-
1
-
-
0343618697
-
Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition
-
DOI 10.1016/S0960-8524(99)00161-3, PII S0960852499001613
-
Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Palmqvist E, Hahn-Hägerdal B, Bioresour Technol 2000 74 25 33 (Pubitemid 30190275)
-
(2000)
Bioresource Technology
, vol.74
, Issue.1
, pp. 25-33
-
-
Palmqvist, E.1
Hahn-Hagerdal, B.2
-
2
-
-
45149107626
-
A short review on SSF - An interesting process option for ethanol production from lignocellulosic feedstocks
-
A short review on SSF-an interesting process option for ethanol production from lignocellulosic feedstocks. Olofsson K, Bertilsson M, Lidén G, Biotechnology for Biofuels 2008 1 7
-
(2008)
Biotechnology for Biofuels
, vol.1
, pp. 7
-
-
Olofsson, K.1
Bertilsson, M.2
Lidén, G.3
-
3
-
-
18944392490
-
A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce
-
DOI 10.1016/j.enzmictec.2005.02.013, PII S0141022905000876
-
A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Rudolf A, Alkasrawi M, Zacchi G, Lidén G, Enzyme Microb Technol 2005 37 195 204 (Pubitemid 40703932)
-
(2005)
Enzyme and Microbial Technology
, vol.37
, Issue.2
, pp. 195-204
-
-
Rudolf, A.1
Alkasrawi, M.2
Zacchi, G.3
Liden, G.4
-
4
-
-
76649111376
-
High-temperature fermentation: How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?
-
High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Abdel-Banat B, Hoshida H, Ano A, Nonklang S, Akada R, Appl Microbiol Biotechnol 2010 85 861 867
-
(2010)
Appl Microbiol Biotechnol
, vol.85
, pp. 861-867
-
-
Abdel-Banat, B.1
Hoshida, H.2
Ano, A.3
Nonklang, S.4
Akada, R.5
-
5
-
-
79951843066
-
Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review
-
Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Parawira W, Tekere M, Crit Rev Biotechnol 2011 31 20 31
-
(2011)
Crit Rev Biotechnol
, vol.31
, pp. 20-31
-
-
Parawira, W.1
Tekere, M.2
-
6
-
-
33744474816
-
A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance
-
DOI 10.1002/yea.1370
-
A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Petersson A, Almeida JRM, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, Lidén G, Yeast 2006 23 455 464 (Pubitemid 43797109)
-
(2006)
Yeast
, vol.23
, Issue.6
, pp. 455-464
-
-
Petersson, A.1
Almeida, J.R.M.2
Modig, T.3
Karhumaa, K.4
Hahn-Hagerdal, B.5
Gorwa-Grauslund, M.F.6
Liden, G.7
-
7
-
-
84858748257
-
Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural
-
Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Fujitomi K, Sanda T, Hasunuma T, Kondo A, Bioresour Technol 2012 111 161 166
-
(2012)
Bioresour Technol
, vol.111
, pp. 161-166
-
-
Fujitomi, K.1
Sanda, T.2
Hasunuma, T.3
Kondo, A.4
-
8
-
-
0035289692
-
Development of a Saccharomyces cerevisiae Strain with Enhanced Resistance to Phenolic Fermentation Inhibitors in Lignocellulose Hydrolysates by Heterologous Expression of Laccase
-
DOI 10.1128/AEM.67.3.1163-1170.2001
-
Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Larsson S, Cassland P, Jonsson LJ, Appl Environ Microbiol 2001 67 1163 1170 (Pubitemid 33643556)
-
(2001)
Applied and Environmental Microbiology
, vol.67
, Issue.3
, pp. 1163-1170
-
-
Larsson, S.1
Cassland, P.2
Jonsson, L.J.3
-
9
-
-
71249132746
-
Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors
-
Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors. Alriksson B, Horváth IS, Jönsson LJ, Process Biochem 2010 45 264 271
-
(2010)
Process Biochem
, vol.45
, pp. 264-271
-
-
Alriksson, B.1
Horváth, I.S.2
Jönsson, L.J.3
-
10
-
-
41549139616
-
Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae
-
DOI 10.1002/yea.1578
-
Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae. Laadan B, Almeida JR, Radstrom P, Hahn-Hagerdal B, Gorwa-Grauslund M, Yeast 2008 25 191 198 (Pubitemid 351460189)
-
(2008)
Yeast
, vol.25
, Issue.3
, pp. 191-198
-
-
Laadan, B.1
Almeida, J.R.M.2
Radstrom, P.3
Hahn-Hagerdal, B.4
Gorwa-Grauslund, M.5
-
12
-
-
33846667838
-
Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors
-
DOI 10.1016/j.biortech.2006.07.021, PII S096085240600349X
-
Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Martin C, Marcet M, Almazan O, Jonsson LJ, Bioresour Technol 2007 98 1767 1773 (Pubitemid 46199162)
-
(2007)
Bioresource Technology
, vol.98
, Issue.9
, pp. 1767-1773
-
-
Martin, C.1
Marcet, M.2
Almazan, O.3
Jonsson, L.J.4
-
13
-
-
64849104184
-
Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain
-
Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Heer D, Sauer U, Microb Biotechnol 2008 1 497 506
-
(2008)
Microb Biotechnol
, vol.1
, pp. 497-506
-
-
Heer, D.1
Sauer, U.2
-
14
-
-
78149415548
-
Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes
-
Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes. Tomás-Pejó E, Ballesteros M, Oliva JM, Olsson L, J Ind Microbiol Biotechnol 2010 37 1211 1220.15
-
(2010)
J Ind Microbiol Biotechnol
, vol.37
, pp. 1211-122015
-
-
Tomás-Pejó, E.1
Ballesteros, M.2
Oliva, J.M.3
Olsson, L.4
-
15
-
-
84896419256
-
Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass
-
Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Almario MP, Reyes LH, Kao KC, Biotechnol Bioeng 2013 110 2616 2623
-
(2013)
Biotechnol Bioeng
, vol.110
, pp. 2616-2623
-
-
Almario, M.P.1
Reyes, L.H.2
Kao, K.C.3
-
16
-
-
84857056878
-
Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties
-
Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. Çakar ZP, Turanli-Yildiz B, Alkim C, Yilmaz Ü FEMS Yeast Res 2012 12 171 182
-
(2012)
FEMS Yeast Res
, vol.12
, pp. 171-182
-
-
Çakar, Z.P.1
Turanli-Yildiz, B.2
Alkim, C.3
Yilmaz, Ü.4
-
17
-
-
0024698096
-
Selection and optimization of yeast suitable for ethanol production at 40 °C
-
DOI 10.1016/0141-0229(89)90135-X
-
Selection and optimization of yeast suitable for ethanol production at 40°C. D'Amore T, Celotto G, Russell I, Stewart GG, Enzyme Microb Technol 1989 11 411 416 (Pubitemid 19165999)
-
(1989)
Enzyme and Microbial Technology
, vol.11
, Issue.7
, pp. 411-416
-
-
D'Amore, T.1
Celotto, G.2
Russell, I.3
Stewart, G.G.4
-
18
-
-
34249838963
-
Isolation of thermotolerant, fermentative yeasts growing at 52°C and producing ethanol at 45°C and 50°C
-
Isolation of thermotolerant, fermentative yeasts growing at 52°C and producing ethanol at 45°C and 50°C. Banat IM, Nigam P, Marchant R, World J Microbiol Biotechnol 1992 8 259 263
-
(1992)
World J Microbiol Biotechnol
, vol.8
, pp. 259-263
-
-
Banat, I.M.1
Nigam, P.2
Marchant, R.3
-
19
-
-
79958768729
-
Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase
-
Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase. An M-Z, Tang Y-Q, Mitsumasu K, Liu Z-S, Shigeru M, Kenji K, Biotechnol Lett 2011 33 1367 1374
