메뉴 건너뛰기




Volumn 1, Issue 4, 2011, Pages 247-258

Chemical and synthetic genetic array analysis identifies genes that suppress xylose utilization and fermentation in saccharomyces cerevisiae

Author keywords

Chemical genomics; Ethanol; Functional genomics; Recombinant yeast; Xylose

Indexed keywords


EID: 84873736810     PISSN: None     EISSN: 21601836     Source Type: Journal    
DOI: 10.1534/g3.111.000695     Document Type: Article
Times cited : (21)

References (68)
  • 1
    • 33645074913 scopus 로고    scopus 로고
    • Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae
    • Ando, A., F. Tanaka, Y. Murata, H. Takagi, and J. Shima, 2006 Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae. FEM. Yeast Res. 6: 249-267.
    • (2006) FEM. Yeast Res. , vol.6 , pp. 249-267
    • Ando, A.1    Tanaka, F.2    Murata, Y.3    Takagi, H.4    Shima, J.5
  • 2
    • 33747373639 scopus 로고    scopus 로고
    • Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source
    • Attfield, P. V., and P. J. Bell, 2006 Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEM. Yeast Res. 6: 862-868.
    • (2006) FEM. Yeast Res. , vol.6 , pp. 862-868
    • Attfield, P.V.1    Bell, P.J.2
  • 3
    • 0022697977 scopus 로고
    • Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae
    • Batt, C. A., S. Caryallo, D. D. Easson Jr, M. Akedo, and A. J. Sinskey, 1986 Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae. Biotechnol. Bioeng. 28: 549-553.
    • (1986) Biotechnol. Bioeng. , vol.28 , pp. 549-553
    • Batt, C.A.1    Caryallo, S.2    Easson, D.D.3    Akedo, M.4    Sinskey, A.J.5
  • 4
    • 58149347653 scopus 로고    scopus 로고
    • Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering
    • Bengtsson, O., M. Jeppsson, M. Sonderegger, N. S. Parachin, U. Sauer et al., 2008 Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 25: 835-847.
    • (2008) Yeast , vol.25 , pp. 835-847
    • Bengtsson, O.1    Jeppsson, M.2    Sonderegger, M.3    Parachin, N.S.4    Sauer, U.5
  • 5
    • 0036042108 scopus 로고    scopus 로고
    • ISC1-encoded inositol phosphosphingolipid phospholipase C is involved in Na+/Li+ halotolerance of Saccharomyces cerevisiae
    • Betz, C., D. Zajonc, M. Moll, and E. Schweizer, 2002 ISC1-encoded inositol phosphosphingolipid phospholipase C is involved in Na+/Li+ halotolerance of Saccharomyces cerevisiae. Eur. J. Biochem. 269: 4033-4039.
    • (2002) Eur. J. Biochem. , vol.269 , pp. 4033-4039
    • Betz, C.1    Zajonc, D.2    Moll, M.3    Schweizer, E.4
  • 6
  • 8
  • 9
    • 0018646699 scopus 로고
    • A simplified, colorimetric micromethod for xylose in serum or urine, with phloroglucinol
    • Eberts, T. J., R. H. Sample, M. R. Glick, and G. H. Ellis, 1979 A simplified, colorimetric micromethod for xylose in serum or urine, with phloroglucinol. Clin. Chem. 25: 1440-1443.
    • (1979) Clin. Chem. , vol.25 , pp. 1440-1443
    • Eberts, T.J.1    Sample, R.H.2    Glick, M.R.3    Ellis, G.H.4
  • 10
    • 0033856888 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
    • Eliasson, A., C. Christensson, C. F. Wahlbom, and B. Hahn-Hagerdal, 2000 Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66: 3381-3386.
    • (2000) Appl. Environ. Microbiol. , vol.66 , pp. 3381-3386
    • Eliasson, A.1    Christensson, C.2    Wahlbom, C.F.3    Hahn-Hagerdal, B.4
  • 11
    • 0001263569 scopus 로고    scopus 로고
    • Yeast mutant and plasmid collections
    • in Yeast Gene Analysis, edited by A. Brown, and M. Tuite.Academic Press,San Diego
    • Entian, K. D., and P. Koetter, 1998 Yeast mutant and plasmid collections,pp. 431-449 in Yeast Gene Analysis, edited by A. Brown, and M. Tuite.Academic Press, San Diego.
