-
1
-
-
84868201333
-
Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae
-
doi: 10.1007/s10295-012-1169-y
-
Aeling, K. A., Salmon, K. A., Laplaza, J. M., Li, L., Headman, J. R., Hutagalung, A. H., et al. (2012). Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 39, 1597-1604. doi: 10.1007/s10295-012-1169-y
-
(2012)
J. Ind. Microbiol. Biotechnol.
, vol.39
, pp. 1597-1604
-
-
Aeling, K.A.1
Salmon, K.A.2
Laplaza, J.M.3
Li, L.4
Headman, J.R.5
Hutagalung, A.H.6
-
2
-
-
84861149123
-
Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis
-
doi: 10.1128/AEM.07985-11
-
Anbar, M., Gul, O., Lamed, R., Sezerman, U. O., and Bayer, E. A. (2012). Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Appl. Environ. Microbiol. 78, 3458-3464. doi: 10.1128/AEM.07985-11
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 3458-3464
-
-
Anbar, M.1
Gul, O.2
Lamed, R.3
Sezerman, U.O.4
Bayer, E.A.5
-
3
-
-
58149347653
-
Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering
-
doi: 10.1002/yea.1638
-
Bengtsson, O., Jeppsson, M., Sonderegger, M., Parachin, N., Sauer, U., Hahn-Hägerdal, B., et al. (2008). Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 25, 835-847. doi: 10.1002/yea.1638
-
(2008)
Yeast
, vol.25
, pp. 835-847
-
-
Bengtsson, O.1
Jeppsson, M.2
Sonderegger, M.3
Parachin, N.4
Sauer, U.5
Hahn-Hägerdal, B.6
-
4
-
-
79956076724
-
A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation
-
doi: 10.1007/s10295-010-0806-6
-
Bera, A., Ho, N., Khan, A., and Sedlak, M. (2011). A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J. Ind. Microbiol. Biotechnol. 38, 617-626. doi: 10.1007/s10295-010-0806-6
-
(2011)
J. Ind. Microbiol. Biotechnol.
, vol.38
, pp. 617-626
-
-
Bera, A.1
Ho, N.2
Khan, A.3
Sedlak, M.4
-
5
-
-
84878848636
-
Advanced biofuel production by the yeast Saccharomyces cerevisiae
-
doi: 10.1016/j.cbpa.2013.03.036
-
Buijs, N. A., Siewers, V., and Nielsen, J. (2013). Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr. Opin. Chem. Biol. 17, 480-488. doi: 10.1016/j.cbpa.2013.03.036
-
(2013)
Curr. Opin. Chem. Biol.
, vol.17
, pp. 480-488
-
-
Buijs, N.A.1
Siewers, V.2
Nielsen, J.3
-
6
-
-
84862922807
-
Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives
-
doi: 10.1002/biot.201100053
-
Cai, Z., Zhang, B., and Li, Y. (2012). Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives. Biotechnol. J. 7, 34-46. doi: 10.1002/biot.201100053
-
(2012)
Biotechnol. J.
, vol.7
, pp. 34-46
-
-
Cai, Z.1
Zhang, B.2
Li, Y.3
-
7
-
-
79952574144
-
Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of 'Biofuel'
-
doi: 10.1007/s00253-010-3057-6
-
Chandel, A. K., and Singh, O. V. (2011). Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of 'Biofuel'. Appl. Microbiol. Biotechnol. 89, 1289-1303. doi: 10.1007/s00253-010-3057-6
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.89
, pp. 1289-1303
-
-
Chandel, A.K.1
Singh, O.V.2
-
8
-
-
70350502815
-
Fungal bioconversion of lignocellulosic residues; opportunities & perspectives
-
doi: 10.7150/ijbs.5.578
-
Dashtban, M., Schraft, H., and Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int. J. Biol. Sci. 5, 578-595. doi: 10.7150/ijbs.5.578
-
(2009)
Int. J. Biol. Sci.
, vol.5
, pp. 578-595
-
-
Dashtban, M.1
Schraft, H.2
Qin, W.3
-
9
-
-
84873164214
-
Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend
-
doi: 10.1016/j.biortech.2012.10.014
-
De Figueiredo Vilela, L., De Mello, V., Reis, V., Bon, E., Gonçalves Torres, F., Neves, B., et al. (2013). Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend. Bioresour. Technol. 128, 792-796. doi: 10.1016/j.biortech.2012.10.014
-
(2013)
Bioresour. Technol.
, vol.128
, pp. 792-796
-
-
De Figueiredo Vilela, L.1
De Mello, V.2
Reis, V.3
Bon, E.4
Gonçalves Torres, F.5
Neves, B.6
-
10
-
-
84879119602
-
Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
-
doi: 10.1186/1754-6834-6-89
-
Demeke, M., Dietz, H., Li, Y., Foulquié-Moreno, M., Mutturi, S., Deprez, S., et al. (2013). Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol. Biofuels 6:89. doi: 10.1186/1754-6834-6-89
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 89
-
-
Demeke, M.1
Dietz, H.2
Li, Y.3
Foulquié-Moreno, M.4
Mutturi, S.5
Deprez, S.6
-
11
-
-
33847642855
-
Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol
-
doi: 10.1016/j.enzmictec.2006.09.022
-
Den Haan, R., McBride, J. E., La Grange, D. C., Lynd, L. R., and Van Zyl, W. H. (2007a). Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb. Technol. 40, 1291-1299. doi: 10.1016/j.enzmictec.2006.09.022
-
(2007)
Enzyme Microb. Technol.
