메뉴 건너뛰기




Volumn 5, Issue APR, 2014, Pages

Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: A perspective

Author keywords

Cellulases; Recombinant yeasts; Xylose utilizing enzymes

Indexed keywords

BIOETHANOL; BIOFUEL; CELLULOSE; HEMICELLULOSE; UNCLASSIFIED DRUG; XYLOSE;

EID: 84899666911     PISSN: None     EISSN: 1664302X     Source Type: Journal    
DOI: 10.3389/fmicb.2014.00174     Document Type: Review
Times cited : (68)

References (80)
  • 1
    • 84868201333 scopus 로고    scopus 로고
    • Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae
    • doi: 10.1007/s10295-012-1169-y
    • Aeling, K. A., Salmon, K. A., Laplaza, J. M., Li, L., Headman, J. R., Hutagalung, A. H., et al. (2012). Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 39, 1597-1604. doi: 10.1007/s10295-012-1169-y
    • (2012) J. Ind. Microbiol. Biotechnol. , vol.39 , pp. 1597-1604
    • Aeling, K.A.1    Salmon, K.A.2    Laplaza, J.M.3    Li, L.4    Headman, J.R.5    Hutagalung, A.H.6
  • 2
    • 84861149123 scopus 로고    scopus 로고
    • Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis
    • doi: 10.1128/AEM.07985-11
    • Anbar, M., Gul, O., Lamed, R., Sezerman, U. O., and Bayer, E. A. (2012). Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Appl. Environ. Microbiol. 78, 3458-3464. doi: 10.1128/AEM.07985-11
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 3458-3464
    • Anbar, M.1    Gul, O.2    Lamed, R.3    Sezerman, U.O.4    Bayer, E.A.5
  • 3
    • 58149347653 scopus 로고    scopus 로고
    • Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering
    • doi: 10.1002/yea.1638
    • Bengtsson, O., Jeppsson, M., Sonderegger, M., Parachin, N., Sauer, U., Hahn-Hägerdal, B., et al. (2008). Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 25, 835-847. doi: 10.1002/yea.1638
    • (2008) Yeast , vol.25 , pp. 835-847
    • Bengtsson, O.1    Jeppsson, M.2    Sonderegger, M.3    Parachin, N.4    Sauer, U.5    Hahn-Hägerdal, B.6
  • 4
    • 79956076724 scopus 로고    scopus 로고
    • A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation
    • doi: 10.1007/s10295-010-0806-6
    • Bera, A., Ho, N., Khan, A., and Sedlak, M. (2011). A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J. Ind. Microbiol. Biotechnol. 38, 617-626. doi: 10.1007/s10295-010-0806-6
    • (2011) J. Ind. Microbiol. Biotechnol. , vol.38 , pp. 617-626
    • Bera, A.1    Ho, N.2    Khan, A.3    Sedlak, M.4
  • 5
    • 84878848636 scopus 로고    scopus 로고
    • Advanced biofuel production by the yeast Saccharomyces cerevisiae
    • doi: 10.1016/j.cbpa.2013.03.036
    • Buijs, N. A., Siewers, V., and Nielsen, J. (2013). Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr. Opin. Chem. Biol. 17, 480-488. doi: 10.1016/j.cbpa.2013.03.036
    • (2013) Curr. Opin. Chem. Biol. , vol.17 , pp. 480-488
    • Buijs, N.A.1    Siewers, V.2    Nielsen, J.3
  • 6
    • 84862922807 scopus 로고    scopus 로고
    • Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives
    • doi: 10.1002/biot.201100053
    • Cai, Z., Zhang, B., and Li, Y. (2012). Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives. Biotechnol. J. 7, 34-46. doi: 10.1002/biot.201100053
    • (2012) Biotechnol. J. , vol.7 , pp. 34-46
    • Cai, Z.1    Zhang, B.2    Li, Y.3
  • 7
    • 79952574144 scopus 로고    scopus 로고
    • Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of 'Biofuel'
    • doi: 10.1007/s00253-010-3057-6
    • Chandel, A. K., and Singh, O. V. (2011). Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of 'Biofuel'. Appl. Microbiol. Biotechnol. 89, 1289-1303. doi: 10.1007/s00253-010-3057-6
    • (2011) Appl. Microbiol. Biotechnol. , vol.89 , pp. 1289-1303
    • Chandel, A.K.1    Singh, O.V.2
  • 8
    • 70350502815 scopus 로고    scopus 로고
    • Fungal bioconversion of lignocellulosic residues; opportunities & perspectives
    • doi: 10.7150/ijbs.5.578
    • Dashtban, M., Schraft, H., and Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int. J. Biol. Sci. 5, 578-595. doi: 10.7150/ijbs.5.578
    • (2009) Int. J. Biol. Sci. , vol.5 , pp. 578-595
    • Dashtban, M.1    Schraft, H.2    Qin, W.3
  • 9
    • 84873164214 scopus 로고    scopus 로고
    • Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend
    • doi: 10.1016/j.biortech.2012.10.014
    • De Figueiredo Vilela, L., De Mello, V., Reis, V., Bon, E., Gonçalves Torres, F., Neves, B., et al. (2013). Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend. Bioresour. Technol. 128, 792-796. doi: 10.1016/j.biortech.2012.10.014
    • (2013) Bioresour. Technol. , vol.128 , pp. 792-796