-
(2011)
Biotechnol Lett
, vol.33
, pp. 1367-1374
-
-
An, M.-Z.1
Tang, Y.-Q.2
Mitsumasu, K.3
Liu, Z.-S.4
Shigeru, M.5
Kenji, K.6
-
20
-
-
84867728469
-
Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase
-
Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Shahsavarani H, Sugiyama M, Kaneko Y, Chuenchit B, Harashima S, Biotechnol Adv 2012 30 1289 1300
-
(2012)
Biotechnol Adv
, vol.30
, pp. 1289-1300
-
-
Shahsavarani, H.1
Sugiyama, M.2
Kaneko, Y.3
Chuenchit, B.4
Harashima, S.5
-
21
-
-
84857635119
-
Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors
-
Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors. Lu Y, Cheng YF, He XP, Guo XN, Zhang BR, J Ind Microbiol Biotechnol 2012 39 73 80
-
(2012)
J Ind Microbiol Biotechnol
, vol.39
, pp. 73-80
-
-
Lu, Y.1
Cheng, Y.F.2
He, X.P.3
Guo, X.N.4
Zhang, B.R.5
-
22
-
-
84856402141
-
Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol
-
Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol. Benjaphokee S, Hasegawa D, Yokota D, Asvarak T, Auesukaree C, Sugiyama M, Kaneko Y, Boonchird C, Harashima S, N Biotechnol 2012 29 379 386
-
(2012)
N Biotechnol
, vol.29
, pp. 379-386
-
-
Benjaphokee, S.1
Hasegawa, D.2
Yokota, D.3
Asvarak, T.4
Auesukaree, C.5
Sugiyama, M.6
Kaneko, Y.7
Boonchird, C.8
Harashima, S.9
-
24
-
-
0027048930
-
Microbial transformation of furfural to furfuryl alcohol by Saccharomyces cerevisiae
-
DOI 10.1002/abio.370120613
-
Microbial transformation of furfural to furfuryl alcohol by Saccharomyces cerevisiae. Villa GP, Bartroli R, López R, Guerra M, Enrique M, Peñas M, Rodríquez E, Redondo D, Jglesias I, Díaz M, Acta Biotechnol 1992 12 509 512 (Pubitemid 23016885)
-
(1992)
Acta Biotechnologica
, vol.12
, Issue.6
, pp. 509-512
-
-
Villa, G.P.1
Bartrolli, R.2
Lopez, R.3
Guerra, R.4
Enrique, M.5
Penas, M.6
Rodriquez, E.7
Redondo, D.8
Iglesias, I.9
Diaz, M.10
-
25
-
-
0033938545
-
Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae
-
Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G, Appl Microbiol Biotechnol 2000 53 701 708 (Pubitemid 30430227)
-
(2000)
Applied Microbiology and Biotechnology
, vol.53
, Issue.6
, pp. 701-708
-
-
Taherzadeh, M.J.1
Gustafsson, L.2
Niklasson, C.3
Liden, G.4
-
26
-
-
4644229547
-
Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran
-
DOI 10.1007/s10295-004-0148-3
-
Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW, J Ind Microbiol Biotechnol 2004 31 345 352 (Pubitemid 39280246)
-
(2004)
Journal of Industrial Microbiology and Biotechnology
, vol.31
, Issue.8
, pp. 345-352
-
-
Liu, Z.L.1
Slininger, P.J.2
Dien, B.S.3
Berhow, M.A.4
Kurtzman, C.P.5
Gorsich, S.W.6
-
27
-
-
0023147386
-
Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae
-
Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae. Plesset J, Ludwig JR, Cox BS, McLaughlin CS, J Bacteriol 1987 169 2 779 784 (Pubitemid 17010895)
-
(1987)
Journal of Bacteriology
, vol.169
, Issue.2
, pp. 779-784
-
-
Plesset, J.1
Ludwig, J.R.2
Cox, B.S.3
McLaughlin, C.S.4
-
28
-
-
0019187844
-
Reserve carbohydrate metabolism in Saccharomyces cerevisiae: Responses to nutrient limitation
-
Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. Lillie SH, Pringle JR, J Bacteriol 1980 143 1384 1394 (Pubitemid 11255509)