, vol.40
, pp. 1291-1299
-
-
Den Haan, R.1
McBride, J.E.2
La Grange, D.C.3
Lynd, L.R.4
Van Zyl, W.H.5
-
12
-
-
33845609259
-
Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae
-
doi: 10.1016/j.ymben.2006.08.005
-
Den Haan, R., Rose, S. H., Lynd, L. R., and Van Zyl, W. H. (2007b). Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab. Eng. 9, 87-94. doi: 10.1016/j.ymben.2006.08.005
-
(2007)
Metab. Eng.
, vol.9
, pp. 87-94
-
-
Den Haan, R.1
Rose, S.H.2
Lynd, L.R.3
Van Zyl, W.H.4
-
13
-
-
77957892899
-
Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis
-
doi: 10.1039/c0mb00007h
-
Du, J., Li, S., and Zhao, H. (2010). Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol. Biosyst. 6, 2150-2156. doi: 10.1039/c0mb00007h
-
(2010)
Mol. Biosyst.
, vol.6
, pp. 2150-2156
-
-
Du, J.1
Li, S.2
Zhao, H.3
-
14
-
-
77952889881
-
Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains
-
doi: 10.1007/s00253-009-2403-z
-
Du Plessis, L., Rose, S. H., and Van Zyl, W. H. (2010). Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains. Appl. Microbiol. Biotechnol. 86, 1503-1511. doi: 10.1007/s00253-009-2403-z
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.86
, pp. 1503-1511
-
-
Du Plessis, L.1
Rose, S.H.2
Van Zyl, W.H.3
-
15
-
-
77957330454
-
Engineered microbial systems for enhanced conversion of lignocellulosic biomass
-
doi: 10.1016/j.copbio.2010.05.008
-
Elkins, J. G., Raman, B., and Keller, M. (2010). Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr. Opin. Biotechnol. 21, 657-662. doi: 10.1016/j.copbio.2010.05.008
-
(2010)
Curr. Opin. Biotechnol.
, vol.21
, pp. 657-662
-
-
Elkins, J.G.1
Raman, B.2
Keller, M.3
-
16
-
-
84865156886
-
Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production
-
doi: 10.1073/pnas.1209856109
-
Fan, L.-H., Zhang, Z.-J., Yu, X.-Y., Xue, Y.-X., and Tan, T.-W. (2012). Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc. Natl. Acad. Sci. U.S.A. 109, 13260-13265. doi: 10.1073/pnas.1209856109
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 13260-13265
-
-
Fan, L.-H.1
Zhang, Z.-J.2
Yu, X.-Y.3
Xue, Y.-X.4
Tan, T.-W.5
-
17
-
-
78650093857
-
Metabolic engineering for improved microbial pentose fermentation
-
doi: 10.4161/bbug.1.6.12724
-
Fernandes, S., and Murray, P. (2010). Metabolic engineering for improved microbial pentose fermentation. Bioeng. Bugs 1, 424-428. doi: 10.4161/bbug.1.6.12724
-
(2010)
Bioeng. Bugs
, vol.1
, pp. 424-428
-
-
Fernandes, S.1
Murray, P.2
-
18
-
-
0013096838
-
Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis
-
doi: 10.1128/EC.2.1.170-180.2003
-
Fiaux, J., Cakar, Z. P., Sonderegger, M., Wuthrich, K., Szyperski, T., and Sauer, U. (2003). Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot. Cell 2, 170-180. doi: 10.1128/EC.2.1.170-180.2003
-
(2003)
Eukaryot. Cell
, vol.2
, pp. 170-180
-
-
Fiaux, J.1
Cakar, Z.P.2
Sonderegger, M.3
Wuthrich, K.4
Szyperski, T.5
Sauer, U.6
-
19
-
-
84902544670
-
Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose
-
doi: 10.1111/jam.12494. [Epub ahead of print].
-
Fitzpatrick, J., Kricka, W., James, T., and Bond, U. (2014). Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose. J. App. Microbol. doi: 10.1111/jam.12494. [Epub ahead of print].
-
(2014)
J. App. Microbol
-
-
Fitzpatrick, J.1
Kricka, W.2
James, T.3
Bond, U.4
-
20
-
-
43949138896
-
The yeast Kluyveromyces marxianus and its biotechnological potential
-
doi: 10.1007/s00253-008-1458-6
-
Fonseca, G. G., Heinzle, E., Wittmann, C., and Gombert, A. K. (2008). The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79, 339-354. doi: 10.1007/s00253-008-1458-6
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.79
, pp. 339-354
-
-
Fonseca, G.G.1
Heinzle, E.2
Wittmann, C.3
Gombert, A.K.4
-
21
-
-
77953631886
-
Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates
-
doi: 10.1146/annurev-biochem-091208-085603
-
Fontes, C. M., and Gilbert, H. J. (2010). Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu. Rev. Biochem. 79, 655-681. doi: 10.1146/annurev-biochem-091208-085603
-
(2010)
Annu. Rev. Biochem.
