메뉴 건너뛰기




Volumn 77, Issue 10, 2011, Pages 3311-3319

Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host

Author keywords

[No Author keywords available]

Indexed keywords

CARBON SOURCE; CELLULAR METABOLISM; COFERMENTATION; DEBARYOMYCES HANSENII; KEY PROCESS; MOLECULAR CHARACTERIZATION; MOLECULAR TRANSPORT; OPEN READING FRAME; PHYLOGENETIC ANALYSIS; SUBSTRATE RANGE; SUGAR TRANSPORT; TRANSPORT CAPACITY; TRANSPORT EFFICIENCY; TRANSPORT PROTEINS; TRANSPORTER PROTEINS; YARROWIA LIPOLYTICA;

EID: 79958211835     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.02651-10     Document Type: Article
Times cited : (131)

References (42)
  • 1
    • 70349281876 scopus 로고    scopus 로고
    • Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?
    • Alper, H., and G. Stephanopoulos. 2009. Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat. Rev. Microbiol. 7:715-723.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 715-723
    • Alper, H.1    Stephanopoulos, G.2
  • 3
    • 0037962155 scopus 로고    scopus 로고
    • A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol
    • Becker, J., and E. Boles. 2003. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl. Environ. Microbiol. 69:4144-4150.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 4144-4150
    • Becker, J.1    Boles, E.2
  • 4
    • 0023656312 scopus 로고
    • The cloning and DNA-sequence of the gene xylE for xylose-proton symport in Escherichia coli K-12
    • Davis, E. O., and P. J. F. Henderson. 1987. The cloning and DNA-sequence of the gene xylE for xylose-proton symport in Escherichia coli K-12. J. Biol. Chem. 262:13928-13932.
    • (1987) J. Biol. Chem. , vol.262 , pp. 13928-13932
    • Davis, E.O.1    Henderson, P.J.F.2
  • 5
    • 0033856888 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
    • Eliasson, A., C. Christensson, C. F. Wahlbom, and B. Hahn-Hagerdal. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66:3381-3386.
    • (2000) Appl. Environ. Microbiol. , vol.66 , pp. 3381-3386
    • Eliasson, A.1    Christensson, C.2    Wahlbom, C.F.3    Hahn-Hagerdal, B.4
  • 6
    • 31544462628 scopus 로고    scopus 로고
    • Ethanol can contribute to energy and environmental goals
    • Farrell, A. E., et al. 2006. Ethanol can contribute to energy and environmental goals. Science 311:506-508.
    • (2006) Science , vol.311 , pp. 506-508
    • Farrell, A.E.1
  • 7
    • 0034799351 scopus 로고    scopus 로고
    • Sensors of extracellular nutrients in Saccharomyces cerevisiae
    • Forsberg, H., and P. O. Ljungdahl. 2001. Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr. Genet. 40:91-109.
    • (2001) Curr. Genet. , vol.40 , pp. 91-109
    • Forsberg, H.1    Ljungdahl, P.O.2
  • 10
    • 34347206860 scopus 로고    scopus 로고
    • High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
    • Gietz, R. D., and R. H. Schiestl. 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2:31-34.
    • (2007) Nat. Protoc. , vol.2 , pp. 31-34
    • Gietz, R.D.1    Schiestl, R.H.2
  • 11
    • 0026204947 scopus 로고
    • Conversion of glucose-xylose mixtures by Pichia stipitis under oxygen-limited conditions
    • Grootjen, D. R. J., R. Vanderlans, and K. Luyben. 1991. Conversion of glucose-xylose mixtures by Pichia stipitis under oxygen-limited conditions. Enzyme Microb. Technol. 13:648-654.
    • (1991) Enzyme Microb. Technol. , vol.13 , pp. 648-654
    • Grootjen, D.R.J.1    Vanderlans, R.2    Luyben, K.3
  • 14
    • 0036738179 scopus 로고    scopus 로고
    • Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
    • Hamacher, T., J. Becker, M. Gardonyi, B. Hahn-Hagerdal, and E. Boles. 2002. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148: 2783-2788.
    • (2002) Microbiology , vol.148 , pp. 2783-2788
    • Hamacher, T.1    Becker, J.2    Gardonyi, M.3    Hahn-Hagerdal, B.4    Boles, E.5
  • 15
    • 50849109464 scopus 로고    scopus 로고
    • Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption
    • Hector, R. E., N. Qureshi, S. R. Hughes, and M. A. Cotta. 2008. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl. Microbiol. Biotechnol. 80:675-684.
    • (2008) Appl. Microbiol. Biotechnol. , vol.80 , pp. 675-684
    • Hector, R.E.1    Qureshi, N.2    Hughes, S.R.3    Cotta, M.A.4
  • 16
    • 0031832290 scopus 로고    scopus 로고
    • Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
    • Ho, N. W., Z. Chen, and A. P. Brainard. 1998. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64:1852-1859.
    • (1998) Appl. Environ. Microbiol. , vol.64 , pp. 1852-1859