    • (1998) , pp. 431-449
    • Entian, K.D.1    Koetter, P.2
  • 12
    • 77949447610 scopus 로고    scopus 로고
    • Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates
    • Fendt, S.M., and U. Sauer, 2010 Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates. BMC Syst. Biol. 4: 12.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 12
    • Fendt, S.M.1    Sauer, U.2
  • 14
    • 34347270219 scopus 로고    scopus 로고
    • Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method
    • Gietz, R. D., and R. H. Schiestl, 2007 Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2: 35-37.
    • (2007) Nat. Protoc. , vol.2 , pp. 35-37
    • Gietz, R.D.1    Schiestl, R.H.2
  • 18
    • 71749118125 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation
    • Hector, R. E., M. J. Bowman, C. D. Skory, and M. A. Cotta, 2009 The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation. New Biotechnol. 26: 171-180.
    • (2009) New Biotechnol. , vol.26 , pp. 171-180
    • Hector, R.E.1    Bowman, M.J.2    Skory, C.D.3    Cotta, M.A.4
  • 19
    • 77953081255 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae and DNA microarray analyses: what did we learn from it for a better understanding and exploitation of yeast biotechnology? Appl
    • Hirasawa, T., C. Furusawa, and H. Shimizu, 2010 Saccharomyces cerevisiae and DNA microarray analyses: what did we learn from it for a better understanding and exploitation of yeast biotechnology? Appl. Microbiol. Biotechnol. 87: 391-400.
    • (2010) Microbiol. Biotechnol. , vol.87 , pp. 391-400
    • Hirasawa, T.1    Furusawa, C.2    Shimizu, H.3
  • 20
    • 0031832290 scopus 로고    scopus 로고
    • Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
    • Ho, N. W., Z. Chen, and A. P. Brainard, 1998 Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64: 1852-1859.
    • (1998) Appl. Environ. Microbiol. , vol.64 , pp. 1852-1859
    • Ho, N.W.1    Chen, Z.2    Brainard, A.P.3
  • 21
    • 0036189820 scopus 로고    scopus 로고
    • Molecular cloning of XYL3 (D-xylulokinase) from Pichia stipitis and characterization of its physiological function
    • Jin, Y. S., S. Jones, N. Q. Shi, and T. W. Jeffries, 2002 Molecular cloning of XYL3 (D-xylulokinase) from Pichia stipitis and characterization of its physiological function. Appl. Environ. Microbiol. 68: 1232-1239.
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 1232-1239
    • Jin, Y.S.1    Jones, S.2    Shi, N.Q.3    Jeffries, T.W.4
  • 22
    • 8744293844 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response
    • Jin, Y. S., J. M. Laplaza, and T. W. Jeffries, 2004 Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl. Environ. Microbiol. 70: 6816-6825.
    • (2004) Appl. Environ. Microbiol. , vol.70 , pp. 6816-6825
    • Jin, Y.S.1    Laplaza, J.W.2    Jeffries, J.W.3
  • 23
    • 0035458838 scopus 로고    scopus 로고
    • Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate
    • Johansson, B., C. Christensson, T. Hobley, and B. Hahn-Hagerdal, 2001 Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl. Environ. Microbiol. 67: 4249-4255.
    • (2001) Appl. Environ. Microbiol. , vol.67 , pp. 4249-4255
    • Johansson, B.1    Christensson, C.2    Hobley, T.3    Hahn-Hagerdal, B.4
  • 24
    • 17644373035 scopus 로고    scopus 로고
    • Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
    • Karhumaa, K., B. Hahn-Hagerdal, and M. F. Gorwa-Grauslund, 2005 Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22: 359-368.
    • (2005) Yeast , vol.22 , pp. 359-368
    • Karhumaa, K.1    Hahn-Hagerdal, B.2    Gorwa-Grauslund, M.F.3
  • 26
    • 0025633861 scopus 로고
    • Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant
    • Kotter, P., R. Amore, C. P. Hollenberg, and M. Ciriacy, 1990 Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr. Genet. 18: 493-500.
    • (1990) Curr. Genet. , vol.18 , pp. 493-500
    • Kotter, P.1    Amore, R.2    Hollenberg, C.P.3    Ciriacy, M.4
  • 27
    • 12144288423 scopus 로고    scopus 로고
    • High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae
    • Kuyper, M., H. R. Harhangi, A. K. Stave, A. A. Winkler, M. S. Jetten et al., 2003 High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEM. Yeast Res. 4: 69-78.
    • (2003) FEM.Yeast Res. , vol.4 , pp. 69-78
    • Kuyper, M.1    Harhangi, H.R.2    Stave, A.K.3    Winkler, A.A.4    Jetten, M.S.5
  • 28
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
    • Kuyper, M., M. M. Hartog, M. J. Toirkens, M. J. Almering, A. A. Winkler et al., 2005 Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEM. Yeast Res. 5: 399-409.