, vol.79
, pp. 655-681
-
-
Fontes, C.M.1
Gilbert, H.J.2
-
22
-
-
0042858149
-
Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei
-
doi: 10.1074/jbc.M304750200
-
Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., et al. (2003). Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem. 278, 31988-31997. doi: 10.1074/jbc.M304750200
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 31988-31997
-
-
Foreman, P.K.1
Brown, D.2
Dankmeyer, L.3
Dean, R.4
Diener, S.5
Dunn-Coleman, N.S.6
-
23
-
-
2342638898
-
Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme
-
doi: 10.1128/AEM.70.2.1207-1212.2004
-
Fujita, Y., Ito, J., Ueda, M., Fukuda, H., and Kondo, A. (2004). Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl. Environ. Microbiol. 70, 1207-1212. doi: 10.1128/AEM.70.2.1207-1212.2004
-
(2004)
Appl. Environ. Microbiol.
, vol.70
, pp. 1207-1212
-
-
Fujita, Y.1
Ito, J.2
Ueda, M.3
Fukuda, H.4
Kondo, A.5
-
24
-
-
84858748257
-
Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural
-
doi: 10.1016/j.biortech.2012.01.161
-
Fujitomi, K., Sanda, T., Hasunuma, T., and Kondo, A. (2012). Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour. Technol. 111, 161-166. doi: 10.1016/j.biortech.2012.01.161
-
(2012)
Bioresour. Technol.
, vol.111
, pp. 161-166
-
-
Fujitomi, K.1
Sanda, T.2
Hasunuma, T.3
Kondo, A.4
-
25
-
-
84863009629
-
Enhanced cellulose degradation by targeted integration of a cohesin-fused beta-glucosidase into the Clostridium thermocellum cellulosome
-
doi: 10.1073/pnas.1202747109
-
Gefen, G., Anbar, M., Morag, E., Lamed, R., and Bayer, E. A. (2012). Enhanced cellulose degradation by targeted integration of a cohesin-fused beta-glucosidase into the Clostridium thermocellum cellulosome. Proc. Natl. Acad. Sci. U.S.A. 109, 10298-10303. doi: 10.1073/pnas.1202747109
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 10298-10303
-
-
Gefen, G.1
Anbar, M.2
Morag, E.3
Lamed, R.4
Bayer, E.A.5
-
26
-
-
0036135110
-
Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering
-
doi: 10.1128/AEM.68.1.53-58.2002
-
Guedon, E., Desvaux, M., and Petitdemange, H. (2002). Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl. Environ. Microbiol. 68, 53-58. doi: 10.1128/AEM.68.1.53-58.2002
-
(2002)
Appl. Environ. Microbiol.
, vol.68
, pp. 53-58
-
-
Guedon, E.1
Desvaux, M.2
Petitdemange, H.3
-
27
-
-
79551670374
-
Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
-
doi: 10.1073/pnas.1010456108
-
Ha, S.-J., Galazka, J., Kim, S., Choi, J.-H., Yang, X., Seo, J.-H., et al. (2011). Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. U.S.A. 108, 504-509. doi: 10.1073/pnas.1010456108
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 504-509
-
-
Ha, S.-J.1
Galazka, J.2
Kim, S.3
Choi, J.-H.4
Yang, X.5
Seo, J.-H.6
-
28
-
-
84892374041
-
Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural
-
doi: 10.1016/j.jbiosc.2013.07.007
-
Hasunuma, T., Ismail, K., Nambu, Y., and Kondo, A. (2014). Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. J. Biosci. Bioeng. 117, 165-169. doi: 10.1016/j.jbiosc.2013.07.007
-
(2014)
J. Biosci. Bioeng.
, vol.117
, pp. 165-169
-
-
Hasunuma, T.1
Ismail, K.2
Nambu, Y.3
Kondo, A.4
-
29
-
-
84867712304
-
Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering
-
doi: 10.1016/j.biotechadv.2011.10.011
-
Hasunuma, T., and Kondo, A. (2012). Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol. Adv. 30, 1207-1218. doi: 10.1016/j.biotechadv.2011.10.011
-
(2012)
Biotechnol. Adv.
, vol.30
, pp. 1207-1218
-
-
Hasunuma, T.1
Kondo, A.2
-
30
-
-
79954706261
-
Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae
-
doi: 10.1007/s00253-011-3085-x
-
Hasunuma, T., Sung, K., Sanda, T., Yoshimura, K., Matsuda, F., and Kondo, A. (2011). Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 90, 997-1004. doi: 10.1007/s00253-011-3085-x
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.90
, pp. 997-1004
-
-
Hasunuma, T.1
Sung, K.2
Sanda, T.3
Yoshimura, K.4
Matsuda, F.5
Kondo, A.6
-
31
-
-
84878237818
-
Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24
-
doi: 10.1186/1754-6834-6-84
-
Hector, R., Dien, B., Cotta, M., and Mertens, J. (2013). Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnol. Biofuels 6:84. doi: 10.1186/1754-6834-6-84
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 84
-
-
Hector, R.1
Dien, B.2
Cotta, M.3
Mertens, J.4
-
32
-
-
80052513736
-
Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion
-
doi: 10.1007/s10295-010-0896-1
-
Hector, R., Dien, B., Cotta, M., and Qureshi, N. (2011). Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. J. Ind. Microbiol. Biotechnol. 38, 1193-1202. doi: 10.1007/s10295-010-0896-1
-
(2011)