    • Ho, N.W.1    Chen, Z.2    Brainard, A.P.3
  • 17
    • 33744914986 scopus 로고    scopus 로고
    • Engineering yeasts for xylose metabolism
    • Jeffries, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17:320-326.
    • (2006) Curr. Opin. Biotechnol. , vol.17 , pp. 320-326
    • Jeffries, T.W.1
  • 18
    • 1242264261 scopus 로고    scopus 로고
    • Metabolic engineering for improved fermentation of pentoses by yeasts
    • Jeffries, T. W., and Y. S. Jin. 2004. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63:495-509.
    • (2004) Appl. Microbiol. Biotechnol. , vol.63 , pp. 495-509
    • Jeffries, T.W.1    Jin, Y.S.2
  • 19
    • 29144502422 scopus 로고    scopus 로고
    • Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
    • Jin, Y. S., H. Alper, Y. T. Yang, and G. Stephanopoulos. 2005. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 71:8249-8256.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 8249-8256
    • Jin, Y.S.1    Alper, H.2    Yang, Y.T.3    Stephanopoulos, G.4
  • 20
    • 33845807902 scopus 로고    scopus 로고
    • High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa, K., R. Fromanger, B. Hahn-Hagerdal, and M. F. Gorwa-Grauslund. 2007. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 73:1039-1046.
    • (2007) Appl. Microbiol. Biotechnol. , vol.73 , pp. 1039-1046
    • Karhumaa, K.1    Fromanger, R.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 21
    • 33847202270 scopus 로고    scopus 로고
    • Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa, K., R. Garcia Sanchez, B. Hahn-Hagerdal, and M. F. Gorwa-Grauslund. 2007. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb. Cell Fact. 6:5.
    • (2007) Microb. Cell Fact. , vol.6 , pp. 5
    • Karhumaa, K.1    Garcia Sanchez, R.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 22
    • 44449171842 scopus 로고    scopus 로고
    • Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter SUT1
    • Katahira, S., et al. 2008. Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter SUT1. Enzyme Microb. Technol. 43:115-119.
    • (2008) Enzyme Microb. Technol. , vol.43 , pp. 115-119
    • Katahira, S.1
  • 23
    • 0025633861 scopus 로고
    • Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant
    • Kotter, P., R. Amore, C. P. Hollenberg, and M. Ciriacy. 1990. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr. Genet. 18:493-500.
    • (1990) Curr. Genet. , vol.18 , pp. 493-500
    • Kotter, P.1    Amore, R.2    Hollenberg, C.P.3    Ciriacy, M.4
  • 24
    • 76649127721 scopus 로고    scopus 로고
    • Phylogenetic analysis of ascomycete yeasts that form coenzyme Q.-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces
    • Kurtzman, C. P., and M. Suzuki. 2010. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q.-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51:2-14.
    • (2010) Mycoscience , vol.51 , pp. 2-14
    • Kurtzman, C.P.1    Suzuki, M.2
  • 25
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
    • Kuyper, M., et al. 2005. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 5:399-409.
    • (2005) FEMS Yeast Res. , vol.5 , pp. 399-409
    • Kuyper, M.1
  • 26
    • 21744438324 scopus 로고    scopus 로고
    • Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
    • Kuyper, M., et al. 2005. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5:925-934.
    • (2005) FEMS Yeast Res. , vol.5 , pp. 925-934
    • Kuyper, M.1
  • 27
    • 65549125857 scopus 로고    scopus 로고
    • Hexose and pentose transport in ascomycetous yeasts: an overview
    • Leandro, M. J., C. Fonseca, and P. Goncalves. 2009. Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res. 9:511-525.
    • (2009) FEMS Yeast Res. , vol.9 , pp. 511-525
    • Leandro, M.J.1    Fonseca, C.2    Goncalves, P.3
  • 28
    • 33646252240 scopus 로고    scopus 로고
    • Two glucose/ xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H symporter
    • Leandro, M. J., P. Goncalves, and I. Spencer-Martins. 2006. Two glucose/ xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H symporter. Biochem. J. 395:543-549.
    • (2006) Biochem. J. , vol.395 , pp. 543-549
    • Leandro, M.J.1    Goncalves, P.2    Spencer-Martins, I.3
  • 29
    • 48449092222 scopus 로고    scopus 로고
    • The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator
    • Leandro, M. J., I. Spencer-Martins, and P. Goncalves. 2008. The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology 154:1646-1655.
    • (2008) Microbiology , vol.154 , pp. 1646-1655