    • De Figueiredo Vilela, L.1    De Mello, V.2    Reis, V.3    Bon, E.4    Gonçalves Torres, F.5    Neves, B.6
  • 10
    • 84879119602 scopus 로고    scopus 로고
    • Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
    • doi: 10.1186/1754-6834-6-89
    • Demeke, M., Dietz, H., Li, Y., Foulquié-Moreno, M., Mutturi, S., Deprez, S., et al. (2013). Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol. Biofuels 6:89. doi: 10.1186/1754-6834-6-89
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 89
    • Demeke, M.1    Dietz, H.2    Li, Y.3    Foulquié-Moreno, M.4    Mutturi, S.5    Deprez, S.6
  • 11
    • 33847642855 scopus 로고    scopus 로고
    • Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol
    • doi: 10.1016/j.enzmictec.2006.09.022
    • Den Haan, R., McBride, J. E., La Grange, D. C., Lynd, L. R., and Van Zyl, W. H. (2007a). Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb. Technol. 40, 1291-1299. doi: 10.1016/j.enzmictec.2006.09.022
    • (2007) Enzyme Microb. Technol. , vol.40 , pp. 1291-1299
    • Den Haan, R.1    McBride, J.E.2    La Grange, D.C.3    Lynd, L.R.4    Van Zyl, W.H.5
  • 12
    • 33845609259 scopus 로고    scopus 로고
    • Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae
    • doi: 10.1016/j.ymben.2006.08.005
    • Den Haan, R., Rose, S. H., Lynd, L. R., and Van Zyl, W. H. (2007b). Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab. Eng. 9, 87-94. doi: 10.1016/j.ymben.2006.08.005
    • (2007) Metab. Eng. , vol.9 , pp. 87-94
    • Den Haan, R.1    Rose, S.H.2    Lynd, L.R.3    Van Zyl, W.H.4
  • 13
    • 77957892899 scopus 로고    scopus 로고
    • Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis
    • doi: 10.1039/c0mb00007h
    • Du, J., Li, S., and Zhao, H. (2010). Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol. Biosyst. 6, 2150-2156. doi: 10.1039/c0mb00007h
    • (2010) Mol. Biosyst. , vol.6 , pp. 2150-2156
    • Du, J.1    Li, S.2    Zhao, H.3
  • 14
    • 77952889881 scopus 로고    scopus 로고
    • Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains
    • doi: 10.1007/s00253-009-2403-z
    • Du Plessis, L., Rose, S. H., and Van Zyl, W. H. (2010). Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains. Appl. Microbiol. Biotechnol. 86, 1503-1511. doi: 10.1007/s00253-009-2403-z
    • (2010) Appl. Microbiol. Biotechnol. , vol.86 , pp. 1503-1511
    • Du Plessis, L.1    Rose, S.H.2    Van Zyl, W.H.3
  • 15
    • 77957330454 scopus 로고    scopus 로고
    • Engineered microbial systems for enhanced conversion of lignocellulosic biomass
    • doi: 10.1016/j.copbio.2010.05.008
    • Elkins, J. G., Raman, B., and Keller, M. (2010). Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr. Opin. Biotechnol. 21, 657-662. doi: 10.1016/j.copbio.2010.05.008
    • (2010) Curr. Opin. Biotechnol. , vol.21 , pp. 657-662
    • Elkins, J.G.1    Raman, B.2    Keller, M.3
  • 16
    • 84865156886 scopus 로고    scopus 로고
    • Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production
    • doi: 10.1073/pnas.1209856109
    • Fan, L.-H., Zhang, Z.-J., Yu, X.-Y., Xue, Y.-X., and Tan, T.-W. (2012). Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc. Natl. Acad. Sci. U.S.A. 109, 13260-13265. doi: 10.1073/pnas.1209856109
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 13260-13265
    • Fan, L.-H.1    Zhang, Z.-J.2    Yu, X.-Y.3    Xue, Y.-X.4    Tan, T.-W.5
  • 17
    • 78650093857 scopus 로고    scopus 로고
    • Metabolic engineering for improved microbial pentose fermentation
    • doi: 10.4161/bbug.1.6.12724
    • Fernandes, S., and Murray, P. (2010). Metabolic engineering for improved microbial pentose fermentation. Bioeng. Bugs 1, 424-428. doi: 10.4161/bbug.1.6.12724
    • (2010) Bioeng. Bugs , vol.1 , pp. 424-428
    • Fernandes, S.1    Murray, P.2
  • 18
    • 0013096838 scopus 로고    scopus 로고
    • Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis
    • doi: 10.1128/EC.2.1.170-180.2003
    • Fiaux, J., Cakar, Z. P., Sonderegger, M., Wuthrich, K., Szyperski, T., and Sauer, U. (2003). Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot. Cell 2, 170-180. doi: 10.1128/EC.2.1.170-180.2003
    • (2003) Eukaryot. Cell , vol.2 , pp. 170-180
    • Fiaux, J.1    Cakar, Z.P.2    Sonderegger, M.3    Wuthrich, K.4    Szyperski, T.5    Sauer, U.6
  • 19
    • 84902544670 scopus 로고    scopus 로고
    • Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose
    • doi: 10.1111/jam.12494. [Epub ahead of print].
    • Fitzpatrick, J., Kricka, W., James, T., and Bond, U. (2014). Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose. J. App. Microbol. doi: 10.1111/jam.12494. [Epub ahead of print].