J. Ind. Microbiol. Biotechnol.
, vol.38
, pp. 1193-1202
-
-
Hector, R.1
Dien, B.2
Cotta, M.3
Qureshi, N.4
-
33
-
-
34249086292
-
Construction of thermotolerant yeast expressing thermostable cellulase genes
-
doi: 10.1016/j.jbiotec.2007.03.008
-
Hong, J., Wang, Y., Kumagai, H., and Tamaki, H. (2007). Construction of thermotolerant yeast expressing thermostable cellulase genes. J. Biotechnol. 130, 114-123. doi: 10.1016/j.jbiotec.2007.03.008
-
(2007)
J. Biotechnol.
, vol.130
, pp. 114-123
-
-
Hong, J.1
Wang, Y.2
Kumagai, H.3
Tamaki, H.4
-
34
-
-
84858444031
-
Anaerobic xylose fermentation by Spathaspora passalidarum
-
doi: 10.1007/s00253-011-3694-4
-
Hou, X. (2012). Anaerobic xylose fermentation by Spathaspora passalidarum. Appl. Microbiol. Biotechnol. 94, 205-214. doi: 10.1007/s00253-011-3694-4
-
(2012)
Appl. Microbiol. Biotechnol.
, vol.94
, pp. 205-214
-
-
Hou, X.1
-
35
-
-
84870369602
-
Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose
-
doi: 10.1016/j.jbiotec.2012.10.017
-
Ismail, K. S., Sakamoto, T., Hatanaka, H., Hasunuma, T., and Kondo, A. (2013). Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. J. Biotechnol. 163, 50-60. doi: 10.1016/j.jbiotec.2012.10.017
-
(2013)
J. Biotechnol.
, vol.163
, pp. 50-60
-
-
Ismail, K.S.1
Sakamoto, T.2
Hatanaka, H.3
Hasunuma, T.4
Kondo, A.5
-
36
-
-
84883816380
-
New genotypes of industrial yeast Saccharomyces cerevisiae engineered with YXI and heterologous xylose transporters improve xylose utilization and ethanol production
-
doi: 10.1016/j.bcab.2013.03.005
-
Jaewoong, M., Liu, Z. L., Menggen, M., and Patricia, J. S. (2013). New genotypes of industrial yeast Saccharomyces cerevisiae engineered with YXI and heterologous xylose transporters improve xylose utilization and ethanol production. Biocatal. Agric. Biotechnol. 2, 247-254. doi: 10.1016/j.bcab.2013.03.005
-
(2013)
Biocatal. Agric. Biotechnol.
, vol.2
, pp. 247-254
-
-
Jaewoong, M.1
Liu, Z.L.2
Menggen, M.3
Patricia, J.S.4
-
37
-
-
33845807902
-
High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
-
doi: 10.1007/s00253-006-0575-3
-
Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B., and Gorwa-Grauslund, M.-F. (2007). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 73, 1039-1046. doi: 10.1007/s00253-006-0575-3
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.73
, pp. 1039-1046
-
-
Karhumaa, K.1
Fromanger, R.2
Hahn-Hägerdal, B.3
Gorwa-Grauslund, M.-F.4
-
38
-
-
17644373035
-
Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
-
doi: 10.1002/yea.1216
-
Karhumaa, K., Hahn-Hägerdal, B., and Gorwa-Grauslund, M.-F. (2005). Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22, 359-368. doi: 10.1002/yea.1216
-
(2005)
Yeast
, vol.22
, pp. 359-368
-
-
Karhumaa, K.1
Hahn-Hägerdal, B.2
Gorwa-Grauslund, M.-F.3
-
39
-
-
33749828025
-
Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose-and cellooligosaccharide-assimilating yeast strain
-
doi: 10.1007/s00253-006-0402-x
-
Katahira, S., Mizuike, A., Fukuda, H., and Kondo, A. (2006). Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose-and cellooligosaccharide-assimilating yeast strain. Appl. Microbiol. Biotechnol. 72, 1136-1143. doi: 10.1007/s00253-006-0402-x
-
(2006)
Appl. Microbiol. Biotechnol.
, vol.72
, pp. 1136-1143
-
-
Katahira, S.1
Mizuike, A.2
Fukuda, H.3
Kondo, A.4
-
40
-
-
84881101974
-
Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae
-
doi: 10.1016/j.jbiosc.2013.03.020
-
Kato, H., Matsuda, F., Yamada, R., Nagata, K., Shirai, T., Hasunuma, T., et al. (2013). Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae. J. Biosci. Bioeng. 116, 333-336. doi: 10.1016/j.jbiosc.2013.03.020
-
(2013)
J. Biosci. Bioeng.
, vol.116
, pp. 333-336
-
-
Kato, H.1
Matsuda, F.2
Yamada, R.3
Nagata, K.4
Shirai, T.5
Hasunuma, T.6
-
41
-
-
84873843576
-
Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels
-
doi: 10.1128/AEM.02736-12
-
Kim, B., Du, J., Eriksen, D. T., and Zhao, H. (2013). Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels. Appl. Environ. Microbiol. 79, 931-941. doi: 10.1128/AEM.02736-12
-
(2013)
Appl. Environ. Microbiol.
