-
1
-
-
70349281876
-
Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?
-
Alper, H., and G. Stephanopoulos. 2009. Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat. Rev. Microbiol. 7:715-723.
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 715-723
-
-
Alper, H.1
Stephanopoulos, G.2
-
2
-
-
0025183708
-
Basic Local Alignment Search Tool
-
Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic Local Alignment Search Tool. J. Mol. Biol. 215:403-410.
-
(1990)
J. Mol. Biol.
, vol.215
, pp. 403-410
-
-
Altschul, S.F.1
Gish, W.2
Miller, W.3
Myers, E.W.4
Lipman, D.J.5
-
3
-
-
0037962155
-
A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol
-
Becker, J., and E. Boles. 2003. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl. Environ. Microbiol. 69:4144-4150.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 4144-4150
-
-
Becker, J.1
Boles, E.2
-
4
-
-
0023656312
-
The cloning and DNA-sequence of the gene xylE for xylose-proton symport in Escherichia coli K-12
-
Davis, E. O., and P. J. F. Henderson. 1987. The cloning and DNA-sequence of the gene xylE for xylose-proton symport in Escherichia coli K-12. J. Biol. Chem. 262:13928-13932.
-
(1987)
J. Biol. Chem.
, vol.262
, pp. 13928-13932
-
-
Davis, E.O.1
Henderson, P.J.F.2
-
5
-
-
0033856888
-
Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
-
Eliasson, A., C. Christensson, C. F. Wahlbom, and B. Hahn-Hagerdal. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66:3381-3386.
-
(2000)
Appl. Environ. Microbiol.
, vol.66
, pp. 3381-3386
-
-
Eliasson, A.1
Christensson, C.2
Wahlbom, C.F.3
Hahn-Hagerdal, B.4
-
6
-
-
31544462628
-
Ethanol can contribute to energy and environmental goals
-
Farrell, A. E., et al. 2006. Ethanol can contribute to energy and environmental goals. Science 311:506-508.
-
(2006)
Science
, vol.311
, pp. 506-508
-
-
Farrell, A.E.1
-
7
-
-
0034799351
-
Sensors of extracellular nutrients in Saccharomyces cerevisiae
-
Forsberg, H., and P. O. Ljungdahl. 2001. Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr. Genet. 40:91-109.
-
(2001)
Curr. Genet.
, vol.40
, pp. 91-109
-
-
Forsberg, H.1
Ljungdahl, P.O.2
-
8
-
-
0038363853
-
Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae
-
Gardonyi, M., M. Jeppsson, G. Liden, M. F. Gorwa-Grausland, and B. Hahn-Hagerdal. 2003. Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 82:818-824.
-
(2003)
Biotechnol. Bioeng.
, vol.82
, pp. 818-824
-
-
Gardonyi, M.1
Jeppsson, M.2
Liden, G.3
Gorwa-Grausland, M.F.4
Hahn-Hagerdal, B.5
-
9
-
-
0037369565
-
High capacity xylose transport in Candida intermedia PYCC 4715
-
Gardonyi, M., M. Osterberg, C. Rodrigues, I. Spencer-Martins, and B. Hahn-Hagerdal. 2003. High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res. 3:45-52.
-
(2003)
FEMS Yeast Res.
, vol.3
, pp. 45-52
-
-
Gardonyi, M.1
Osterberg, M.2
Rodrigues, C.3
Spencer-Martins, I.4
Hahn-Hagerdal, B.5
-
10
-
-
34347206860
-
High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
-
Gietz, R. D., and R. H. Schiestl. 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2:31-34.
-
(2007)
Nat. Protoc.
, vol.2
, pp. 31-34
-
-
Gietz, R.D.1
Schiestl, R.H.2
-
11
-
-
0026204947
-
Conversion of glucose-xylose mixtures by Pichia stipitis under oxygen-limited conditions
-
Grootjen, D. R. J., R. Vanderlans, and K. Luyben. 1991. Conversion of glucose-xylose mixtures by Pichia stipitis under oxygen-limited conditions. Enzyme Microb. Technol. 13:648-654.
-
(1991)
Enzyme Microb. Technol.
, vol.13
, pp. 648-654
-
-
Grootjen, D.R.J.1
Vanderlans, R.2
Luyben, K.3
-
12
-
-
34548789083
-
Metabolic engineering for pentose utilization in Saccharomyces cerevisiae
-
Hahn-Hagerdal, B., K. Karhumaa, M. Jeppsson, and M. F. Gorwa-Grauslund. 2007. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 108:147-177.
-
(2007)
Adv. Biochem. Eng. Biotechnol.
, vol.108
, pp. 147-177
-
-
Hahn-Hagerdal, B.1
Karhumaa, K.2
Jeppsson, M.3
Gorwa-Grauslund, M.F.4
-
13
-
-
2342532123
-
Ethanolic fermentation of pentoses in lignocellulose hydrolysates
-
Hahn-Hagerdal, B., T. Linden, T. Senac, and K. Skoog. 1991. Ethanolic fermentation of pentoses in lignocellulose hydrolysates. Appl. Biochem. Biotechnol. 28-29:131-144.
