbiology , vol.26 , pp. 91-98
    • Alepuz, P.M.1    Cunningham, K.W.2    Estruch, F.3
  • 2
    • 80053098801 scopus 로고    scopus 로고
    • Ethanol production from selected lignocellulosic hydrolysates by genome shuffled strains of Scheffersomyces stipitis
    • Bajwa P.K., Phaenark C., Grant N., Zhang X., Paice M., Martin V.J.J., Trevors J.T., Lee H. Ethanol production from selected lignocellulosic hydrolysates by genome shuffled strains of Scheffersomyces stipitis. Bioresource Technology 2011, 102:9965-9969.
    • (2011) Bioresource Technology , vol.102 , pp. 9965-9969
    • Bajwa, P.K.1    Phaenark, C.2    Grant, N.3    Zhang, X.4    Paice, M.5    Martin, V.J.J.6    Trevors, J.T.7    Lee, H.8
  • 7
    • 34447286236 scopus 로고    scopus 로고
    • Genetic improvement of Saccharomyces cerevisiae for xylose fermentation
    • Chu B.C.H., Lee H. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnology Advances 2007, 25:425-441.
    • (2007) Biotechnology Advances , vol.25 , pp. 425-441
    • Chu, B.C.H.1    Lee, H.2
  • 10
    • 0032811933 scopus 로고    scopus 로고
    • Enolase is present in the cell wall of Saccharomyces cerevisiae
    • Edwards S.R., Braley R., Chaffin W.L. Enolase is present in the cell wall of Saccharomyces cerevisiae. FEMS Microbiology Letters 1999, 177:211-216.
    • (1999) FEMS Microbiology Letters , vol.177 , pp. 211-216
    • Edwards, S.R.1    Braley, R.2    Chaffin, W.L.3
  • 11
    • 0035812350 scopus 로고    scopus 로고
    • The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae
    • Eliasson A., Hofmeyr J.-H.S., Pedler S., Hahn-Hägerdal B. The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme and Microbial Technology 2001, 29:288-297.
    • (2001) Enzyme and Microbial Technology , vol.29 , pp. 288-297
    • Eliasson, A.1    Hofmeyr, J.-H.S.2    Pedler, S.3    Hahn-Hägerdal, B.4
  • 12
    • 0038665162 scopus 로고    scopus 로고
    • Genome-wide expression analyses: metabolic adaptation of Saccharomyces cerevisiae to high sugar stress
    • Erasmus D.J., van der Merwe G.K., van Vurren H.J.J. Genome-wide expression analyses: metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Research 2003, 3:375-399.
    • (2003) FEMS Yeast Research , vol.3 , pp. 375-399
    • Erasmus, D.J.1    van der Merwe, G.K.2    van Vurren, H.J.J.3
  • 13
    • 0347355518 scopus 로고    scopus 로고
    • Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure
    • Fernandes P.M.B., Domitrovic T., Kao C.M., Kurtenbach E. Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Letters 2004, 556:153-160.
    • (2004) FEBS Letters , vol.556 , pp. 153-160
    • Fernandes, P.M.B.1    Domitrovic, T.2    Kao, C.M.3    Kurtenbach, E.4
  • 14
    • 0032873415 scopus 로고    scopus 로고
    • Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae
    • Goldstein A.L., McCusker J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 1999, 15:1541-1553.
    • (1999) Yeast , vol.15 , pp. 1541-1553
    • Goldstein, A.L.1    McCusker, J.H.2
  • 15
    • 0036738179 scopus 로고    scopus 로고
    • Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
    • Hamacher T., Becker J., Gardonyi M., Hahn-Hagerdal B., Boles E. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002, 148:2783-2788.
    • (2002) Microbiology , vol.148 , pp. 2783-2788
    • Hamacher, T.1    Becker, J.2    Gardonyi, M.3    Hahn-Hagerdal, B.4    Boles, E.5
  • 16
    • 84862882871 scopus 로고    scopus 로고
    • Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains
    • Hasunuma T., Kondo A. Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochemistry 2012, 47:1287-1294.
    • (2012) Process Biochemistry , vol.47 , pp. 1287-1294
    • Hasunuma, T.1    Kondo, A.2
  • 17
    • 84867712304 scopus 로고    scopus 로고
    • Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering
    • Hasunuma T., Kondo A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnology Advances 2012, 30:1207-1218.
    • (2012) Biotechnology Advances , vol.30 , pp. 1207-1218
    • Hasunuma, T.1    Kondo, A.2
  • 18
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • Hasunuma T., Sanda T., Yamada R., Yoshimura K., Ishii J., Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microbial Cell Factories 2011, 10:2.