, vol.79
, pp. 931-941
-
-
Kim, B.1
Du, J.2
Eriksen, D.T.3
Zhao, H.4
-
42
-
-
84862231336
-
High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae
-
doi: 10.1016/j.ymben.2012.04.001
-
Kim, S. R., Ha, S. J., Kong, I. I., and Jin, Y. S. (2012). High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab. Eng. 14, 336-343. doi: 10.1016/j.ymben.2012.04.001
-
(2012)
Metab. Eng.
, vol.14
, pp. 336-343
-
-
Kim, S.R.1
Ha, S.J.2
Kong, I.I.3
Jin, Y.S.4
-
43
-
-
84872184440
-
Systems biological approaches towards understanding cellulase production by Trichoderma reesei
-
doi: 10.1016/j.jbiotec.2012.05.020
-
Kubicek, C. P. (2013). Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J. Biotechnol. 163, 133-142. doi: 10.1016/j.jbiotec.2012.05.020
-
(2013)
J. Biotechnol.
, vol.163
, pp. 133-142
-
-
Kubicek, C.P.1
-
44
-
-
84899700108
-
A structural overview of GH61 proteins - fungal cellulose degrading polysaccharide monooxygenases
-
doi: 10.5936/csbj.201209019
-
Leggio, L. L., Welner, D., and De Maria, L. (2012). A structural overview of GH61 proteins - fungal cellulose degrading polysaccharide monooxygenases. Comput. Struct. Biotechnol. J. 2, 1-8. doi: 10.5936/csbj.201209019
-
(2012)
Comput. Struct. Biotechnol. J.
, vol.2
, pp. 1-8
-
-
Leggio, L.L.1
Welner, D.2
De Maria, L.3
-
45
-
-
79957475689
-
Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile
-
doi: 10.1016/j.jbiotec.2011.03.025
-
Liang, C., Fioroni, M., Rodriguez-Ropero, F., Xue, Y., Schwaneberg, U., and Ma, Y. (2011). Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. J. Biotechnol. 154, 46-53. doi: 10.1016/j.jbiotec.2011.03.025
-
(2011)
J. Biotechnol.
, vol.154
, pp. 46-53
-
-
Liang, C.1
Fioroni, M.2
Rodriguez-Ropero, F.3
Xue, Y.4
Schwaneberg, U.5
Ma, Y.6
-
46
-
-
0036714783
-
Microbial cellulose utilization: fundamentals and biotechnology
-
doi: 10.1128/MMBR.66.3.506-577.2002
-
Lynd, L. R., Weimer, P. J., Van Zyl, W. H., and Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506-577. doi: 10.1128/MMBR.66.3.506-577.2002
-
(2002)
Microbiol. Mol. Biol. Rev.
, vol.66
, pp. 506-577
-
-
Lynd, L.R.1
Weimer, P.J.2
Van Zyl, W.H.3
Pretorius, I.S.4
-
47
-
-
43449098828
-
Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn Hypocrea jecorina).
-
doi: 10.1038/nbt1403
-
Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., et al. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26, 553-560. doi: 10.1038/nbt1403
-
(2008)
Nat. Biotechnol.
, vol.26
, pp. 553-560
-
-
Martinez, D.1
Berka, R.M.2
Henrissat, B.3
Saloheimo, M.4
Arvas, M.5
Baker, S.E.6
-
48
-
-
68349109625
-
Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
-
doi: 10.1007/s00253-009-2101-x
-
Matsushika, A., Inoue, H., Kodaki, T., and Sawayama, S. (2009a). Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84, 37-53. doi: 10.1007/s00253-009-2101-x
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.84
, pp. 37-53
-
-
Matsushika, A.1
Inoue, H.2
Kodaki, T.3
Sawayama, S.4
-
49
-
-
58649098156
-
Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae
-
doi: 10.1016/j.biortech.2008.11.047
-
Matsushika, A., Inoue, H., Murakami, K., Takimura, O., and Sawayama, S. (2009b). Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour. Technol. 100, 2392-2398. doi: 10.1016/j.biortech.2008.11.047
-
(2009)
Bioresour. Technol.
, vol.100
, pp. 2392-2398
-
-
Matsushika, A.1
Inoue, H.2
Murakami, K.3
Takimura, O.4
Sawayama, S.5
-
50
-
-
84879820772
-
Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose
-
doi: 10.1186/1475-2859-12-66
-
Nakatani, Y., Yamada, R., Ogino, C., and Kondo, A. (2013). Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose. Microb. Cell Fact. 12:66. doi: 10.1186/1475-2859-12-66
-
(2013)
Microb. Cell Fact.
, vol.12
, pp. 66
-
-
Nakatani, Y.1
Yamada, R.2
Ogino, C.3
Kondo, A.4
-
51
-
-
78149328427
-
Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae
-
doi: 10.1002/yea.1806
-
Partow, S., Siewers, V., Bjorn, S., Nielsen, J., and Maury, J. (2010). Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27, 955-964. doi: 10.1002/yea.1806
-
(2010)
Yeast
, vol.27
, pp. 955-964
-
-
Partow, S.1
Siewers, V.2
Bjorn, S.3
Nielsen, J.4
Maury, J.5
-
52
-
-
84861661369
-
Fractional purification and bioconversion of hemicelluloses
-
doi: 10.1016/j.biotechadv.2012.01.018
-
Peng, F., Peng, P., Xu, F., and Sun, R. C. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv. 30, 879-903. doi: 10.1016/j.biotechadv.2012.01.018
-
(2012)
Biotechnol. Adv.