    • (2014) J. App. Microbol
    • Fitzpatrick, J.1    Kricka, W.2    James, T.3    Bond, U.4
  • 20
    • 43949138896 scopus 로고    scopus 로고
    • The yeast Kluyveromyces marxianus and its biotechnological potential
    • doi: 10.1007/s00253-008-1458-6
    • Fonseca, G. G., Heinzle, E., Wittmann, C., and Gombert, A. K. (2008). The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79, 339-354. doi: 10.1007/s00253-008-1458-6
    • (2008) Appl. Microbiol. Biotechnol. , vol.79 , pp. 339-354
    • Fonseca, G.G.1    Heinzle, E.2    Wittmann, C.3    Gombert, A.K.4
  • 21
    • 77953631886 scopus 로고    scopus 로고
    • Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates
    • doi: 10.1146/annurev-biochem-091208-085603
    • Fontes, C. M., and Gilbert, H. J. (2010). Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu. Rev. Biochem. 79, 655-681. doi: 10.1146/annurev-biochem-091208-085603
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 655-681
    • Fontes, C.M.1    Gilbert, H.J.2
  • 22
    • 0042858149 scopus 로고    scopus 로고
    • Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei
    • doi: 10.1074/jbc.M304750200
    • Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., et al. (2003). Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem. 278, 31988-31997. doi: 10.1074/jbc.M304750200
    • (2003) J. Biol. Chem. , vol.278 , pp. 31988-31997
    • Foreman, P.K.1    Brown, D.2    Dankmeyer, L.3    Dean, R.4    Diener, S.5    Dunn-Coleman, N.S.6
  • 23
    • 2342638898 scopus 로고    scopus 로고
    • Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme
    • doi: 10.1128/AEM.70.2.1207-1212.2004
    • Fujita, Y., Ito, J., Ueda, M., Fukuda, H., and Kondo, A. (2004). Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl. Environ. Microbiol. 70, 1207-1212. doi: 10.1128/AEM.70.2.1207-1212.2004
    • (2004) Appl. Environ. Microbiol. , vol.70 , pp. 1207-1212
    • Fujita, Y.1    Ito, J.2    Ueda, M.3    Fukuda, H.4    Kondo, A.5
  • 24
    • 84858748257 scopus 로고    scopus 로고
    • Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural
    • doi: 10.1016/j.biortech.2012.01.161
    • Fujitomi, K., Sanda, T., Hasunuma, T., and Kondo, A. (2012). Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour. Technol. 111, 161-166. doi: 10.1016/j.biortech.2012.01.161
    • (2012) Bioresour. Technol. , vol.111 , pp. 161-166
    • Fujitomi, K.1    Sanda, T.2    Hasunuma, T.3    Kondo, A.4
  • 25
    • 84863009629 scopus 로고    scopus 로고
    • Enhanced cellulose degradation by targeted integration of a cohesin-fused beta-glucosidase into the Clostridium thermocellum cellulosome
    • doi: 10.1073/pnas.1202747109
    • Gefen, G., Anbar, M., Morag, E., Lamed, R., and Bayer, E. A. (2012). Enhanced cellulose degradation by targeted integration of a cohesin-fused beta-glucosidase into the Clostridium thermocellum cellulosome. Proc. Natl. Acad. Sci. U.S.A. 109, 10298-10303. doi: 10.1073/pnas.1202747109
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 10298-10303
    • Gefen, G.1    Anbar, M.2    Morag, E.3    Lamed, R.4    Bayer, E.A.5
  • 26
    • 0036135110 scopus 로고    scopus 로고
    • Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering
    • doi: 10.1128/AEM.68.1.53-58.2002
    • Guedon, E., Desvaux, M., and Petitdemange, H. (2002). Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl. Environ. Microbiol. 68, 53-58. doi: 10.1128/AEM.68.1.53-58.2002
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 53-58
    • Guedon, E.1    Desvaux, M.2    Petitdemange, H.3
  • 27
    • 79551670374 scopus 로고    scopus 로고
    • Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
    • doi: 10.1073/pnas.1010456108
    • Ha, S.-J., Galazka, J., Kim, S., Choi, J.-H., Yang, X., Seo, J.-H., et al. (2011). Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. U.S.A. 108, 504-509. doi: 10.1073/pnas.1010456108
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 504-509
    • Ha, S.-J.1    Galazka, J.2    Kim, S.3    Choi, J.-H.4    Yang, X.5    Seo, J.-H.6
  • 28
    • 84892374041 scopus 로고    scopus 로고
    • Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural
    • doi: 10.1016/j.jbiosc.2013.07.007
    • Hasunuma, T., Ismail, K., Nambu, Y., and Kondo, A. (2014). Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. J. Biosci. Bioeng. 117, 165-169. doi: 10.1016/j.jbiosc.2013.07.007
    • (2014) J. Biosci. Bioeng. , vol.117 , pp. 165-169
    • Hasunuma, T.1    Ismail, K.2    Nambu, Y.3    Kondo, A.4
  • 29
    • 84867712304 scopus 로고    scopus 로고
    • Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering
    • doi: 10.1016/j.biotechadv.2011.10.011
    • Hasunuma, T., and Kondo, A. (2012). Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol. Adv. 30, 1207-1218. doi: 10.1016/j.biotechadv.2011.10.011