-
(1980)
Journal of Bacteriology
, vol.143
, Issue.3
, pp. 1384-1394
-
-
Lillie, S.H.1
Pringle, J.R.2
-
29
-
-
0033526123
-
Main and interaction effects of acetic acid, furfural, and p- hydroxybenzoic acid on growth and ethanol productivity of yeasts
-
DOI 10.1002/(SICI)1097-0290(19990405)63:1<46::AID-BIT5>3.0.CO;2-J
-
Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Palmqvist E, Grage H, Meinander NQ, Hahn-Hägerdal B, Biotechnol Bioeng 1999 63 46 55 (Pubitemid 29104094)
-
(1999)
Biotechnology and Bioengineering
, vol.63
, Issue.1
, pp. 46-55
-
-
Palmqvist, E.1
Grage, H.2
Meinander, N.Q.3
Hahn-Hagerdal, B.4
-
30
-
-
0036407348
-
The influence of colonial organization on thermotolerance and thermoresistance in Saccharomyces cerevisiae
-
DOI 10.1002/1521-4028(200210)42:5<345::AID-JOBM345>3.0.CO;2-F
-
The influence of colonial organization on thermotolerance and thermoresistance in Saccharomyces cerevisiae. Matmati N, Morpurgo G, Babudri N, Marini A, J Basic Microbiol 2002 42 345 354 (Pubitemid 35212028)
-
(2002)
Journal of Basic Microbiology
, vol.42
, Issue.5
, pp. 345-354
-
-
Matmati, N.1
Morpurgo, G.2
Babudri, N.3
Marini, A.4
-
31
-
-
0033030735
-
Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce
-
Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Larsson S, Reimann A, Nilvebrant NO, Jonsson LJ, Appl Biochem Biotechnol 1999 77-9 91 103 (Pubitemid 29300445)
-
(1999)
Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology
, vol.77-79
, pp. 91-103
-
-
Larsson, S.1
Reimann, A.2
Nilvebrant, N.-O.3
Jonsson, L.J.4
-
32
-
-
43349084131
-
NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae
-
NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Almeida JRM, Roder A, Modig T, Laadan B, Liden G, Gorwa-Grauslund M-F, Appl Microbiol Biotechnol 2008 78 939 945
-
(2008)
Appl Microbiol Biotechnol
, vol.78
, pp. 939-945
-
-
Almeida, J.R.M.1
Roder, A.2
Modig, T.3
Laadan, B.4
Liden, G.5
Gorwa-Grauslund, M.-F.6
-
33
-
-
57249097175
-
Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae
-
Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Lewis Liu Z, Moon J, Andersh B, Slininger P, Weber S, Appl Microbiol Biotechnol 2008 81 743 753
-
(2008)
Appl Microbiol Biotechnol
, vol.81
, pp. 743-753
-
-
Lewis Liu, Z.1
Moon, J.2
Andersh, B.3
Slininger, P.4
Weber, S.5
-
35
-
-
84879489028
-
Adaptive laboratory evolution - Principles and applications for biotechnology
-
Adaptive laboratory evolution-principles and applications for biotechnology. Dragosits M, Mattanovich D, Microb Cell Fact 2013 12 64
-
(2013)
Microb Cell Fact
, vol.12
, pp. 64
-
-
Dragosits, M.1
Mattanovich, D.2
-
36
-
-
0022507007
-
Redox balances in the metabolism of sugars by yeasts
-
Redox balances in the metabolism of sugars by yeasts. Van JP, FEMS Microbiol Rev 1986 32 199 224
-
(1986)
FEMS Microbiol Rev
, vol.32
, pp. 199-224
-
-
Van, J.P.1
-
37
-
-
0035131144
-
Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions
-
DOI 10.1046/j.1365-2958.2001.02283.x
-
Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Grant CM, Mol Microbiol 2001 39 533 541 (Pubitemid 32158135)
-
(2001)
Molecular Microbiology
, vol.39
, Issue.3
, pp. 533-541
-
-
Grant, C.M.1
-
38
-
-
23144455493
-
Do mitochondria regulate the heat-shock response in Saccharomyces cerevisiae?