, vol.30
, pp. 879-903
-
-
Peng, F.1
Peng, P.2
Xu, F.3
Sun, R.C.4
-
53
-
-
84862162242
-
Crystalline and amorphous cellulose in the secondary walls of Arabidopsis
-
doi: 10.1016/j.plantsci.2012.05.008
-
Ruel, K., Nishiyama, Y., and Joseleau, J. P. (2012). Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Sci. 193-194, 48-61. doi: 10.1016/j.plantsci.2012.05.008
-
(2012)
Plant Sci. 193-
, vol.194
, pp. 48-61
-
-
Ruel, K.1
Nishiyama, Y.2
Joseleau, J.P.3
-
54
-
-
77951127992
-
Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae
-
doi: 10.1186/1754-6834-3-5
-
Runquist, D., Hahn-Hägerdal, B., and Rådström, P. (2010). Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 3:5. doi: 10.1186/1754-6834-3-5
-
(2010)
Biotechnol. Biofuels
, vol.3
, pp. 5
-
-
Runquist, D.1
Hahn-Hägerdal, B.2
Rådström, P.3
-
55
-
-
79960713837
-
A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates
-
doi: 10.1007/s00253-011-3261-z
-
Ryu, S., and Karim, M. (2011). A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates. Appl. Microbiol. Biotechnol. 91, 529-542. doi: 10.1007/s00253-011-3261-z
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.91
, pp. 529-542
-
-
Ryu, S.1
Karim, M.2
-
56
-
-
84862560015
-
APJ1 and GRE3 homologs work in concert to allow growth in xylose in a natural Saccharomyces sensu stricto hybrid yeast
-
doi: 10.1534/genetics.112.140053
-
Schwartz, K., Wenger, J. W., Dunn, B., and Sherlock, G. (2012). APJ1 and GRE3 homologs work in concert to allow growth in xylose in a natural Saccharomyces sensu stricto hybrid yeast. Genetics 191, 621-632. doi: 10.1534/genetics.112.140053
-
(2012)
Genetics
, vol.191
, pp. 621-632
-
-
Schwartz, K.1
Wenger, J.W.2
Dunn, B.3
Sherlock, G.4
-
57
-
-
0031002602
-
Screening for ethanol-producing filamentous fungi
-
doi: 10.1023/A:1018337003433
-
Skory, C. D., Freer, S. N., and Bothast, R. J. (1997). Screening for ethanol-producing filamentous fungi. Biotechnol. Lett. 19, 203-206. doi: 10.1023/A:1018337003433
-
(1997)
Biotechnol. Lett.
, vol.19
, pp. 203-206
-
-
Skory, C.D.1
Freer, S.N.2
Bothast, R.J.3
-
58
-
-
0032573093
-
Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties
-
doi: 10.1016/S0168-1656(98)00084-4
-
Takashima, S., Iikura, H., Nakamura, A., Hidaka, M., Masaki, H., and Uozumi, T. (1998). Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. J. Biotechnol. 65, 163-171. doi: 10.1016/S0168-1656(98)00084-4
-
(1998)
J. Biotechnol.
, vol.65
, pp. 163-171
-
-
Takashima, S.1
Iikura, H.2
Nakamura, A.3
Hidaka, M.4
Masaki, H.5
Uozumi, T.6
-
59
-
-
84863216966
-
Sugar consumption and ethanol fermentation by transporter-overexpressed xylose-metabolizing Saccharomyces cerevisiae harboring a xyloseisomerase pathway
-
doi: 10.1016/j.jbiosc.2012.03.004
-
Tanino, T., Ito, T., Ogino, C., Ohmura, N., Ohshima, T., and Kondo, A. (2012). Sugar consumption and ethanol fermentation by transporter-overexpressed xylose-metabolizing Saccharomyces cerevisiae harboring a xyloseisomerase pathway. J. Biosci. Bioeng. 114, 209-211. doi: 10.1016/j.jbiosc.2012.03.004
-
(2012)
J. Biosci. Bioeng.
, vol.114
, pp. 209-211
-
-
Tanino, T.1
Ito, T.2
Ogino, C.3
Ohmura, N.4
Ohshima, T.5
Kondo, A.6
-
60
-
-
84867329775
-
An improved method of xylose utilization by recombinant Saccharomyces cerevisiae
-
doi: 10.1007/s10295-012-1153-6
-
Tien-Yang, M., Ting-Hsiang, L., Teng-Chieh, H., Chiung-Fang, H., Gia-Luen, G., and Wen-Song, W. (2012). An improved method of xylose utilization by recombinant Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 39, 1477-1486. doi: 10.1007/s10295-012-1153-6
-
(2012)