    • (2012) Biotechnol. Adv. , vol.30 , pp. 1207-1218
    • Hasunuma, T.1    Kondo, A.2
  • 30
    • 79954706261 scopus 로고    scopus 로고
    • Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae
    • doi: 10.1007/s00253-011-3085-x
    • Hasunuma, T., Sung, K., Sanda, T., Yoshimura, K., Matsuda, F., and Kondo, A. (2011). Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 90, 997-1004. doi: 10.1007/s00253-011-3085-x
    • (2011) Appl. Microbiol. Biotechnol. , vol.90 , pp. 997-1004
    • Hasunuma, T.1    Sung, K.2    Sanda, T.3    Yoshimura, K.4    Matsuda, F.5    Kondo, A.6
  • 31
    • 84878237818 scopus 로고    scopus 로고
    • Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24
    • doi: 10.1186/1754-6834-6-84
    • Hector, R., Dien, B., Cotta, M., and Mertens, J. (2013). Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnol. Biofuels 6:84. doi: 10.1186/1754-6834-6-84
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 84
    • Hector, R.1    Dien, B.2    Cotta, M.3    Mertens, J.4
  • 32
    • 80052513736 scopus 로고    scopus 로고
    • Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion
    • doi: 10.1007/s10295-010-0896-1
    • Hector, R., Dien, B., Cotta, M., and Qureshi, N. (2011). Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. J. Ind. Microbiol. Biotechnol. 38, 1193-1202. doi: 10.1007/s10295-010-0896-1
    • (2011) J. Ind. Microbiol. Biotechnol. , vol.38 , pp. 1193-1202
    • Hector, R.1    Dien, B.2    Cotta, M.3    Qureshi, N.4
  • 33
    • 34249086292 scopus 로고    scopus 로고
    • Construction of thermotolerant yeast expressing thermostable cellulase genes
    • doi: 10.1016/j.jbiotec.2007.03.008
    • Hong, J., Wang, Y., Kumagai, H., and Tamaki, H. (2007). Construction of thermotolerant yeast expressing thermostable cellulase genes. J. Biotechnol. 130, 114-123. doi: 10.1016/j.jbiotec.2007.03.008
    • (2007) J. Biotechnol. , vol.130 , pp. 114-123
    • Hong, J.1    Wang, Y.2    Kumagai, H.3    Tamaki, H.4
  • 34
    • 84858444031 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by Spathaspora passalidarum
    • doi: 10.1007/s00253-011-3694-4
    • Hou, X. (2012). Anaerobic xylose fermentation by Spathaspora passalidarum. Appl. Microbiol. Biotechnol. 94, 205-214. doi: 10.1007/s00253-011-3694-4
    • (2012) Appl. Microbiol. Biotechnol. , vol.94 , pp. 205-214
    • Hou, X.1
  • 35
    • 84870369602 scopus 로고    scopus 로고
    • Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose
    • doi: 10.1016/j.jbiotec.2012.10.017
    • Ismail, K. S., Sakamoto, T., Hatanaka, H., Hasunuma, T., and Kondo, A. (2013). Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. J. Biotechnol. 163, 50-60. doi: 10.1016/j.jbiotec.2012.10.017
    • (2013) J. Biotechnol. , vol.163 , pp. 50-60
    • Ismail, K.S.1    Sakamoto, T.2    Hatanaka, H.3    Hasunuma, T.4    Kondo, A.5
  • 36
    • 84883816380 scopus 로고    scopus 로고
    • New genotypes of industrial yeast Saccharomyces cerevisiae engineered with YXI and heterologous xylose transporters improve xylose utilization and ethanol production
    • doi: 10.1016/j.bcab.2013.03.005
    • Jaewoong, M., Liu, Z. L., Menggen, M., and Patricia, J. S. (2013). New genotypes of industrial yeast Saccharomyces cerevisiae engineered with YXI and heterologous xylose transporters improve xylose utilization and ethanol production. Biocatal. Agric. Biotechnol. 2, 247-254. doi: 10.1016/j.bcab.2013.03.005
    • (2013) Biocatal. Agric. Biotechnol. , vol.2 , pp. 247-254
    • Jaewoong, M.1    Liu, Z.L.2    Menggen, M.3    Patricia, J.S.4
  • 37
    • 33845807902 scopus 로고    scopus 로고
    • High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
    • doi: 10.1007/s00253-006-0575-3
    • Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B., and Gorwa-Grauslund, M.-F. (2007). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 73, 1039-1046. doi: 10.1007/s00253-006-0575-3
    • (2007) Appl. Microbiol. Biotechnol. , vol.73 , pp. 1039-1046
    • Karhumaa, K.1    Fromanger, R.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.-F.4
  • 38
    • 17644373035 scopus 로고    scopus 로고
    • Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
    • doi: 10.1002/yea.1216
    • Karhumaa, K., Hahn-Hägerdal, B., and Gorwa-Grauslund, M.-F. (2005). Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22, 359-368. doi: 10.1002/yea.1216
    • (2005) Yeast , vol.22 , pp. 359-368
    • Karhumaa, K.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.-F.3
  • 39
    • 33749828025 scopus 로고    scopus 로고
    • Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose-and cellooligosaccharide-assimilating yeast strain
    • doi: 10.1007/s00253-006-0402-x
    • Katahira, S., Mizuike, A., Fukuda, H., and Kondo, A. (2006). Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose-and cellooligosaccharide-assimilating yeast strain. Appl. Microbiol. Biotechnol. 72, 1136-1143. doi: 10.1007/s00253-006-0402-x