    • Leandro, M.J.1    Spencer-Martins, I.2    Goncalves, P.3
  • 30
    • 0000637227 scopus 로고
    • An investigation of D-(1-C-13) xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions
    • Ligthelm, M. E., B. A. Prior, J. C. Dupreez, and V. Brandt. 1988. An investigation of D-(1-C-13) xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Appl. Microbiol. Biotechnol. 28:293-296.
    • (1988) Appl. Microbiol. Biotechnol. , vol.28 , pp. 293-296
    • Ligthelm, M.E.1    Prior, B.A.2    Dupreez, J.C.3    Brandt, V.4
  • 31
    • 63949086429 scopus 로고    scopus 로고
    • Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
    • Madhavan, A., et al. 2009. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Microbiol. Biotechnol. 82:1067-1078.
    • (2009) Appl. Microbiol. Biotechnol. , vol.82 , pp. 1067-1078
    • Madhavan, A.1
  • 32
    • 0028953840 scopus 로고
    • Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
    • Mumberg, D., R. Muller, and M. Funk. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119-122.
    • (1995) Gene , vol.156 , pp. 119-122
    • Mumberg, D.1    Muller, R.2    Funk, M.3
  • 33
    • 0032795245 scopus 로고    scopus 로고
    • Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii
    • Nobre, A., C. Lucas, and C. Leao. 1999. Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii. Appl. Environ. Microbiol. 65:3594-3598.
    • (1999) Appl. Environ. Microbiol. , vol.65 , pp. 3594-3598
    • Nobre, A.1    Lucas, C.2    Leao, C.3
  • 34
    • 58549084602 scopus 로고    scopus 로고
    • Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae
    • Runquist, D., C. Fonseca, P. Radstrom, I. Spencer-Martins, and B. Hahn-Hagerdal. 2009. Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 82:123-130.
    • (2009) Appl. Microbiol. Biotechnol. , vol.82 , pp. 123-130
    • Runquist, D.1    Fonseca, C.2    Radstrom, P.3    Spencer-Martins, I.4    Hahn-Hagerdal, B.5
  • 35
    • 33947192191 scopus 로고    scopus 로고
    • Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases
    • Saloheimo, A., et al. 2007. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl. Microbiol. Biotechnol. 74:1041-1052.
    • (2007) Appl. Microbiol. Biotechnol. , vol.74 , pp. 1041-1052
    • Saloheimo, A.1
  • 37
    • 3042769437 scopus 로고    scopus 로고
    • Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose cofermentation by a recombinant Saccharomyces yeast
    • Sedlak, M., and N. W. Y. Ho. 2004. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose cofermentation by a recombinant Saccharomyces yeast. Yeast 21:671-684.
    • (2004) Yeast , vol.21 , pp. 671-684
    • Sedlak, M.1    Ho, N.W.Y.2
  • 38
    • 0028829654 scopus 로고
    • Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose-phosphate pathway enzymes transketolase and transaldolase Appl
    • Walfridsson, M., J. Hallborn, M. Penttila, S. Keranen, and B. Hahnhagerdal. 1995. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose-phosphate pathway enzymes transketolase and transaldolase Appl. Environ. Microbiol. 61:4184-4190.
    • (1995) Environ. Microbiol. , vol.61 , pp. 4184-4190
    • Walfridsson, M.1    Hallborn, J.2    Penttila, M.3    Keranen, S.4    Hahnhagerdal, B.5
  • 39
    • 0032961329 scopus 로고    scopus 로고
    • Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis
    • Weierstall, T., C. P. Hollenberg, and E. Boles. 1999. Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol. Microbiol. 31:871-883.
    • (1999) Mol. Microbiol. , vol.31 , pp. 871-883
    • Weierstall, T.1    Hollenberg, C.P.2    Boles, E.3
  • 40
    • 0033373342 scopus 로고    scopus 로고
    • Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae
    • Wieczorke, R., et al. 1999. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 464:123-128.
    • (1999) FEBS Lett. , vol.464 , pp. 123-128
    • Wieczorke, R.1
  • 41
    • 42049123423 scopus 로고    scopus 로고
    • Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae
    • Wiedemann, B., and E. Boles. 2008. Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74:2043-2050.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 2043-2050
    • Wiedemann, B.1    Boles, E.2
  • 42
    • 78649922301 scopus 로고    scopus 로고
    • Optimizing pentose utilization in yeast: the need for novel tools and approaches
    • Young, E., S. M. Lee, and H. Alper. 2010. Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol. Biofuels 3:24.
    • (2010) Biotechnol. Biofuels. , vol.3 , pp. 24
    • Young, E.1    Lee, S.M.2    Alper, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.