J. Ind. Microbiol. Biotechnol.
, vol.39
, pp. 1477-1486
-
-
Tien-Yang, M.1
Ting-Hsiang, L.2
Teng-Chieh, H.3
Chiung-Fang, H.4
Gia-Luen, G.5
Wen-Song, W.6
-
61
-
-
78649713858
-
Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production
-
doi: 10.1128/AEM.01777-10
-
Tsai, S. L., Goyal, G., and Chen, W. (2010). Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl. Environ. Microbiol. 76, 7514-7520. doi: 10.1128/AEM.01777-10
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 7514-7520
-
-
Tsai, S.L.1
Goyal, G.2
Chen, W.3
-
62
-
-
84880837044
-
Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade
-
doi: 10.3852/12-094
-
Urbina, H., Frank, R., and Blackwell, M. (2013). Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade. Mycologia 105, 650-660. doi: 10.3852/12-094
-
(2013)
Mycologia
, vol.105
, pp. 650-660
-
-
Urbina, H.1
Frank, R.2
Blackwell, M.3
-
63
-
-
84873736810
-
Chemical and synthetic genetic array analysis identifies genes that suppress xylose utilization and fermentation in Saccharomyces cerevisiae
-
doi: 10.1534/g3.111.000695
-
Usher, J., Balderas-Hernandez, V., Quon, P., Gold, N., Martin, V. J., Mahadevan, R., et al. (2011). Chemical and synthetic genetic array analysis identifies genes that suppress xylose utilization and fermentation in Saccharomyces cerevisiae. G3 1, 247-258. doi: 10.1534/g3.111.000695
-
(2011)
G3
, vol.1
, pp. 247-258
-
-
Usher, J.1
Balderas-Hernandez, V.2
Quon, P.3
Gold, N.4
Martin, V.J.5
Mahadevan, R.6
-
64
-
-
27544459042
-
Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains
-
doi: 10.1016/j.jbiotec.2005.06.013
-
Van Rooyen, R., Hahn-Hägerdal, B., La Grange, D., and Van Zyl, W. (2005). Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J. Biotechnol. 120, 284-295. doi: 10.1016/j.jbiotec.2005.06.013
-
(2005)
J. Biotechnol.
, vol.120
, pp. 284-295
-
-
Van Rooyen, R.1
Hahn-Hägerdal, B.2
La Grange, D.3
Van Zyl, W.4
-
65
-
-
57049166496
-
Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose
-
doi: 10.1016/j.ymben.2007.12.002
-
Van Vleet, J., Jeffries, T., and Olsson, L. (2008). Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metab. Eng. 10, 360-369. doi: 10.1016/j.ymben.2007.12.002
-
(2008)
Metab. Eng.
, vol.10
, pp. 360-369
-
-
Van Vleet, J.1
Jeffries, T.2
Olsson, L.3
-
66
-
-
75649132219
-
Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity
-
doi: 10.1093/protein/gzp072
-
Voutilainen, S. P., Murray, P. G., Tuohy, M. G., and Koivula, A. (2010). Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng. Des. Sel. 23, 69-79. doi: 10.1093/protein/gzp072
-
(2010)
Protein Eng. Des. Sel.
, vol.23
, pp. 69-79
-
-
Voutilainen, S.P.1
Murray, P.G.2
Tuohy, M.G.3
Koivula, A.4
-
67
-
-
0347297600
-
Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
-
doi: 10.1128/AEM.69.2.740-746.2003
-
Wahlbom, C. F., Otero, R. R. C., Zyl, W. H. V., Hahn-Hagerdal, B., and Jonsson, L. J. (2003). Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol. 69, 740-746. doi: 10.1128/AEM.69.2.740-746.2003
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 740-746
-
-
Wahlbom, C.F.1
Otero, R.R.C.2
Zyl, W.H.V.3
Hahn-Hagerdal, B.4
Jonsson, L.J.5
-
68
-
-
84872039862
-
Directed evolution and structural prediction of cellobiohydrolase II from the thermophilic fungus Chaetomium thermophilum
-
doi: 10.1007/s00253-011-3799-9
-
Wang, X. J., Peng, Y. J., Zhang, L. Q., Li, A. N., and Li, D. C. (2012). Directed evolution and structural prediction of cellobiohydrolase II from the thermophilic fungus Chaetomium thermophilum. Appl. Microbiol. Biotechnol. 95, 1469-1478. doi: 10.1007/s00253-011-3799-9
-
(2012)
Appl. Microbiol. Biotechnol.
, vol.95
, pp. 1469-1478
-
-
Wang, X.J.1
Peng, Y.J.2
Zhang, L.Q.3
Li, A.N.4
Li, D.C.5
-
69
-
-
84884489848
-
Diversity and fermentation products of xylose-utilizing yeasts isolated from buffalo feces in Thailand
-
doi: 10.1264/jsme2.ME13023
-
Wanlapa, L., Ancharida, A., Motofumi, S., Moriya, O., and Somboon, T. (2013). Diversity and fermentation products of xylose-utilizing yeasts isolated from buffalo feces in Thailand. Microbes Environ. 28, 354-360. doi: 10.1264/jsme2.ME13023
-
(2013)
Microbes Environ.