    • (2006) Appl. Microbiol. Biotechnol. , vol.72 , pp. 1136-1143
    • Katahira, S.1    Mizuike, A.2    Fukuda, H.3    Kondo, A.4
  • 40
    • 84881101974 scopus 로고    scopus 로고
    • Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae
    • doi: 10.1016/j.jbiosc.2013.03.020
    • Kato, H., Matsuda, F., Yamada, R., Nagata, K., Shirai, T., Hasunuma, T., et al. (2013). Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae. J. Biosci. Bioeng. 116, 333-336. doi: 10.1016/j.jbiosc.2013.03.020
    • (2013) J. Biosci. Bioeng. , vol.116 , pp. 333-336
    • Kato, H.1    Matsuda, F.2    Yamada, R.3    Nagata, K.4    Shirai, T.5    Hasunuma, T.6
  • 41
    • 84873843576 scopus 로고    scopus 로고
    • Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels
    • doi: 10.1128/AEM.02736-12
    • Kim, B., Du, J., Eriksen, D. T., and Zhao, H. (2013). Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels. Appl. Environ. Microbiol. 79, 931-941. doi: 10.1128/AEM.02736-12
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 931-941
    • Kim, B.1    Du, J.2    Eriksen, D.T.3    Zhao, H.4
  • 42
    • 84862231336 scopus 로고    scopus 로고
    • High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae
    • doi: 10.1016/j.ymben.2012.04.001
    • Kim, S. R., Ha, S. J., Kong, I. I., and Jin, Y. S. (2012). High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab. Eng. 14, 336-343. doi: 10.1016/j.ymben.2012.04.001
    • (2012) Metab. Eng. , vol.14 , pp. 336-343
    • Kim, S.R.1    Ha, S.J.2    Kong, I.I.3    Jin, Y.S.4
  • 43
    • 84872184440 scopus 로고    scopus 로고
    • Systems biological approaches towards understanding cellulase production by Trichoderma reesei
    • doi: 10.1016/j.jbiotec.2012.05.020
    • Kubicek, C. P. (2013). Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J. Biotechnol. 163, 133-142. doi: 10.1016/j.jbiotec.2012.05.020
    • (2013) J. Biotechnol. , vol.163 , pp. 133-142
    • Kubicek, C.P.1
  • 44
    • 84899700108 scopus 로고    scopus 로고
    • A structural overview of GH61 proteins - fungal cellulose degrading polysaccharide monooxygenases
    • doi: 10.5936/csbj.201209019
    • Leggio, L. L., Welner, D., and De Maria, L. (2012). A structural overview of GH61 proteins - fungal cellulose degrading polysaccharide monooxygenases. Comput. Struct. Biotechnol. J. 2, 1-8. doi: 10.5936/csbj.201209019
    • (2012) Comput. Struct. Biotechnol. J. , vol.2 , pp. 1-8
    • Leggio, L.L.1    Welner, D.2    De Maria, L.3
  • 45
    • 79957475689 scopus 로고    scopus 로고
    • Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile
    • doi: 10.1016/j.jbiotec.2011.03.025
    • Liang, C., Fioroni, M., Rodriguez-Ropero, F., Xue, Y., Schwaneberg, U., and Ma, Y. (2011). Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. J. Biotechnol. 154, 46-53. doi: 10.1016/j.jbiotec.2011.03.025
    • (2011) J. Biotechnol. , vol.154 , pp. 46-53
    • Liang, C.1    Fioroni, M.2    Rodriguez-Ropero, F.3    Xue, Y.4    Schwaneberg, U.5    Ma, Y.6
  • 46
    • 0036714783 scopus 로고    scopus 로고
    • Microbial cellulose utilization: fundamentals and biotechnology
    • doi: 10.1128/MMBR.66.3.506-577.2002
    • Lynd, L. R., Weimer, P. J., Van Zyl, W. H., and Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506-577. doi: 10.1128/MMBR.66.3.506-577.2002
    • (2002) Microbiol. Mol. Biol. Rev. , vol.66 , pp. 506-577
    • Lynd, L.R.1    Weimer, P.J.2    Van Zyl, W.H.3    Pretorius, I.S.4
  • 47
    • 43449098828 scopus 로고    scopus 로고
    • Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn Hypocrea jecorina).
    • doi: 10.1038/nbt1403
    • Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., et al. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26, 553-560. doi: 10.1038/nbt1403
    • (2008) Nat. Biotechnol. , vol.26 , pp. 553-560
    • Martinez, D.1    Berka, R.M.2    Henrissat, B.3    Saloheimo, M.4    Arvas, M.5    Baker, S.E.6
  • 48
    • 68349109625 scopus 로고    scopus 로고
    • Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
    • doi: 10.1007/s00253-009-2101-x
    • Matsushika, A., Inoue, H., Kodaki, T., and Sawayama, S. (2009a). Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84, 37-53. doi: 10.1007/s00253-009-2101-x
    • (2009) Appl. Microbiol. Biotechnol. , vol.84 , pp. 37-53
    • Matsushika, A.1    Inoue, H.2    Kodaki, T.3    Sawayama, S.4
  • 49
    • 58649098156 scopus 로고    scopus 로고
    • Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae
    • doi: 10.1016/j.biortech.2008.11.047
    • Matsushika, A., Inoue, H., Murakami, K., Takimura, O., and Sawayama, S. (2009b). Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour. Technol. 100, 2392-2398. doi: 10.1016/j.biortech.2008.11.047
    • (2009) Bioresour. Technol. , vol.100 , pp. 2392-2398