    • (2005) FEM. Yeast Res. , vol.5 , pp. 399-409
    • Kuyper, M.1    Hartog, M.M.2    Toirkens, M.J.3    Almering, M.J.4    Winkler, A.A.5
  • 29
    • 0037115872 scopus 로고    scopus 로고
    • Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale
    • Lecompte, O., R. Ripp, J. C. Thierry, D. Moras, and O. Poch, 2002 Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res. 30: 5382-5390.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 5382-5390
    • Lecompte, O.1    Ripp, R.2    Thierry, J.C.3    Moras, D.4    Poch, O.5
  • 30
    • 0031820288 scopus 로고    scopus 로고
    • Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
    • Longtine, M. S., A. McKenzie 3rd, D. J. Demarini, N. G. Shah, A. Wach et al., 1998 Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953- 961.
    • (1998) Yeast , vol.14
    • Longtine, M.S.1    McKenzie, A.2    Demarini, D.J.3    Shah, N.G.4    Wach, A.5
  • 32
    • 0034660257 scopus 로고    scopus 로고
    • Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae
    • MacDiarmid, C. W., L. A. Gaither, and D. Eide, 2000 Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J. 19: 2845-2855.
    • (2000) EMBO J. , vol.19 , pp. 2845-2855
    • MacDiarmid, C.W.1    Gaither, L.A.2    Eide, D.3
  • 33
    • 63949086429 scopus 로고    scopus 로고
    • Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
    • Madhavan, A., S. Tamalampudi, K. Ushida, D. Kanai, S. Katahira et al., 2009 Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Microbiol. Biotechnol. 82: 1067-1078.
    • (2009) Appl. Microbiol. Biotechnol. , vol.82 , pp. 1067-1078
    • Madhavan, A.1    Tamalampudi, S.2    Ushida, K.3    Kanai, D.4    Katahira, S.5
  • 34
    • 68349109625 scopus 로고    scopus 로고
    • Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
    • Matsushika, A., H. Inoue, T. Kodaki, and S. Sawayama, 2009 Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84: 37-53.
    • (2009) Appl. Microbiol. Biotechnol. , vol.84 , pp. 37-53
    • Matsushika, A.1    Inoue, H.2    Kodaki, T.3    Sawayama, S.4
  • 35
    • 53649084361 scopus 로고    scopus 로고
    • Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity
    • Matsushika, A., and S. Sawayama, 2008 Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J. Biosci. Bioeng. 106: 306-309.
    • (2008) J. Biosci. Bioeng. , vol.106 , pp. 306-309
    • Matsushika, A.1    Sawayama, S.2
  • 36
    • 25444489018 scopus 로고    scopus 로고
    • Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation
    • Measday, V., K. Baetz, J. Guzzo, K. Yuen, T. Kwok et al., 2005 Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation. Proc. Natl. Acad. Sci. USA 102: 13956-13961.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 13956-13961
    • Measday, V.1    Baetz, K.2    Guzzo, J.3    Yuen, K.4    Kwok, T.5
  • 37
    • 65649126379 scopus 로고    scopus 로고
    • Connecting extracellular metabolomic measurements to intracellular flux states in yeast
    • Mo, M. L., B. O. Palsson, and M. J. Herrgard, 2009 Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol. 3: 37.
    • (2009) BMC Syst. Biol. , vol.3 , pp. 37
    • Mo, M.L.1    Palsson, B.O.2    Herrgard, M.J.3
  • 38
    • 77956804303 scopus 로고    scopus 로고
    • The deletion of YLR042c improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae
    • Parachin, N. S., O. Bengtsson, B. Hahn-Hagerdal, and M. F. Gorwa-Grauslund, 2010 The deletion of YLR042c improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Yeast 27: 741-751.
    • (2010) Yeast , vol.27 , pp. 741-751
    • Parachin, N.S.1    Bengtsson, O.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 39
    • 77954415277 scopus 로고    scopus 로고
    • Global expression studies in baker's yeast reveal target genes for the improvement of industrially-relevant traits: the cases of CAF16 and ORC2
    • Perez-Torrado, R., J. Panadero, M. J. Hernandez-Lopez, J. A. Prieto, and F. Randez-Gil, 2010 Global expression studies in baker's yeast reveal target genes for the improvement of industrially-relevant traits: the cases of CAF16 and ORC2. Microb. Cell Fact. 9: 56.
    • (2010) Microb. Cell Fact. , vol.9 , pp. 56
    • Perez-Torrado, R.1    Panadero, J.2    Hernandez-Lopez, M.J.3    Prieto, J.A.4    Randez-Gil, F.5
  • 40
    • 0038514106 scopus 로고    scopus 로고
    • Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture
    • Pitkanen, J. P., A. Aristidou, L. Salusjarvi, L. Ruohonen, and M. Penttila, 2003 Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab. Eng. 5: 16-31.