    • (2011) Microbial Cell Factories , vol.10 , pp. 2
    • Hasunuma, T.1    Sanda, T.2    Yamada, R.3    Yoshimura, K.4    Ishii, J.5    Kondo, A.6
  • 19
    • 79954706261 scopus 로고    scopus 로고
    • Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae
    • Hasunuma T., Sung K.-m., Sanda T., Yoshimura K., Matsuda F., Kondo A. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 2011, 90:997-1004.
    • (2011) Applied Microbiology and Biotechnology , vol.90 , pp. 997-1004
    • Hasunuma, T.1    Sung, K.-M.2    Sanda, T.3    Yoshimura, K.4    Matsuda, F.5    Kondo, A.6
  • 20
    • 67650142884 scopus 로고    scopus 로고
    • Gly-46 and His-50 of yeast maltose transporter Mal21p are essential for its resistance against glucose-induced degradation
    • Hatanaka H., Omura F., Kodayama Y., Ashikari T. Gly-46 and His-50 of yeast maltose transporter Mal21p are essential for its resistance against glucose-induced degradation. Journal of Biological Chemistry 2009, 284:15448-15457.
    • (2009) Journal of Biological Chemistry , vol.284 , pp. 15448-15457
    • Hatanaka, H.1    Omura, F.2    Kodayama, Y.3    Ashikari, T.4
  • 23
    • 77955430660 scopus 로고    scopus 로고
    • Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering
    • Hong M.-E., Lee K.-S., Yu B.J., Sung Y.-J., Park S.M., Koo H.M., Kweon D.-H., Park J.C., Jin Y.-S. Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. Journal of Biotechnology 2010, 149:52-59.
    • (2010) Journal of Biotechnology , vol.149 , pp. 52-59
    • Hong, M.-E.1    Lee, K.-S.2    Yu, B.J.3    Sung, Y.-J.4    Park, S.M.5    Koo, H.M.6    Kweon, D.-H.7    Park, J.C.8    Jin, Y.-S.9
  • 24
    • 0033769895 scopus 로고    scopus 로고
    • Ethanol and thermotolerance in the bioconversion of xylose by yeasts
    • Jeffries T.W., Jin Y.-S. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Advances in Applied Microbiology 2000, 47:221-268.
    • (2000) Advances in Applied Microbiology , vol.47 , pp. 221-268
    • Jeffries, T.W.1    Jin, Y.-S.2
  • 25
    • 33749828025 scopus 로고    scopus 로고
    • Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain
    • Katahira S., Mizuike A., Fukuda H., Kondo A. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Applied Microbiology and Biotechnology 2006, 72:1136-1143.
    • (2006) Applied Microbiology and Biotechnology , vol.72 , pp. 1136-1143
    • Katahira, S.1    Mizuike, A.2    Fukuda, H.3    Kondo, A.4
  • 26
    • 80052614048 scopus 로고    scopus 로고
    • Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae
    • Kim H.-S., Kim N.-R., Yang J., Choi W. Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae. Applied Microbial and Cell Physiology 2011, 91:1159-1172.
    • (2011) Applied Microbial and Cell Physiology , vol.91 , pp. 1159-1172
    • Kim, H.-S.1    Kim, N.-R.2    Yang, J.3    Choi, W.4
  • 27
    • 1642527943 scopus 로고    scopus 로고
    • Global potential bioethanol production from wasted crops and crop residues
    • Kim S., Dale B.E. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy 2004, 26:361-375.
    • (2004) Biomass and Bioenergy , vol.26 , pp. 361-375
    • Kim, S.1    Dale, B.E.2
  • 28
    • 0035434752 scopus 로고    scopus 로고
    • Isolation and characterization of a gene specific to lager brewing yeast that encodes a branched-chain amino acid permease
    • Kodama Y., Omura F., Ashikari T. Isolation and characterization of a gene specific to lager brewing yeast that encodes a branched-chain amino acid permease. Applied and Environment Microbiology 2001, 67:3455-3462.
    • (2001) Applied and Environment Microbiology , vol.67 , pp. 3455-3462
    • Kodama, Y.1    Omura, F.2    Ashikari, T.3
  • 29
    • 77955058081 scopus 로고    scopus 로고
    • Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress
    • Li B.-Z., Cheng J.-S., Ding M.-Z., Yuan Y.-J. Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress. Journal of Biotechnology 2010, 148:194-203.