    • Matsushika, A.1    Inoue, H.2    Murakami, K.3    Takimura, O.4    Sawayama, S.5
  • 50
    • 84879820772 scopus 로고    scopus 로고
    • Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose
    • doi: 10.1186/1475-2859-12-66
    • Nakatani, Y., Yamada, R., Ogino, C., and Kondo, A. (2013). Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose. Microb. Cell Fact. 12:66. doi: 10.1186/1475-2859-12-66
    • (2013) Microb. Cell Fact. , vol.12 , pp. 66
    • Nakatani, Y.1    Yamada, R.2    Ogino, C.3    Kondo, A.4
  • 51
    • 78149328427 scopus 로고    scopus 로고
    • Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae
    • doi: 10.1002/yea.1806
    • Partow, S., Siewers, V., Bjorn, S., Nielsen, J., and Maury, J. (2010). Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27, 955-964. doi: 10.1002/yea.1806
    • (2010) Yeast , vol.27 , pp. 955-964
    • Partow, S.1    Siewers, V.2    Bjorn, S.3    Nielsen, J.4    Maury, J.5
  • 52
    • 84861661369 scopus 로고    scopus 로고
    • Fractional purification and bioconversion of hemicelluloses
    • doi: 10.1016/j.biotechadv.2012.01.018
    • Peng, F., Peng, P., Xu, F., and Sun, R. C. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv. 30, 879-903. doi: 10.1016/j.biotechadv.2012.01.018
    • (2012) Biotechnol. Adv. , vol.30 , pp. 879-903
    • Peng, F.1    Peng, P.2    Xu, F.3    Sun, R.C.4
  • 53
    • 84862162242 scopus 로고    scopus 로고
    • Crystalline and amorphous cellulose in the secondary walls of Arabidopsis
    • doi: 10.1016/j.plantsci.2012.05.008
    • Ruel, K., Nishiyama, Y., and Joseleau, J. P. (2012). Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Sci. 193-194, 48-61. doi: 10.1016/j.plantsci.2012.05.008
    • (2012) Plant Sci. 193- , vol.194 , pp. 48-61
    • Ruel, K.1    Nishiyama, Y.2    Joseleau, J.P.3
  • 54
    • 77951127992 scopus 로고    scopus 로고
    • Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae
    • doi: 10.1186/1754-6834-3-5
    • Runquist, D., Hahn-Hägerdal, B., and Rådström, P. (2010). Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 3:5. doi: 10.1186/1754-6834-3-5
    • (2010) Biotechnol. Biofuels , vol.3 , pp. 5
    • Runquist, D.1    Hahn-Hägerdal, B.2    Rådström, P.3
  • 55
    • 79960713837 scopus 로고    scopus 로고
    • A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates
    • doi: 10.1007/s00253-011-3261-z
    • Ryu, S., and Karim, M. (2011). A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates. Appl. Microbiol. Biotechnol. 91, 529-542. doi: 10.1007/s00253-011-3261-z
    • (2011) Appl. Microbiol. Biotechnol. , vol.91 , pp. 529-542
    • Ryu, S.1    Karim, M.2
  • 56
    • 84862560015 scopus 로고    scopus 로고
    • APJ1 and GRE3 homologs work in concert to allow growth in xylose in a natural Saccharomyces sensu stricto hybrid yeast
    • doi: 10.1534/genetics.112.140053
    • Schwartz, K., Wenger, J. W., Dunn, B., and Sherlock, G. (2012). APJ1 and GRE3 homologs work in concert to allow growth in xylose in a natural Saccharomyces sensu stricto hybrid yeast. Genetics 191, 621-632. doi: 10.1534/genetics.112.140053
    • (2012) Genetics , vol.191 , pp. 621-632
    • Schwartz, K.1    Wenger, J.W.2    Dunn, B.3    Sherlock, G.4
  • 57
    • 0031002602 scopus 로고    scopus 로고
    • Screening for ethanol-producing filamentous fungi
    • doi: 10.1023/A:1018337003433
    • Skory, C. D., Freer, S. N., and Bothast, R. J. (1997). Screening for ethanol-producing filamentous fungi. Biotechnol. Lett. 19, 203-206. doi: 10.1023/A:1018337003433
    • (1997) Biotechnol. Lett. , vol.19 , pp. 203-206
    • Skory, C.D.1    Freer, S.N.2    Bothast, R.J.3
  • 58
    • 0032573093 scopus 로고    scopus 로고
    • Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties
    • doi: 10.1016/S0168-1656(98)00084-4
    • Takashima, S., Iikura, H., Nakamura, A., Hidaka, M., Masaki, H., and Uozumi, T. (1998). Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. J. Biotechnol. 65, 163-171. doi: 10.1016/S0168-1656(98)00084-4
    • (1998) J. Biotechnol. , vol.65 , pp. 163-171
    • Takashima, S.1    Iikura, H.2    Nakamura, A.3    Hidaka, M.4    Masaki, H.5    Uozumi, T.6
  • 59
    • 84863216966 scopus 로고    scopus 로고
    • Sugar consumption and ethanol fermentation by transporter-overexpressed xylose-metabolizing Saccharomyces cerevisiae harboring a xyloseisomerase pathway
    • doi: 10.1016/j.jbiosc.2012.03.004
    • Tanino, T., Ito, T., Ogino, C., Ohmura, N., Ohshima, T., and Kondo, A. (2012). Sugar consumption and ethanol fermentation by transporter-overexpressed xylose-metabolizing Saccharomyces cerevisiae harboring a xyloseisomerase pathway. J. Biosci. Bioeng. 114, 209-211. doi: 10.1016/j.jbiosc.2012.03.004
    • (2012) J. Biosci. Bioeng. , vol.114 , pp. 209-211
    • Tanino, T.1    Ito, T.2    Ogino, C.3    Ohmura, N.4    Ohshima, T.5    Kondo, A.6