    • (2003) Metab. Eng. , vol.5 , pp. 16-31
    • Pitkanen, J.P.1    Aristidou, A.2    Salusjarvi, L.3    Ruohonen, L.4    Penttila, M.5
  • 41
    • 0032579887 scopus 로고    scopus 로고
    • The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae
    • Planta, R. J., and W. H. Mager, 1998 The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast 14: 471-477.
    • (1998) Yeast , vol.14 , pp. 471-477
    • Planta, R.J.1    Mager, W.H.2
  • 42
    • 0033396550 scopus 로고    scopus 로고
    • Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae
    • Regenberg, B., L. During-Olsen, M. C. Kielland-Brandt, and S. Holmberg, 1999 Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr. Genet. 36: 317-328.
    • (1999) Curr. Genet. , vol.36 , pp. 317-328
    • Regenberg, B.1    During-Olsen, L.2    Kielland-Brandt, M.C.3    Holmberg, S.4
  • 43
    • 0034284318 scopus 로고    scopus 로고
    • The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism
    • Richard, P., M. H. Toivari, and M. Penttila, 2000 The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol. Lett. 190: 39-43.
    • (2000) FEMS Microbiol. Lett. , vol.190 , pp. 39-43
    • Richard, P.1    Toivari, M.H.2    Penttila, M.3
  • 45
    • 0032080753 scopus 로고    scopus 로고
    • The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae
    • Rodriguez-Pena, J. M., V. J. Cid, J. Arroyo, and C. Nombela, 1998 The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 162: 155-160.
    • (1998) FEMS Microbiol. Lett. , vol.162 , pp. 155-160
    • Rodriguez-Pena, J.M.1    Cid, V.J.2    Arroyo, J.3    Nombela, C.4
  • 46
    • 49649106060 scopus 로고    scopus 로고
    • Genomics of cellulosic biofuels
    • Rubin, E. M., 2008 Genomics of cellulosic biofuels. Nature 454: 841-845.
    • (2008) Nature , vol.454 , pp. 841-845
    • Rubin, E.M.1
  • 47
    • 70449428931 scopus 로고    scopus 로고
    • Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae
    • Runquist, D., B. Hahn-Hagerdal, and M. Bettiga, 2009 Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb. Cell Fact. 8: 49.
    • (2009) Microb. Cell Fact. , vol.8 , pp. 49
    • Runquist, D.1    Hahn-Hagerdal, B.2    Bettiga, M.3
  • 48
    • 49549122021 scopus 로고    scopus 로고
    • Saccharomyces Genome Database
    • Saccharomyces Genome Database
    • Saccharomyces Genome Database, 2011 Saccharomyces Genome Database. http://www.yeastgenome.org.
    • (2011)
  • 51
  • 52
    • 0345269094 scopus 로고    scopus 로고
    • Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae
    • Salusjarvi, L., M. Poutanen, J. P. Pitkanen, H. Koivistoinen, A. Aristidou et al., 2003 Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae. Yeast 20: 295-314.
    • (2003) Yeast , vol.20 , pp. 295-314
    • Salusjarvi, L.1    Poutanen, M.2    Pitkanen, J.P.3    Koivistoinen, H.4    Aristidou, A.5
  • 53
    • 0036799297 scopus 로고    scopus 로고
    • SHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis
    • Shi, N. Q., J. Cruz, F. Sherman, and T. W. Jeffries, 2002 SHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis. Yeast 19: 1203-1220.
    • (2002) Yeast , vol.19 , pp. 1203-1220
    • Shi, N.Q.1    Cruz, J.2    Sherman, F.3    Jeffries, T.W.4
  • 54
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski, R. S., and P. Hieter, 1989 A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 55
    • 77954212737 scopus 로고    scopus 로고
    • A survey of yeast genomic assays for drug and target discovery
    • Smith, A. M., R. Ammar, C. Nislow, and G. Giaever, 2010 A survey of yeast genomic assays for drug and target discovery. Pharmacol. Ther. 127: 156-164.
    • (2010) Pharmacol. Ther. , vol.127 , pp. 156-164
    • Smith, A.M.1    Ammar, R.2    Nislow, C.3    Giaever, G.4
  • 57
    • 0034878314 scopus 로고    scopus 로고
    • Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability
    • Toivari, M. H., A. Aristidou, L. Ruohonen, and M. Penttila, 2001 Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab. Eng. 3: 236-249.