-
(1991)
Appl. Biochem. Biotechnol.
, vol.28-29
, pp. 131-144
-
-
Hahn-Hagerdal, B.1
Linden, T.2
Senac, T.3
Skoog, K.4
-
14
-
-
0036738179
-
Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
-
Hamacher, T., J. Becker, M. Gardonyi, B. Hahn-Hagerdal, and E. Boles. 2002. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148: 2783-2788.
-
(2002)
Microbiology
, vol.148
, pp. 2783-2788
-
-
Hamacher, T.1
Becker, J.2
Gardonyi, M.3
Hahn-Hagerdal, B.4
Boles, E.5
-
15
-
-
50849109464
-
Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption
-
Hector, R. E., N. Qureshi, S. R. Hughes, and M. A. Cotta. 2008. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl. Microbiol. Biotechnol. 80:675-684.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.80
, pp. 675-684
-
-
Hector, R.E.1
Qureshi, N.2
Hughes, S.R.3
Cotta, M.A.4
-
16
-
-
0031832290
-
Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
-
Ho, N. W., Z. Chen, and A. P. Brainard. 1998. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64:1852-1859.
-
(1998)
Appl. Environ. Microbiol.
, vol.64
, pp. 1852-1859
-
-
Ho, N.W.1
Chen, Z.2
Brainard, A.P.3
-
17
-
-
33744914986
-
Engineering yeasts for xylose metabolism
-
Jeffries, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17:320-326.
-
(2006)
Curr. Opin. Biotechnol.
, vol.17
, pp. 320-326
-
-
Jeffries, T.W.1
-
18
-
-
1242264261
-
Metabolic engineering for improved fermentation of pentoses by yeasts
-
Jeffries, T. W., and Y. S. Jin. 2004. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63:495-509.
-
(2004)
Appl. Microbiol. Biotechnol.
, vol.63
, pp. 495-509
-
-
Jeffries, T.W.1
Jin, Y.S.2
-
19
-
-
29144502422
-
Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
-
Jin, Y. S., H. Alper, Y. T. Yang, and G. Stephanopoulos. 2005. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 71:8249-8256.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 8249-8256
-
-
Jin, Y.S.1
Alper, H.2
Yang, Y.T.3
Stephanopoulos, G.4
-
20
-
-
33845807902
-
High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
-
Karhumaa, K., R. Fromanger, B. Hahn-Hagerdal, and M. F. Gorwa-Grauslund. 2007. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 73:1039-1046.
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.73
, pp. 1039-1046
-
-
Karhumaa, K.1
Fromanger, R.2
Hahn-Hagerdal, B.3
Gorwa-Grauslund, M.F.4
-
21
-
-
33847202270
-
Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
-
Karhumaa, K., R. Garcia Sanchez, B. Hahn-Hagerdal, and M. F. Gorwa-Grauslund. 2007. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb. Cell Fact. 6:5.
-
(2007)
Microb. Cell Fact.
, vol.6
, pp. 5
-
-
Karhumaa, K.1
Garcia Sanchez, R.2
Hahn-Hagerdal, B.3
Gorwa-Grauslund, M.F.4
-
22
-
-
44449171842
-
Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter SUT1
-
Katahira, S., et al. 2008. Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter SUT1. Enzyme Microb. Technol. 43:115-119.
-
(2008)
Enzyme Microb. Technol.
, vol.43
, pp. 115-119
-
-
Katahira, S.1
-
23
-
-
0025633861
-
Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant
-
Kotter, P., R. Amore, C. P. Hollenberg, and M. Ciriacy. 1990. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr. Genet. 18:493-500.
-
(1990)
Curr. Genet.
, vol.18
, pp. 493-500
-
-
Kotter, P.1
Amore, R.2
Hollenberg, C.P.3
Ciriacy, M.4
-
24
-
-
76649127721
-
Phylogenetic analysis of ascomycete yeasts that form coenzyme Q.-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces
-
Kurtzman, C. P., and M. Suzuki. 2010. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q.-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51:2-14.
-
(2010)
Mycoscience
, vol.51
, pp. 2-14
-
-
Kurtzman, C.P.1
Suzuki, M.2
-
25
-
-
13244262739
-
Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
-
Kuyper, M., et al. 2005. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 5:399-409.
-
(2005)
FEMS Yeast Res.
, vol.5
, pp. 399-409
-
-
Kuyper, M.1
-
26
-
-
21744438324
-
Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
-
Kuyper, M., et al. 2005. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5:925-934.
-
(2005)
FEMS Yeast Res.
, vol.5
, pp. 925-934
-
-
Kuyper, M.1
-
27
-
-
65549125857
-
Hexose and pentose transport in ascomycetous yeasts: an overview
-
Leandro, M. J., C. Fonseca, and P. Goncalves. 2009. Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res. 9:511-525.
-
(2009)
FEMS Yeast Res.