  • 61
    • 78649713858 scopus 로고    scopus 로고
    • Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production
    • doi: 10.1128/AEM.01777-10
    • Tsai, S. L., Goyal, G., and Chen, W. (2010). Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl. Environ. Microbiol. 76, 7514-7520. doi: 10.1128/AEM.01777-10
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 7514-7520
    • Tsai, S.L.1    Goyal, G.2    Chen, W.3
  • 62
    • 84880837044 scopus 로고    scopus 로고
    • Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade
    • doi: 10.3852/12-094
    • Urbina, H., Frank, R., and Blackwell, M. (2013). Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade. Mycologia 105, 650-660. doi: 10.3852/12-094
    • (2013) Mycologia , vol.105 , pp. 650-660
    • Urbina, H.1    Frank, R.2    Blackwell, M.3
  • 63
    • 84873736810 scopus 로고    scopus 로고
    • Chemical and synthetic genetic array analysis identifies genes that suppress xylose utilization and fermentation in Saccharomyces cerevisiae
    • doi: 10.1534/g3.111.000695
    • Usher, J., Balderas-Hernandez, V., Quon, P., Gold, N., Martin, V. J., Mahadevan, R., et al. (2011). Chemical and synthetic genetic array analysis identifies genes that suppress xylose utilization and fermentation in Saccharomyces cerevisiae. G3 1, 247-258. doi: 10.1534/g3.111.000695
    • (2011) G3 , vol.1 , pp. 247-258
    • Usher, J.1    Balderas-Hernandez, V.2    Quon, P.3    Gold, N.4    Martin, V.J.5    Mahadevan, R.6
  • 64
    • 27544459042 scopus 로고    scopus 로고
    • Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains
    • doi: 10.1016/j.jbiotec.2005.06.013
    • Van Rooyen, R., Hahn-Hägerdal, B., La Grange, D., and Van Zyl, W. (2005). Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J. Biotechnol. 120, 284-295. doi: 10.1016/j.jbiotec.2005.06.013
    • (2005) J. Biotechnol. , vol.120 , pp. 284-295
    • Van Rooyen, R.1    Hahn-Hägerdal, B.2    La Grange, D.3    Van Zyl, W.4
  • 65
    • 57049166496 scopus 로고    scopus 로고
    • Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose
    • doi: 10.1016/j.ymben.2007.12.002
    • Van Vleet, J., Jeffries, T., and Olsson, L. (2008). Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metab. Eng. 10, 360-369. doi: 10.1016/j.ymben.2007.12.002
    • (2008) Metab. Eng. , vol.10 , pp. 360-369
    • Van Vleet, J.1    Jeffries, T.2    Olsson, L.3
  • 66
    • 75649132219 scopus 로고    scopus 로고
    • Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity
    • doi: 10.1093/protein/gzp072
    • Voutilainen, S. P., Murray, P. G., Tuohy, M. G., and Koivula, A. (2010). Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng. Des. Sel. 23, 69-79. doi: 10.1093/protein/gzp072
    • (2010) Protein Eng. Des. Sel. , vol.23 , pp. 69-79
    • Voutilainen, S.P.1    Murray, P.G.2    Tuohy, M.G.3    Koivula, A.4
  • 67
    • 0347297600 scopus 로고    scopus 로고
    • Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
    • doi: 10.1128/AEM.69.2.740-746.2003
    • Wahlbom, C. F., Otero, R. R. C., Zyl, W. H. V., Hahn-Hagerdal, B., and Jonsson, L. J. (2003). Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol. 69, 740-746. doi: 10.1128/AEM.69.2.740-746.2003
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 740-746
    • Wahlbom, C.F.1    Otero, R.R.C.2    Zyl, W.H.V.3    Hahn-Hagerdal, B.4    Jonsson, L.J.5
  • 68
    • 84872039862 scopus 로고    scopus 로고
    • Directed evolution and structural prediction of cellobiohydrolase II from the thermophilic fungus Chaetomium thermophilum
    • doi: 10.1007/s00253-011-3799-9
    • Wang, X. J., Peng, Y. J., Zhang, L. Q., Li, A. N., and Li, D. C. (2012). Directed evolution and structural prediction of cellobiohydrolase II from the thermophilic fungus Chaetomium thermophilum. Appl. Microbiol. Biotechnol. 95, 1469-1478. doi: 10.1007/s00253-011-3799-9
    • (2012) Appl. Microbiol. Biotechnol. , vol.95 , pp. 1469-1478
    • Wang, X.J.1    Peng, Y.J.2    Zhang, L.Q.3    Li, A.N.4    Li, D.C.5
  • 69
    • 84884489848 scopus 로고    scopus 로고
    • Diversity and fermentation products of xylose-utilizing yeasts isolated from buffalo feces in Thailand
    • doi: 10.1264/jsme2.ME13023
    • Wanlapa, L., Ancharida, A., Motofumi, S., Moriya, O., and Somboon, T. (2013). Diversity and fermentation products of xylose-utilizing yeasts isolated from buffalo feces in Thailand. Microbes Environ. 28, 354-360. doi: 10.1264/jsme2.ME13023
    • (2013) Microbes Environ. , vol.28 , pp. 354-360
    • Wanlapa, L.1    Ancharida, A.2    Motofumi, S.3    Moriya, O.4    Somboon, T.5
  • 70
    • 76649105430 scopus 로고    scopus 로고
    • Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol
    • doi: 10.1128/AEM.01687-09