    • (2001) Metab. Eng. , vol.3 , pp. 236-249
    • Toivari, M.H.1    Aristidou, A.2    Ruohonen, L.3    Penttila, M.4
  • 58
    • 33644807842 scopus 로고    scopus 로고
    • Synthetic genetic array analysis in Saccharomyces cerevisiae
    • Tong, A. H., and C. Boone, 2006 Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol. Biol. 313: 171-192.
    • (2006) Methods Mol. Biol. , vol.313 , pp. 171-192
    • Tong, A.H.1    Boone, C.2
  • 59
    • 0035861532 scopus 로고    scopus 로고
    • Systematic genetic analysis with ordered arrays of yeast deletion mutants
    • Tong, A. H., M. Evangelista, A. B. Parsons, H. Xu, G. D. Bader et al., 2001 Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294: 2364-2368.
    • (2001) Science , vol.294 , pp. 2364-2368
    • Tong, A.H.1    Evangelista, M.2    Parsons, A.B.3    Xu, H.4    Bader, G.D.5
  • 60
    • 10744230485 scopus 로고    scopus 로고
    • Global mapping of the yeast genetic interaction network
    • Tong, A. H., G. Lesage, G. D. Bader, H. Ding, H. Xu et al., 2004 Global mapping of the yeast genetic interaction network. Science 303: 808-813.
    • (2004) Science , vol.303 , pp. 808-813
    • Tong, A.H.1    Lesage, G.2    Bader, G.D.3    Ding, H.4    Xu, H.5
  • 61
    • 0034214335 scopus 로고    scopus 로고
    • An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains
    • van Dijken, J. P., J. Bauer, L. Brambilla, P. Duboc, J. M. Francois et al., 2000 An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb. Technol. 26: 706-714.
    • (2000) Enzyme Microb. Technol. , vol.26 , pp. 706-714
    • van Dijken, J.P.1    Bauer, J.2    Brambilla, L.3    Duboc, P.4    Francois, J.M.5
  • 62
    • 34548728610 scopus 로고    scopus 로고
    • Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component
    • van Maris, A. J., A. A. Winkler, M. Kuyper, W. T. de Laat, J. P. van Dijken et al., 2007 Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv. Biochem. Eng. Biotechnol. 108: 179-204.
    • (2007) Adv. Biochem. Eng. Biotechnol. , vol.108 , pp. 179-204
    • van Maris, A.J.1    Winkler, A.A.2    Kuyper, M.3    de Laat, W.T.4    van Dijken, J.P.5
  • 63
    • 67649757165 scopus 로고    scopus 로고
    • Yeast metabolic engineering for hemicellulosic ethanol production
    • Van Vleet, J. H., and T. W. Jeffries, 2009 Yeast metabolic engineering for hemicellulosic ethanol production. Curr. Opin. Biotechnol. 20: 300-306.
    • (2009) Curr. Opin. Biotechnol. , vol.20 , pp. 300-306
    • Van Vleet, J.H.1    Jeffries, T.W.2
  • 64
    • 57049166496 scopus 로고    scopus 로고
    • Deleting the paranitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose
    • Van Vleet, J. H., T. W. Jeffries, and L. Olsson, 2008 Deleting the paranitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metab. Eng. 10: 360-369.
    • (2008) Metab. Eng. , vol.10 , pp. 360-369
    • Van Vleet, J.H.1    Jeffries, T.W.2    Olsson, L.3
  • 65
    • 0033367325 scopus 로고    scopus 로고
    • Ribosome synthesis in Saccharomyces cerevisiae
    • Venema, J., and D. Tollervey, 1999 Ribosome synthesis in Saccharomyces cerevisiae. Annu. Rev. Genet. 33: 261-311.
    • (1999) Annu. Rev. Genet. , vol.33 , pp. 261-311
    • Venema, J.1    Tollervey, D.2
  • 66
    • 0029909726 scopus 로고    scopus 로고
    • Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
    • Walfridsson, M., X. Bao, M. Anderlund, G. Lilius, L. Bulow et al., 1996 Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Environ. Microbiol. 62: 4648-4651.
    • (1996) Appl. Environ. Microbiol. , vol.62 , pp. 4648-4651
    • Walfridsson, M.1    Bao, X.2    Anderlund, M.3    Lilius, G.4    Bulow, L.5
  • 68
    • 77953211186 scopus 로고    scopus 로고
    • Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae
    • Wenger, J. W., K. Schwartz, and G. Sherlock, 2010 Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet. 6: e1000942
    • (2010) PLoS Genet. , vol.6
    • Wenger, J.W.1    Schwartz, K.2    Sherlock, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.