, vol.28
, pp. 354-360
-
-
Wanlapa, L.1
Ancharida, A.2
Motofumi, S.3
Moriya, O.4
Somboon, T.5
-
70
-
-
76649105430
-
Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol
-
doi: 10.1128/AEM.01687-09
-
Wen, F., Sun, J., and Zhao, H. (2010). Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl. Environ. Microbiol. 76, 1251-1260. doi: 10.1128/AEM.01687-09
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 1251-1260
-
-
Wen, F.1
Sun, J.2
Zhao, H.3
-
71
-
-
77953211186
-
Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae
-
doi: 10.1371/journal.pgen.1000942
-
Wenger, J., Schwartz, K., and Sherlock, G. (2010). Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet. 6:e1000942. doi: 10.1371/journal.pgen.1000942
-
(2010)
PLoS Genet.
, vol.6
-
-
Wenger, J.1
Schwartz, K.2
Sherlock, G.3
-
72
-
-
80052377729
-
Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations
-
doi: 10.1016/j.biortech.2011.06.058
-
Xiong, M., Chen, G., and Barford, J. (2011). Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations. Bioresour. Technol. 102, 9206-9215. doi: 10.1016/j.biortech.2011.06.058
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 9206-9215
-
-
Xiong, M.1
Chen, G.2
Barford, J.3
-
73
-
-
84882708069
-
Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing
-
doi: 10.1016/j.biotechadv.2013.02.007
-
Yamada, R., Hasunuma, T., and Kondo, A. (2013). Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnol. Adv. 31, 754-763. doi: 10.1016/j.biotechadv.2013.02.007
-
(2013)
Biotechnol. Adv.
, vol.31
, pp. 754-763
-
-
Yamada, R.1
Hasunuma, T.2
Kondo, A.3
-
74
-
-
77953675236
-
Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains
-
doi: 10.1186/1475-2859-9-32
-
Yamada, R., Taniguchi, N., Tanaka, T., Ogino, C., Fukuda, H., and Kondo, A. (2010). Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb. Cell Fact. 9:32. doi: 10.1186/1475-2859-9-32
-
(2010)
Microb. Cell Fact.
, vol.9
, pp. 32
-
-
Yamada, R.1
Taniguchi, N.2
Tanaka, T.3
Ogino, C.4
Fukuda, H.5
Kondo, A.6
-
75
-
-
85028099794
-
Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression
-
doi: 10.1186/1754-6834-4-8
-
Yamada, R., Taniguchi, N., Tanaka, T., Ogino, C., Fukuda, H., and Kondo, A. (2011). Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol. Biofuels 4:8. doi: 10.1186/1754-6834-4-8
-
(2011)
Biotechnol. Biofuels
, vol.4
, pp. 8
-
-
Yamada, R.1
Taniguchi, N.2
Tanaka, T.3
Ogino, C.4
Fukuda, H.5
Kondo, A.6
-
76
-
-
77952171368
-
Ethanol production from cellulosic materials using cellulase-expressing yeast
-
doi: 10.1002/biot.200900291
-
Yanase, S., Yamada, R., Kaneko, S., Noda, H., Hasunuma, T., Tanaka, T., et al. (2010). Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol. J. 5, 449-455. doi: 10.1002/biot.200900291
-
(2010)
Biotechnol. J.
, vol.5
, pp. 449-455
-
-
Yanase, S.1
Yamada, R.2
Kaneko, S.3
Noda, H.4
Hasunuma, T.5
Tanaka, T.6
-
77
-
-
84862800120
-
A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae
-
doi: 10.1016/j.ymben.2012.03.004
-
Young, E., Comer, A., Huang, H., and Alper, H. (2012). A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab. Eng. 14, 401-411. doi: 10.1016/j.ymben.2012.03.004
-
(2012)
Metab. Eng.
, vol.14
, pp. 401-411
-
-
Young, E.1
Comer, A.2
Huang, H.3
Alper, H.4
-
78
-
-
79958211835
-
Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host
-
doi: 10.1128/AEM.02651-10
-
Young, E., Poucher, A., Comer, A., and Bailey, A. (2011). Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl. Environ. Microbiol. 77, 3311-3319. doi: 10.1128/AEM.02651-10
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 3311-3319
-
-
Young, E.1
Poucher, A.2
Comer, A.3
Bailey, A.4
-
79
-
-
84864112250
-
Fungal polysaccharide monooxygenases: new players in the decomposition of cellulose
-
doi: 10.1016/j.funeco.2012.05.001
-
žifčáková, L., and Baldrian, P. (2012). Fungal polysaccharide monooxygenases: new players in the decomposition of cellulose. Fungal Ecol. 5, 481-489. doi: 10.1016/j.funeco.2012.05.001
-
(2012)
Fungal Ecol.
, vol.5
, pp. 481-489
-
-
žifčáková, L.1
Baldrian, P.2
-
80
-
-
84891842832
-
Characterization of the sugar alcohol-producing yeast Pichia anomala
-
doi: 10.1007/s10295-013-1364-5
-
Zhang, G., Lin, Y., He, P., Li, L., Wang, Q., and Ma, Y. (2014). Characterization of the sugar alcohol-producing yeast Pichia anomala. J. Ind. Microbiol. Biotechnol. 41, 41-48. doi: 10.1007/s10295-013-1364-5
-
(2014)
J. Ind. Microbiol. Biotechnol.
, vol.41
, pp. 41-48
-
-
Zhang, G.1
Lin, Y.2
He, P.3
Li, L.4
Wang, Q.5
Ma, Y.6
|