    • (2010) Journal of Biotechnology , vol.148 , pp. 194-203
    • Li, B.-Z.1    Cheng, J.-S.2    Ding, M.-Z.3    Yuan, Y.-J.4
  • 30
    • 76949100778 scopus 로고    scopus 로고
    • Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation
    • Li B.-Z., Cheng J.-S., Qiao B., Yuan Y.-J. Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation. Journal of Industrial Microbiology and Biotechnology 2010, 37:43-55.
    • (2010) Journal of Industrial Microbiology and Biotechnology , vol.37 , pp. 43-55
    • Li, B.-Z.1    Cheng, J.-S.2    Qiao, B.3    Yuan, Y.-J.4
  • 33
    • 84857687637 scopus 로고    scopus 로고
    • Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray
    • Mahmud S.A., Hirasawa T., Furusawa C., Yoshikawa K., Shimizu H. Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray. Journal of Bioscience and Bioengineering 2012, 113:526-528.
    • (2012) Journal of Bioscience and Bioengineering , vol.113 , pp. 526-528
    • Mahmud, S.A.1    Hirasawa, T.2    Furusawa, C.3    Yoshikawa, K.4    Shimizu, H.5
  • 35
    • 39649107109 scopus 로고    scopus 로고
    • Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae
    • Olofsson K., Rudolf A., Lidén G. Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. Journal of Biotechnology 2008, 134:112-120.
    • (2008) Journal of Biotechnology , vol.134 , pp. 112-120
    • Olofsson, K.1    Rudolf, A.2    Lidén, G.3
  • 37
    • 0025608322 scopus 로고
    • Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid
    • Pampulha M.E., Loureiro-Dias M.C. Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Applied Microbiology and Biotechnology 1990, 34:375-380.
    • (1990) Applied Microbiology and Biotechnology , vol.34 , pp. 375-380
    • Pampulha, M.E.1    Loureiro-Dias, M.C.2
  • 38
    • 77949323765 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae BY4741 and W303-1A laboratory strains differ in salt tolerance
    • Petrezselyova S., Zahradka J., Sychrova H. Saccharomyces cerevisiae BY4741 and W303-1A laboratory strains differ in salt tolerance. Fungal Biology 2010, 114:144-150.
    • (2010) Fungal Biology , vol.114 , pp. 144-150
    • Petrezselyova, S.1    Zahradka, J.2    Sychrova, H.3
  • 39
    • 80054843009 scopus 로고    scopus 로고
    • Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14
    • Prasetyo J., Naruse K., Kato T., Chuenchit B., Harashima S., Park E.Y. Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14. Biotechnology for Biofuels 2011, 4:35.
    • (2011) Biotechnology for Biofuels , vol.4 , pp. 35
    • Prasetyo, J.1    Naruse, K.2    Kato, T.3    Chuenchit, B.4    Harashima, S.5    Park, E.Y.6
  • 40
    • 70449428931 scopus 로고    scopus 로고
    • Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae
    • Runquist D., Hahn-Hagerdal B., Bettiga M. Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microbial Cell Factories 2009, 8:49.
    • (2009) Microbial Cell Factories , vol.8 , pp. 49
    • Runquist, D.1    Hahn-Hagerdal, B.2    Bettiga, M.3
  • 41
    • 0242576754 scopus 로고    scopus 로고
    • Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha
    • Ryabova O.B., Chmil O.M., Sibirny A.A. Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Research 2003, 4:157-164.
    • (2003) FEMS Yeast Research , vol.4 , pp. 157-164
    • Ryabova, O.B.1    Chmil, O.M.2    Sibirny, A.A.3
  • 42
    • 0037735189 scopus 로고    scopus 로고
    • DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast
    • Sedlak M., Edenberg H.J., Ho N.W.Y. DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast. Enzyme and Microbial Technology 2003, 33:19-28.
    • (2003) Enzyme and Microbial Technology , vol.33 , pp. 19-28
    • Sedlak, M.1    Edenberg, H.J.2    Ho, N.W.Y.3
  • 43
    • 84867728469 scopus 로고    scopus 로고
    • Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase
    • Shahsavarani H., Sugiyama M., Kaneko Y., Chuenchit B., Harashima S. Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotechnology Advances 2011, 30:1289-1300.