-
DOI 10.1007/s00294-005-0587-z
-
Do mitochondria regulate the heat-shock response in Saccharomyces cerevisiae? Rikhvanov EG, Varakina NN, Rusaleva TM, Rachenko EI, Knorre DA, Voinikov VK, Curr Genet 2005 48 44 59 (Pubitemid 41086355)
-
(2005)
Current Genetics
, vol.48
, Issue.1
, pp. 44-59
-
-
Rikhvanov, E.G.1
Varakina, N.N.2
Rusaleva, T.M.3
Rachenko, E.I.4
Knorre, D.A.5
Voinikov, V.K.6
-
39
-
-
84887017830
-
Roles for Sphingolipids in Saccharomyces cerevisiae
-
N.Y. USA: Landes Bioscience and Springer Charles C, Maurizio DP Advances in Experimental Medicine and Biology
-
Roles for Sphingolipids in Saccharomyces cerevisiae. Robert D, Sphingolipids as signaling and regulatory molecules. Volume 688 N.Y., USA: Landes Bioscience and Springer, Charles C, Maurizio DP, 2010 Advances in Experimental Medicine and Biology
-
(2010)
Sphingolipids As Signaling and Regulatory Molecules. Volume 688
-
-
Robert, D.1
-
41
-
-
64049092699
-
Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast
-
Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast. Lu C, Brauer MJ, Botstein D, Mol Biol Cell 2009 20 891 903
-
(2009)
Mol Biol Cell
, vol.20
, pp. 891-903
-
-
Lu, C.1
Brauer, M.J.2
Botstein, D.3
-
42
-
-
84861544417
-
Bet hedging in yeast by heterogeneous, Age-correlated expression of a stress protectant
-
Bet hedging in yeast by heterogeneous, Age-correlated expression of a stress protectant. Levy SF, Ziv N, Siegal ML, PLoS Biol 2012 10 1001325
-
(2012)
PLoS Biol
, vol.10
, pp. 51001325
-
-
Levy, S.F.1
Ziv, N.2
Siegal, M.L.3
-
43
-
-
0021731703
-
Temperature profiles of yeasts
-
London UK: Academic Press Rose AH, Tempest DW
-
Temperature profiles of yeasts. Van Uden N, Advances in microbial physiology. Volume 25 London UK: Academic Press, Rose AH, Tempest DW, 1985 195 251
-
(1985)
Advances in Microbial Physiology. Volume 25
, pp. 195-251
-
-
Van Uden, N.1
-
44
-
-
0026710123
-
Effect of benzoic acid on metabolic fluxes in yeasts - A continuous culture study on the regulation of respiration and alcoholic fermentation
-
Effect of benzoic acid on metabolic fluxes in yeasts-a continuous culture study on the regulation of respiration and alcoholic fermentation. Verduyn C, Postma E, Scheffers WA, van Dijken JP, Yeast 1992 8 501 517
-
(1992)
Yeast
, vol.8
, pp. 501-517
-
-
Verduyn, C.1
Postma, E.2
Scheffers, W.A.3
Van Dijken, J.P.4
-
45
-
-
84887022170
-
Methods for the microbial examination of foods
-
Cambridge: The Royal Society of Chemistry 2
-
Methods for the microbial examination of foods. Adams MR, Moss MO, Food microbiology Cambridge: The Royal Society of Chemistry 2 2002 377 380
-
(2002)
Food Microbiology
, pp. 377-380
-
-
Adams, M.R.1
Moss, M.O.2
-
46
-
-
0037140422
-
Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae
-
DOI 10.1002/bit.10188
-
Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Wahlbom CF, Hahn-Hägerdal B, Biotechnol Bioeng 2002 78 172 178 (Pubitemid 34712341)
-
(2002)
Biotechnology and Bioengineering
, vol.78
, Issue.2
, pp. 172-178
-
-
Wahlbom, C.F.1
Hahn-Hagerdal, B.2
|