    • Wen, F., Sun, J., and Zhao, H. (2010). Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl. Environ. Microbiol. 76, 1251-1260. doi: 10.1128/AEM.01687-09
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 1251-1260
    • Wen, F.1    Sun, J.2    Zhao, H.3
  • 71
    • 77953211186 scopus 로고    scopus 로고
    • Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae
    • doi: 10.1371/journal.pgen.1000942
    • Wenger, J., Schwartz, K., and Sherlock, G. (2010). Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet. 6:e1000942. doi: 10.1371/journal.pgen.1000942
    • (2010) PLoS Genet. , vol.6
    • Wenger, J.1    Schwartz, K.2    Sherlock, G.3
  • 72
    • 80052377729 scopus 로고    scopus 로고
    • Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations
    • doi: 10.1016/j.biortech.2011.06.058
    • Xiong, M., Chen, G., and Barford, J. (2011). Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations. Bioresour. Technol. 102, 9206-9215. doi: 10.1016/j.biortech.2011.06.058
    • (2011) Bioresour. Technol. , vol.102 , pp. 9206-9215
    • Xiong, M.1    Chen, G.2    Barford, J.3
  • 73
    • 84882708069 scopus 로고    scopus 로고
    • Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing
    • doi: 10.1016/j.biotechadv.2013.02.007
    • Yamada, R., Hasunuma, T., and Kondo, A. (2013). Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnol. Adv. 31, 754-763. doi: 10.1016/j.biotechadv.2013.02.007
    • (2013) Biotechnol. Adv. , vol.31 , pp. 754-763
    • Yamada, R.1    Hasunuma, T.2    Kondo, A.3
  • 74
    • 77953675236 scopus 로고    scopus 로고
    • Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains
    • doi: 10.1186/1475-2859-9-32
    • Yamada, R., Taniguchi, N., Tanaka, T., Ogino, C., Fukuda, H., and Kondo, A. (2010). Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb. Cell Fact. 9:32. doi: 10.1186/1475-2859-9-32
    • (2010) Microb. Cell Fact. , vol.9 , pp. 32
    • Yamada, R.1    Taniguchi, N.2    Tanaka, T.3    Ogino, C.4    Fukuda, H.5    Kondo, A.6
  • 75
    • 85028099794 scopus 로고    scopus 로고
    • Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression
    • doi: 10.1186/1754-6834-4-8
    • Yamada, R., Taniguchi, N., Tanaka, T., Ogino, C., Fukuda, H., and Kondo, A. (2011). Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol. Biofuels 4:8. doi: 10.1186/1754-6834-4-8
    • (2011) Biotechnol. Biofuels , vol.4 , pp. 8
    • Yamada, R.1    Taniguchi, N.2    Tanaka, T.3    Ogino, C.4    Fukuda, H.5    Kondo, A.6
  • 76
    • 77952171368 scopus 로고    scopus 로고
    • Ethanol production from cellulosic materials using cellulase-expressing yeast
    • doi: 10.1002/biot.200900291
    • Yanase, S., Yamada, R., Kaneko, S., Noda, H., Hasunuma, T., Tanaka, T., et al. (2010). Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol. J. 5, 449-455. doi: 10.1002/biot.200900291
    • (2010) Biotechnol. J. , vol.5 , pp. 449-455
    • Yanase, S.1    Yamada, R.2    Kaneko, S.3    Noda, H.4    Hasunuma, T.5    Tanaka, T.6
  • 77
    • 84862800120 scopus 로고    scopus 로고
    • A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae
    • doi: 10.1016/j.ymben.2012.03.004
    • Young, E., Comer, A., Huang, H., and Alper, H. (2012). A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab. Eng. 14, 401-411. doi: 10.1016/j.ymben.2012.03.004
    • (2012) Metab. Eng. , vol.14 , pp. 401-411
    • Young, E.1    Comer, A.2    Huang, H.3    Alper, H.4
  • 78
    • 79958211835 scopus 로고    scopus 로고
    • Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host
    • doi: 10.1128/AEM.02651-10
    • Young, E., Poucher, A., Comer, A., and Bailey, A. (2011). Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl. Environ. Microbiol. 77, 3311-3319. doi: 10.1128/AEM.02651-10
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 3311-3319
    • Young, E.1    Poucher, A.2    Comer, A.3    Bailey, A.4
  • 79
    • 84864112250 scopus 로고    scopus 로고
    • Fungal polysaccharide monooxygenases: new players in the decomposition of cellulose
    • doi: 10.1016/j.funeco.2012.05.001
    • žifčáková, L., and Baldrian, P. (2012). Fungal polysaccharide monooxygenases: new players in the decomposition of cellulose. Fungal Ecol. 5, 481-489. doi: 10.1016/j.funeco.2012.05.001
    • (2012) Fungal Ecol. , vol.5 , pp. 481-489
    • žifčáková, L.1    Baldrian, P.2
  • 80
    • 84891842832 scopus 로고    scopus 로고
    • Characterization of the sugar alcohol-producing yeast Pichia anomala
    • doi: 10.1007/s10295-013-1364-5
    • Zhang, G., Lin, Y., He, P., Li, L., Wang, Q., and Ma, Y. (2014). Characterization of the sugar alcohol-producing yeast Pichia anomala. J. Ind. Microbiol. Biotechnol. 41, 41-48. doi: 10.1007/s10295-013-1364-5
    • (2014) J. Ind. Microbiol. Biotechnol. , vol.41 , pp. 41-48
    • Zhang, G.1    Lin, Y.2    He, P.3    Li, L.4    Wang, Q.5    Ma, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.