, vol.9
, pp. 511-525
-
-
Leandro, M.J.1
Fonseca, C.2
Goncalves, P.3
-
28
-
-
33646252240
-
Two glucose/ xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H symporter
-
Leandro, M. J., P. Goncalves, and I. Spencer-Martins. 2006. Two glucose/ xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H symporter. Biochem. J. 395:543-549.
-
(2006)
Biochem. J.
, vol.395
, pp. 543-549
-
-
Leandro, M.J.1
Goncalves, P.2
Spencer-Martins, I.3
-
29
-
-
48449092222
-
The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator
-
Leandro, M. J., I. Spencer-Martins, and P. Goncalves. 2008. The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology 154:1646-1655.
-
(2008)
Microbiology
, vol.154
, pp. 1646-1655
-
-
Leandro, M.J.1
Spencer-Martins, I.2
Goncalves, P.3
-
30
-
-
0000637227
-
An investigation of D-(1-C-13) xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions
-
Ligthelm, M. E., B. A. Prior, J. C. Dupreez, and V. Brandt. 1988. An investigation of D-(1-C-13) xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Appl. Microbiol. Biotechnol. 28:293-296.
-
(1988)
Appl. Microbiol. Biotechnol.
, vol.28
, pp. 293-296
-
-
Ligthelm, M.E.1
Prior, B.A.2
Dupreez, J.C.3
Brandt, V.4
-
31
-
-
63949086429
-
Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
-
Madhavan, A., et al. 2009. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Microbiol. Biotechnol. 82:1067-1078.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.82
, pp. 1067-1078
-
-
Madhavan, A.1
-
32
-
-
0028953840
-
Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
-
Mumberg, D., R. Muller, and M. Funk. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119-122.
-
(1995)
Gene
, vol.156
, pp. 119-122
-
-
Mumberg, D.1
Muller, R.2
Funk, M.3
-
33
-
-
0032795245
-
Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii
-
Nobre, A., C. Lucas, and C. Leao. 1999. Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii. Appl. Environ. Microbiol. 65:3594-3598.
-
(1999)
Appl. Environ. Microbiol.
, vol.65
, pp. 3594-3598
-
-
Nobre, A.1
Lucas, C.2
Leao, C.3
-
34
-
-
58549084602
-
Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae
-
Runquist, D., C. Fonseca, P. Radstrom, I. Spencer-Martins, and B. Hahn-Hagerdal. 2009. Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 82:123-130.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.82
, pp. 123-130
-
-
Runquist, D.1
Fonseca, C.2
Radstrom, P.3
Spencer-Martins, I.4
Hahn-Hagerdal, B.5
-
35
-
-
33947192191
-
Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases
-
Saloheimo, A., et al. 2007. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl. Microbiol. Biotechnol. 74:1041-1052.
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.74
, pp. 1041-1052
-
-
Saloheimo, A.1
-
37
-
-
3042769437
-
Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose cofermentation by a recombinant Saccharomyces yeast
-
Sedlak, M., and N. W. Y. Ho. 2004. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose cofermentation by a recombinant Saccharomyces yeast. Yeast 21:671-684.
-
(2004)
Yeast
, vol.21
, pp. 671-684
-
-
Sedlak, M.1
Ho, N.W.Y.2
-
38
-
-
0028829654
-
Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose-phosphate pathway enzymes transketolase and transaldolase Appl
-
Walfridsson, M., J. Hallborn, M. Penttila, S. Keranen, and B. Hahnhagerdal. 1995. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose-phosphate pathway enzymes transketolase and transaldolase Appl. Environ. Microbiol. 61:4184-4190.
-
(1995)
Environ. Microbiol.
, vol.61
, pp. 4184-4190
-
-
Walfridsson, M.1
Hallborn, J.2
Penttila, M.3
Keranen, S.4
Hahnhagerdal, B.5
-
39
-
-
0032961329
-
Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis
-
Weierstall, T., C. P. Hollenberg, and E. Boles. 1999. Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol. Microbiol. 31:871-883.
-
(1999)
Mol. Microbiol.
, vol.31
, pp. 871-883
-
-
Weierstall, T.1
Hollenberg, C.P.2
Boles, E.3
-
40
-
-
0033373342
-
Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae
-
Wieczorke, R., et al. 1999. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 464:123-128.
-
(1999)
FEBS Lett.
, vol.464
, pp. 123-128
-
-
Wieczorke, R.1
-
41
-
-
42049123423
-
Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae
-
Wiedemann, B., and E. Boles. 2008. Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74:2043-2050.
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, pp. 2043-2050
-
-
Wiedemann, B.1
Boles, E.2
-
42
-
-
78649922301
-
Optimizing pentose utilization in yeast: the need for novel tools and approaches
-
Young, E., S. M. Lee, and H. Alper. 2010. Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol. Biofuels 3:24.
-
(2010)
Biotechnol. Biofuels.
, vol.3
, pp. 24
-
-
Young, E.1
Lee, S.M.2
Alper, H.3
|