    • (2011) Biotechnology Advances , vol.30 , pp. 1289-1300
    • Shahsavarani, H.1    Sugiyama, M.2    Kaneko, Y.3    Chuenchit, B.4    Harashima, S.5
  • 44
    • 19944362572 scopus 로고    scopus 로고
    • Identification of genes whose expressions are enhanced or reduced in Baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis
    • Shima J., Kuwazaki S., Tanaka F., Watanabe H., Yamamoto H., Nakajima R., Tokashiki T., Tamura H. Identification of genes whose expressions are enhanced or reduced in Baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis. International Journal of Food Microbiology 2005, 102:63-71.
    • (2005) International Journal of Food Microbiology , vol.102 , pp. 63-71
    • Shima, J.1    Kuwazaki, S.2    Tanaka, F.3    Watanabe, H.4    Yamamoto, H.5    Nakajima, R.6    Tokashiki, T.7    Tamura, H.8
  • 45
    • 78650160055 scopus 로고    scopus 로고
    • Flocculation in Saccharomyces cerevisiae: a review
    • Soares E.V. Flocculation in Saccharomyces cerevisiae: a review. Journal of Applied Microbiology 2011, 110:1-18.
    • (2011) Journal of Applied Microbiology , vol.110 , pp. 1-18
    • Soares, E.V.1
  • 47
    • 67649757165 scopus 로고    scopus 로고
    • Yeast metabolic engineering for hemicellulosic ethanol production
    • Van Vleet J.H., Jeffries T.W. Yeast metabolic engineering for hemicellulosic ethanol production. Current Opinion in Biotechnology 2009, 20:300-306.
    • (2009) Current Opinion in Biotechnology , vol.20 , pp. 300-306
    • Van Vleet, J.H.1    Jeffries, T.W.2
  • 48
    • 12444258773 scopus 로고    scopus 로고
    • Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054
    • Wahlbom C.F., van Zyl W.H., Jonsson L.J., Hahn-Hagerdal B., Otero R.R.C. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Research 2003, 3:319-326.
    • (2003) FEMS Yeast Research , vol.3 , pp. 319-326
    • Wahlbom, C.F.1    van Zyl, W.H.2    Jonsson, L.J.3    Hahn-Hagerdal, B.4    Otero, R.R.C.5
  • 49
    • 62949088966 scopus 로고    scopus 로고
    • Characterization of a spontaneous flocculation mutant derived from Candida glabrata: a useful strain for bioethanol production
    • Watanabe I., Nakamura T., Shima J. Characterization of a spontaneous flocculation mutant derived from Candida glabrata: a useful strain for bioethanol production. Journal of Bioscience and Bioengineering 2009, 107:379-382.
    • (2009) Journal of Bioscience and Bioengineering , vol.107 , pp. 379-382
    • Watanabe, I.1    Nakamura, T.2    Shima, J.3
  • 51
    • 67349271568 scopus 로고    scopus 로고
    • Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways
    • Ye Y., Zhu Y., Pan L., Li L., Wang X., Lin Y. Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways. Biochemical and Biophysical Research Communications 2009, 385:357-362.
    • (2009) Biochemical and Biophysical Research Communications , vol.385 , pp. 357-362
    • Ye, Y.1    Zhu, Y.2    Pan, L.3    Li, L.4    Wang, X.5    Lin, Y.6
  • 52
    • 84870692544 scopus 로고    scopus 로고
    • Exploration of a natural reservoir of flocculating genes from various Saccharomyces cerevisiae strains and improved ethanol fermentation using stable genetically engineered flocculating yeast strains
    • Zhao X.-Q., Li Q., He L.-Y., Li F., Que W.-W., Bai F.-W. Exploration of a natural reservoir of flocculating genes from various Saccharomyces cerevisiae strains and improved ethanol fermentation using stable genetically engineered flocculating yeast strains. Process Biochemistry 2011, 10.1016/j.procbio.2011.06.009.
    • (2011) Process Biochemistry
    • Zhao, X.-Q.1    Li, Q.2    He, L.-Y.3    Li, F.4    Que, W.-W.5    Bai, F.-W.6
  • 53
    • 78650829210 scopus 로고    scopus 로고
    • Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance
    • Zheng D.-Q., Wu X.-C., Tao X.-L., Wang P.-M., Li P., Chi X.-Q., Li Y.-D., Yan Q.-F., Zhao Y.-H. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresource Technology 2011, 102:3020-3027.
    • (2011) Bioresource Technology , vol.102 , pp. 3020-3027
    • Zheng, D.-Q.1    Wu, X.-C.2    Tao, X.-L.3    Wang, P.-M.4    Li, P.5    Chi, X.-Q.6    Li, Y.-D.7    Yan, Q.-F.8    Zhao, Y.-H.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.